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Abstract: We introduce a model in which a wire made of shape
memory alloy is used to passively damp the vibrations of a mem-
brane. The mechanical energy of the membrane is transformed into
heat via the thermo-elastic properties of the shape memory alloy.
We describe the model and prove existence and uniqueness of solu-
tions. Finally we will show that for suitable initial and boundary
conditions, the energy of the entire system is a decreasing function.
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1. Description of the model

Thermo-elastic materials, such as shape memory alloys, have the property that
they can transform mechanical (i.e. kinetic and potential) energy into thermal
energy and vice versa. This property can be used to damp the vibrations of an
elastic structure such as a membrane, plate or beam, by attaching shape mem-
ory materials at suitable locations. The mechanical deformations induce phase
transitions in the shape memory alloy and a transformation of the mechanical
energy into thermal energy via the latent heat of these phase transitions. The
thermal energy can be removed from the structure by cooling the shape memory
alloy. In this process, the shape memory material does not act as an actuator,
but merely as a sink for mechanical energy. No active controls are necessary,
except for a cooling mechanism for the shape memory alloy.

In this paper we will investigate a model of passive damping of a membrane
to which a shape memory wire is attached. The model can easily be extended
to a plate or a beam.

To our knowledge there is no mathematical result obtained for such a model
due to two reasons:
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1. the wave equation is defined in a nonsmooth domain, and so the general
theory of such initial-boundary value problems is not available;

2. the shape memory alloys are highly nonlinear, and the useful theory exists
only for one dimensional models.

Therefore, our paper is the first attempt to provide the mathematical model
for such elastic structure. It seems that such devices could also be used in
applications (Müller and Seelecke, 1998).

Furthermore, the modelling can be used for further optimization problems
including optimal location of passing damping devices. Optimal location of
shape memory alloys can be formulated as optimal nonlinear cracks in solids.

We start by a heuristic introduction to this model. Let Ω ⊂ R
2 be a convex

domain with a Lipschitz boundary Γ and let Ω± ⊂ Ω be two non-empty sub-
domains with the following properties:

(Ω+ ∪ Ω−) = Ω, (1)
Q = Ω+ ∩ Ω−, (2)

Γ± = Γ ∩ Ω±, (3)

where Q is a line segment. From the convexity of Ω, it follows that Q intersects
Γ transversally, i.e at angles in (0, 2π). For simplicity, we will assume that
Q = [0, 1]. This geometry is indicated in Fig. 1, below. Furthermore, we let ΩT ,
QT etc. denote the cylinders Ω× (0, T ), Q× (0, T ) etc. The membrane occupies
the domain Ω and the line segment Q is occupied by a one-dimensional shape
memory rod. To formulate the problem let u be the vertical displacement of
the membrane, v the vertical displacement of the shape memory rod and θ be
the absolute temperature of the rod. We will also assume that the membrane
itself is held at a constant temperature θ0. This assumption can be removed by
modeling the heat transfer on the membrane as well. However, this would not
introduce any additional insight into the model.

Γ+

Γ−

Q

Ω−

Ω+

Figure 1. The domain Ω
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The displacement u will satisfy a homogeneous wave equation with Dirichlet
boundary conditions on Ω±

T :

utt − ∆u = 0 on Ω±
T , (4)

u = 0 on Γ±
T . (5)

Let us observe that such a wave equation in the domain with a crack is
highly nonstandard. We use the estimates obtained recently by Kokotov and
Plamenevsky for linear wave equation in the domain with cracks. On the com-
mon boundary QT , we assume continuity with the displacement v of the shape
memory rod:

u = v on QT . (6)

For the shape memory alloy on Q = [0, 1], we use the same model as
in Brokate and Sprekels (1996), Bubner (1995), Bubner and Sprekels (1998),
Sprekels and Zheng (1989) and Zheng (1995). In this model the functions v and
θ satisfy the equation

vtt − (σ(θ, vx))x +Rvxxxx = f, (7)
θt − κθxx − θ (σ(θ, vx))θ vxt = g. (8)

Here the function σ is given by

σ(θ, vx) = γ (θ1 − θ) vx − βv3
x + αv5

x. (9)

θ1, α, β, γ, κ and R being positive constants. We refer the reader to Sprekels
and Zheng (1989) for a detailed investigation of this model.

The boundary conditions for these equations are given by

θx(0, t) = θx(1, t) = 0, (10)
v(0, t) = v(1, t) = vxx(0, t) = vxx(1, t) = 0 . (11)

It remains to describe the source terms f and g in these equations. The deformed
membrane will act on the shape memory rod via the elastic force. As in previous
papers (see Horn and Soko�lowski, 2002), this force is proportional to the jump
of the normal derivatives of u across Q. To define this let ν be the outward
normal on Q with respect to Ω+, then we define

f = −
[
∂u

∂ν

]
= lim

y→0+

∂u

∂y
+ lim

y→0−

∂u

∂y
. (12)

The source term g provides a mechanism for cooling the rod; g should be a
function of θ − θ0, which has the opposite sign to θ − θ0, i.e. g acts as a sink
when θ > θ0, and g acts as a source if θ < θ0. For simplicity we will use

g(θ) = k (θ0 − θ) .
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Initial conditions on u are given as follows:

u(x, y, 0) = u0(x, y) on Ω, (13)
ut(x, y, 0) = u1(x, y) on Ω. (14)

We will assume that the initial conditions for v and θ are compatible with those
for u, i.e.

v(x, 0) = v0(x) = u0(x, y)|Q , (15)
vt(x, 0) = v1(x) = u1(x, y)|Q , (16)
θ(x, 0) = θ0. (17)

We conclude this section by formally showing that the energy of this system
decreases. Formally, one can compute the energy of this structure as follows.
After multiplying (4) by ut and integrating the result over Ω one receives:

1
2
d

dt

∫
Ω

(
|ut|2 + |∇u|2

)
dxdy =

∫
Q

[
∂u

∂ν

]
ut dx. (18)

Multiplying (7) by vt and integrating overQ and adding the result to the integral
of (8) over Q yields

1
2
d

dt

∫
Q

(
|vt|2 +R |vxx|2 + γθ1 |vx|2 − β |vx|4 + α |vx|6 + |θ|

)
dx

=
∫

Q

fvt dx+ k

∫
Q

(θ0 − θ) dx. (19)

This computation can be found in Sprekels and Zheng (1989). Next we add (18)
and (19) and see that the terms

∫
Q

[
∂u
∂ν

]
ut dx, and

∫
Q
fvt dx cancel. We get

1
2
d

dt

∫
Ω

(
|ut|2 + |∇u|2

)
dxdy

+
1
2
d

dt

∫
Q

(
|vt|2 +R |vxx|2 + γθ1 |vx|2 − β |vx|4 + α |vx|6 + |θ|

)
dx (20)

= k

∫
Q

(θ0 − θ) dx .

The left hand side of this equation is the time derivative of the total energy of
the structure, consisting of the kinetic energies of the membrane and the rod,
the potential energy of the membrane and the rod and the thermal energy of
the rod. The right hand side is the heat flux into or out of the rod. We see
that if θ0 is sufficiently small, the right hand side will be negative, and the total
energy will decrease, i.e. the motion of the membrane will be damped.

In the next section we will give a weak formulation of this system. In Sec-
tion 3 we will prove uniform a priori estimates for the solution, which will justify
the heuristic energy balance above. This will also allow us to prove an existence
and uniqueness result.
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Remark 1.1 In view of the equality (19) we could consider a shape optimization
problem of minimizing the functional

J(Q) =
∫ T

0

∫
Q

fvt dx+ k

∫
Q

(θ0 − θ) dxdt

over a family of admissible curves Q. However, the value of the functional
depends on the initial conditions. The other possibility would be to determine
the rate of decreasing of the energy and maximize the rate with respect to the
admissible curve. It seems that the appropriate choice of the shape functional is
an important issue and should be adressed, taking into account that in general
some numerical methods should be applied and the solution obtained for the
shape optimization problem under considerations should be stable with respect to
imperfections.

2. Weak formulation of the problem

To obtain a weak form of this problem we again start with the linear wave
equation (4)

utt − ∆u = 0 on Ω±
T , (21)

u = 0 on Γ±
T . (22)

We multiply this equation by a smooth test function φ ∈ Y1 where

Y1 =
{
φ ∈ H2,2(ΩT ) : φ|t=T = φt|t=T = 0, φ|Γ = 0

}
and integrate over Ω = Ω+ ∪ Ω− ∪Q and over [0, T ] to get

0 =
∫ T

0

∫
Ω

(utt − ∆u)φdxdt =
∫ T

0

∫
Ω±

(utt − ∆u)φdxdt,

where∫
Ω±

f dx =
∫

Ω+
f dx+

∫
Ω−

f dx.

Integrating by parts twice gives∫ T

0

∫
Ω±

uttφdxdt = −
∫ T

0

∫
Ω±

utφt dxdt+
∫

Ω±
utφdx

∣∣∣∣
T

t=0

=
∫ T

0

∫
Ω±

uφtt dxdt−
∫

Ω±
u1φ(0, x) dx +

∫
Ω±

u0φt(0, x) dx.

Next we integrate the term with the Laplacian by parts over Ω+ to get

−
∫ T

0

∫
Ω+

∆uφdxdt =
∫ T

0

∫
Ω+

∇u∇φdxdt−
∫ T

0

∫
∂Ω+

∂u

∂n
φdσdt

= −
∫ T

0

∫
Ω+

u∆φdxdt+
∫ T

0

∫
∂Ω+

u
∂φ

∂n
dσdt−

∫ T

0

∫
∂Ω+

∂u

∂n
φdσdt.
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Similarly we integrate by parts over Ω− to get:

−
∫ T

0

∫
Ω−

∆uφdxdt =
∫ T

0

∫
Ω−

∇u∇φdxdt −
∫ T

0

∫
∂Ω−

∂u

∂n
φdσdt

= −
∫ T

0

∫
Ω−

u∆φdxdt +
∫ T

0

∫
∂Ω−

u
∂φ

∂n
dσdt −

∫ T

0

∫
∂Ω−

∂u

∂n
φdσdt.

As a result we have

−
∫ T

0

∫
Ω

∆uφdxdt = −
∫ T

0

∫
Ω

u∆φdxdt −
∫ T

0

∫
Q

[
∂u

∂n

]
Q

φdσdt

−
∫ T

0

∫
Γ

∂u

∂n
φdsdt+

∫ T

0

∫
Γ

∂φ

∂n
u dsdt.

Because of the boundary conditions on u and φ on Γ the last two terms vanish.
This allows us now to establish the weak form of the wave equation;∫ T

0

∫
Ω

u (φtt − ∆φ) dxdt−
∫

Ω

u1φ(0) dx

+
∫

Ω

u0φt(0) dx−
∫ T

0

∫
Q

[
∂u

∂n

]
Q

φdσdt = 0

for all φ ∈ Y1. The term
[

∂u
∂n

]
Q

can now be replaced by the balance of momen-
tum for shape memory alloys as follows

vtt − (σ(θ, vx))x +Rvxxxx = −
[
∂u

∂n

]
Q

,

where the function σ(θ, vx) is given in (9). After this (23) becomes∫ T

0

∫
Ω

u (φtt − ∆φ) dxdt−
∫

Ω

u1φ(0) dx +
∫

Ω

u0φt(0) dx (23)

+
∫ T

0

∫
Q

(vtt − (σ(θ, vx))x +Rvxxxx)φdσdt = 0 .

In the last term we can again integrate by parts to get∫ T

0

∫
Q

vttφdσdt =
∫ T

0

∫
Q

vφtt dσdt+
∫

Q

v0φt(0) dσ −
∫

Q

v1φ(0) dσ,

and

−
∫ T

0

∫
Q

(σ(θ, vx))x φdσ =
∫ T

0

∫
Q

σ(θ, vx)φx dσ,

where the boundary terms vanish because of the choice of Y1. Finally, we have∫ T

0

∫
Q

Rvxxxxφdσdt =
∫ T

0

∫
Q

Rvxxφxx dσdt.
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Again the boundary terms vanish by the choice of Y1 and the boundary condi-
tions on v. We can combine this with the weak wave equation (23) to get

∫ T

0

∫
Ω

u (φtt − ∆φ) dxdt−
∫

Ω

u1φ(0) dx +
∫

Ω

u0φt(0) dx (24)

+
∫ T

0

∫
Q

(vφtt + σ(θ, vx)φx +Rvxxφxx) dσdt = 0 .

This equation has to be combined with the non-linear heat equation (8). To ob-
tain a weak formulation of (8) one multiplies this equation by a smooth function
ψ and integrates it over QT = Q× (0, T ) to get

∫ T

0

∫
Q

(−θψt + κθxψx − θ (σ(θ, vx))θ vxtψ − gψ) dσdt = 0, (25)

for all

ψ ∈ Y2 =
{

Ψ ∈ H1,1(QT ) : Ψ(T ) = 0
}
.

The complete problem can now be formulated as:

Find

(u, v, θ) ∈ L2(ΩT ) × L2(0, T ;H2(Q)) ∪H1(0, T ;H1(Q)) × L2(0, T ;H1(Q))

such that (24) and (25) are satisfied for all (φ, ψ) ∈ Y1 × Y2.

Remark 2.1 Observe that for our choice of the function σ given in (9) we have

θ (σ(θ, vx))θ vxt = −θγvxvxt,

i.e. this expression is an L2(QT ) function for v ∈ H1(0, T ;H1(Q)). This re-
quirement can be eased, but we will see that it is automatically satisfied.

3. Uniform a priori estimates

Before going into details of the entire system we will investigate the wave equa-
tion on domains with corners by itself. Whereas there is a rich bibliography
on elliptic boundary value problems in domains with corners (see, for exam-
ple, Kozlov, Maz’ya and Rossmann, 1997; Kozlov, Maz’ya, 1999; Nazarov,
Plamenevsky, 1994), there are only few papers on hyperbolic problems with
non-homogeneous boundary conditions. The wave equation with homogeneous
Dirichlet boundary conditions has been investigated extensively (see, for exam-
ple Grisvard, 1989). These results all depend on the results for elliptic problems.
In our case we do not have homogeneous Dirichlet conditions, which complicates
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the situation significantly. This case was studied in great detail in a recent paper
by Kokotov and Plamenevsky (2000). To start recall (4) together with (6):

utt − ∆u = 0 on Ω±
T ,

u = 0 on Γ±
T , (26)

u = v on QT .

In each of the sub-domains Ω± this system satisfies the requirements for the sys-
tems studied in Kokotov and Plamenevsky (2000). Hence we have the following
inequality on Ω+:

λ2

∫ T

0

∫
Ω+

e−2λt|∇u|2 dxdt+ λ

∫ T

0

∫
Q

e−2λt

∣∣∣∣∂u∂n
∣∣∣∣
2

dsdt (27)

≤ cλ

∫ T

0

∫
Q

e−2λt

∣∣∣∣∂u∂τ
∣∣∣∣
2

dsdt

where ∂u
∂τ denotes the tangential derivative along Q, λ > 0 is a parameter and c

a positive constant that does not depend on λ. In the specific case at hand we
have of course

∂u

∂τ
= vx,

and furthermore we have that 0 ≤ t ≤ T and we therefore get

λ2e−2λT

∫ T

0

∫
Ω+

|∇u|2 dxdt+ λe−2λT

∫ T

0

∫
Q

∣∣∣∣∂u∂n
∣∣∣∣
2

dsdt (28)

≤ cλ

∫ T

0

∫
Q

|vx|2 dsdt,

which immediately implies

‖u‖L2(0,T ;H1(Ω+)) ≤ C ‖v‖L2(0,T ;H1(Q)) . (29)

The same inequality holds also for Ω− and we can combine them to get∫ T

0

∫
Ω±

|∇u|2 dxdt +
∫ T

0

∫
Q

∣∣∣∣∣
[
∂u

∂n

]
Q

∣∣∣∣∣
2

dsdt ≤ C

∫
0

∫
Q

|vx|2 dsdt . (30)

Hence, we have shown the following lemma:

Lemma 3.1 Let u satisfy (26) and v ∈ L2(0, T ;H1(Q)), then u satisfies the
following estimate:

‖u‖L2(0,T ;H1(Ω±)) ≤ C ‖v‖L2(0,T ;H1(Q)) .

Furthermore, we have that∥∥∥∥∥
[
∂u

∂n

]
Q

∥∥∥∥∥
L2(QT )

≤ C ‖v‖L2(0,T ;H1(Q)) .
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This lemma now allows us to prove the following apriori estimate:

Lemma 3.2 Let (v, θ) satisfy (7) and (8) together with the boundary condi-
tions (10) and (11). Furthermore, let u0|Q ∈ H2(Q), u1|Q ∈ L2(Q) and
θ0|Q ∈ L2(Q). Then we have v ∈ C(0, T ;H2(Q)), vt ∈ C(0, T ;L2(Q)), and
θ ∈ C(0, T ;L1(Q)).

Proof. As in the introduction, we multiply (7) by vt and integrate over QT .
Furthermore, we integrate (8) over Q and add the two resulting equations to
get

1
2
d

dt

∫
Q

(
|vt|2 +R |vxx|2 + γθ1 |vx|2 − β |vx|4 + α |vx|6 + |θ|

)
dx

=
∫

Q

[
∂u

∂n

]
Q

vt dx+ k

∫
Q

(θ0 − θ) dx.

The first term on the right can be estimated using the previous Lemma as
follows:∣∣∣∣∣

∫
Q

[
∂u

∂n

]
Q

vt dx

∣∣∣∣∣
≤
(∫

Q

[
∂u

∂n

]2

Q

dx

) 1
2

‖vt‖ ≤ C ‖vx‖ ‖vt‖ ≤ C

2
‖vx‖2 +

C

2
‖vt‖2 .

An application of Gronwall’s inequality will yield the desired result.

In the next step consider, we start by formally taking the time derivative of
the wave equation to get

Utt − ∆U = 0 on Ω±
T (31)

U = 0 on Γ±
T (32)

U = vt on QT (33)

together with the initial conditions

U(0, x) = u1 on Ω± (34)
Ut(0, x) = ∆u0 on Ω±. (35)

This can always be done provided that u0 satisfies the compatibility condition
that u0 ∈ H2(Ω±). We can again apply the result of Kokotov and Plamenevsky
(2000) to get:∥∥∥∥∥

[
∂U

∂n

]
Q

∥∥∥∥∥
L2(QT )

≤ C ‖vt‖L2(0,T ;H1(Q)) . (36)
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Furthermore, since we have U = ut a.e. it follows that∥∥∥∥∥
[
∂ut

∂n

]
Q

∥∥∥∥∥
L2(QT )

≤ C ‖vt‖L2(0,T ;H1(Q)) . (37)

To get higher apriori estimates for v, we multiply (7) by −vxxt an (8) by θt

and follow exactly the proof of Lemma 4.2.4 of Zheng (1995) to obtain:

1
2

(
‖vxt(t)‖2 + ‖vxxx(t)‖2 + ‖θx(t)‖2

)
+
∫ t

0

‖θt‖2
ds

+
∫ t

0

∫
Q

((σ(θ, vx))xvxxt − θ(σ(θ, vx))θvxtθt) dxds

=
1
2

(
‖vxt(0)‖2 + ‖vxxx(0)‖2 + ‖θx(0)‖2

)
+
∫ t

0

∫
Q

gθt dxds−
∫ t

0

∫
Q

[
∂u

∂n

]
vxxt dxdt .

Only the last term on the right is new and has to be treated differently. Inte-
gration by parts in t yields:∫ t

0

∫
Q

[
∂u

∂n

]
vxxt dxds =

∫
Q

[
∂u(t)
∂n

]
vxx(t) dx

−
∫

Q

[
∂u(0)
∂n

]
vxx(0) dx−

∫ t

0

∫
Q

[
∂ut

∂n

]
vxx dxds .

The last term can be estimated as follows:∣∣∣∣
∫ t

0

∫
Q

[
∂ut

∂n

]
vxx dxds

∣∣∣∣ ≤
∥∥∥∥∥
[
∂ut

∂n

]
Q

∥∥∥∥∥
L2(QT )

‖v‖L2(0,T ;H2(Q))

≤ C ‖vt‖L2(0,T ;H1(Q)) ‖v‖L2(0,T ;H2(Q)) .

Furthermore, observe that

∣∣∣∣
∫

Q

[
∂u(t)
∂n

]
vxx(t) dx

∣∣∣∣ ≤
(∫

Q

[
∂u(t)
∂n

]2

dx

) 1
2

‖v(t)‖H2(Ω) ,

and that∫
Q

[
∂u(t)
∂n

]2

dx =
∫

Q

[
∂u(0)
∂n

]2

dx+ 2
∫ t

0

∫
Q

[
∂u

∂n

] [
∂ut

∂n

]
dxds

≤ 2C ‖v‖L2(0,T ;H1(Q)) ‖vt‖L2(0,T ;H1(Q)) .

The terms involving ‖vt‖L2(0,T ;H1(Q)) can be treated using Gronwall’s inequality.
We arrive at:
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Lemma 3.3 Let (v, θ) satisfy (7) and (8) together with the boundary conditions
(10) and (11). Furthermore, let u0|Q ∈ H2(Q), u1|Q ∈ L2(Q) and θ0|Q ∈
L2(Q). Then there exists a constant C which depends only on the data such that

sup
0≤t≤T

1
2

(
‖vxt(t)‖2 + ‖vxxx(t)‖2 + ‖θx(t)‖2

)
+
∫ T

0

‖θt‖2 ds ≤ C.

Moreover, we have

‖θ‖2
L2(0,T ;H2(Q)) ≤ C

This Lemma has an immediate consequence:

Corollary 3.1 Let u satisfy the system (26) together with the compatibil-
ity condition u0 ∈ H2(Ω±) then we have ut ∈ L2(0, T ;H1(Ω±), and u ∈
C(0, T ;H1(Ω±)) .

The previous lemma gives vt ∈ C(0, T ;H1(Q). This in turn can be used in
(36) to get the estimate. This Corollary allows us to multiply (4) by ut to get
the energy inequality.

We can now combine these estimates to get the following existence and
uniqueness result:

Theorem 3.1 Let u0 and u1 satisfy the hypotheses of the previous lemmas and
the corollary. Then there exists a unique triple

(u, v, θ) ∈ L2(ΩT ) × L2(0, T ;H2(Q)) ∪H1(0, T ;H1(Q)) × L2(0, T ;H1(Q))

that satisfies (24) and (25) for all (φ, ψ) ∈ Y1 × Y2. Moreover, we have

u ∈ C(0, T ;H1(Ω±)), (38)
ut ∈ L2(0, T ;H1(Ω±)), (39)
v ∈ C(0, T ;H3(Q)), (40)
vt ∈ C(0, T ;H1(Q)), (41)
θ ∈ C(0, T ;H1(Q)) ∩ L2(0, T ;H2(Q)). (42)

Finally, the triple satisfies the energy relation

1
2
d

dt

∫
Ω

(
|ut|2 + |∇u|2

)
dxdy

+
1
2
d

dt

∫
Q

(
|vt|2 +R |vxx|2 + γθ1 |vx|2 − β |vx|4 + α |vx|6 + |θ|

)
dx (43)

= k

∫
Q

(θ0 − θ) dx.
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Sketch of Proof. We consider in Q× (0, T ) the system

vtt − (σ(θ, vx))x +Rvxxxx = f(v),
θt − κθxx − θ (σ(θ, vx))θ vxt = g,

along with the initial and boundary conditions, where

f(v) =
[
∂u

∂n

]
Q

,

for u a solution of (26). Then f is a linear pseudo-differential operator defined
by Dirichlet-to-Neumann map on Q for linear wave equation. The operator is
bounded as a map

f : L2(0, T ;H1(Q)) → L2(0, T ;H1(Q))

and further we have that

f : vt 	→ f(vt)

is bounded in the same space. The a priori estimates can be used to follow the
treatment of Horn and Soko�lowski (2002) to obtain a solution to this problem.
From there we get a solution to (26). Finally, the a priori estimates allow us to
obtain the energy inequality.
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Grisvard, P. (1989) Contrôlabilité exacte des solutions de l’équation des on-
des en présence de singularités. J. Math. Pures et Appl. 68, 215–259.



A model for passive damping of a membrane 337

Horn, W. and Soko�lowski, J. (2000) Models for Adaptive Structures using
Shape Memory Actuators. Procedings of MTNS 2000, Perpignan (elec-
tronic).

Horn, W. and Soko�lowski, J. (2002) An elastic membrane with an at-
tached nonlinear thermoelastic rod. Applied Mathematics and Computer
Science 12 (4), 479-487.

Kokotov, A.Yu. and Plamenevsky, B.A. (2000) On the Cauchy-Dirichlet
Problem for Hyperbolic Systems in a wedge. St. Petersburg Math. J. 11
(3), 497–534.

Kozlov, V.A., Maz’ya, V.G. and Rossmann, J. (1997) Elliptic Boundary
Value Problems in Domains with Point Singularities. American Mathe-
matical Society, Providence, R. I.

Kozlov, V.A. and Maz’ya, V.G. (1999) Comparison Principles for Nonlin-
ear Operator Differential Equations in Banach Spaces. Amer. Math. Soc.
Transl. 189, 149–157.

Müller, I. and Seelecke, S. (1998) Adaptive air foil with shape memory
allays. 1st Meeting of the TMR Research Project “Phase Tarnsitions in
Crystalline Solids” FMRX-CT98-0229.
http://www.dmsa.unipd.it/tmr/meetingRoma98/node18.html.

Nazarov, S.A. and Plamenevsky, B.A. (1994) Elliptic Problems in Do-
mains with Piecewise Smooth Boundaries. Walter de Gruyter, Berlin.

Sprekels, J. and Zheng, S. (1989) Global Solutions to the Equations of a
Ginzburg–Landau Theory for structural Phase Transitions in Shape Mem-
ory Alloys. Physica D 39, 59–76

Zheng, S. (1995) Nonlinear Parabolic Equations and coupled Hyperbolic-Pa-
rabolic Systems. Longman House, Burnt Mill, UK.


