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Abstract: The regularity and stability of optimal controls of
nonstationary Navier-Stokes equations are investigated. Under suit-
able assumptions every control satisfying first-order necessary con-
ditions is shown to be a continuous function in both space and time.
Moreover, the behaviour of a locally optimal control under certain
perturbations of the cost functional and the state equation is investi-
gated. Lipschitz stability is proven provided a second-order sufficient
optimality condition holds.
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1. Introduction

We are considering optimal control of the nonstationary Navier-Stokes equa-
tions. As a model problem we use the minimization of the quadratic objective
functional

min J(y, u) =
αT

2

∫
Ω

|y(x, T ) − yT (x)|2dx +
αQ

2

∫
Q

|y(x, t) − yQ(x, t)|2dxdt

+
αR

2

∫
Q

| curl y(x, t)|2dxdt +
γ

2

∫
Q

|u(x, t)|2dxdt (1)

subject to the nonstationary Navier-Stokes equations

yt − ν∆y + (y · ∇)y + ∇p = u in Q,
div y = 0 in Q,
y(0) = y0 in Ω,

(2)

1This work was supported by DFG SFB 557 ”Control of complex turbulent shear flows”
at TU Berlin.



388 D. WACHSMUTH

and the control constraints u ∈ Uad with control set defined by

Uad = {u ∈ L2(Q)n : ua,i(x, t) ≤ ui(x, t) ≤ ub,i(x, t) a.e. on Q, i = 1..2}.

Here, Ω is an open bounded subset of R
2 with C3-boundary Γ, such that Ω

is locally on one side of Γ, and Q is defined by Q = (0, T ) × Ω. Further,
functions yT ∈ H ⊆ L2(Ω)2, yQ ∈ L2(Q)2, and y0 ∈ H ⊂ L2(Ω)2 are given.
The parameters γ and ν are positive real numbers. The constraints ua, ub are
required to be in L2(Q)2 with ua,i(x, t) ≤ ub,i(x, t) a.e. on Q, i = 1, 2.

In this article, we deal with two questions arising in the optimal control of
partial differential equations:

1 How smooth is a locally optimal control?
2 Does a locally optimal control enjoy stability under perturbations of the

data?
Both are related in the following sense: if the optimal control enjoys some regu-
larity then under reasonable perturbations this regularity should be preserved.

Actually, regularity results for optimal controls can be derived from the first
order necessary optimality system. It introduces some coupling between the
control and the adjoint state. The adjoint state itself is solution of a partial
differential equation and therefore has some regularity, which is inherited by an
optimal control. We want to show that any control satisfying the first-order
necessary optimality conditions of problem (1) is a continuous function in both
space and time.

Since the 1980s the investigation of stability of optimal controls has attracted
much interest. Once a stability result holds true, one easily can prove conver-
gence of numerical methods such as the SQP-method for instance, Dontchev
et al. (1995). The first stability results for optimal control of partial differ-
ential equations are due to Tröltzsch (1996), where a linear-quadratic control
problem is studied. For the treatment of general state equations including non-
stationary ones we refer to Goldberg and Tröltzsch (1998), Hinze and Kunisch
(2001), Malanowski and Tröltzsch (2000), Tröltzsch (2000) and the references
cited therein. For the control of the stationary Navier-Stokes system, we refer
to Roub́ıček and Tröltzsch (2002). The stability of optimal controls of the non-
stationary Navier-Stokes equations was presented in the recent research paper
of Hintermüller and Hinze (2003).

The control of nonstationary Navier-Stokes flow has been studied very in-
tensively since the pioneering work of Abergel and Temam (1990), see for in-
stance Casas (1993), Fattorini and Sritharan (1994), Gunzburger (1995), Gun-
zburger and Manservisi (1999, 2000), Hintermüller and Hinze (2003), Hinze
(2002), Hinze and Kunisch (2001), Sritharan (1991), Tröltzsch and Wachsmuth
(2003). Stability problems were addressed in Hintermüller and Hinze (2003) to
prove convergence of the SQP-method.

Since we will show that optimal controls of (1) are continuous, we will give
stability results in the associated L∞-norm. This extends the results obtained
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in Hintermüller and Hinze (2003), where stability of optimal controls in Ls(Q)2,
s < 7/2, was achieved. But, it requires a change in the methods, too. Using
Hilbert space theory of the nonstationary Navier-Stokes equations one can prove
stability of optimal controls in the space Ls(0, T ; L∞(Ω)2) ∩ L∞(0, T ; Ls(Ω)2)
only for s < ∞. We will close the gap to s = ∞ by employing the Lp-solution
theory due to von Wahl (1980, 1985).

The outline of the article is as follows. In Section 2, we will introduce some
notation and state common results concerning solvability of the nonstationary
Navier-Stokes system (2). Section 3 contains a brief summary of known facts
about optimality conditions. The continuity of optimal controls is proven in
Section 4. Finally, Section 5 is devoted to the study of stability of optimal
controls.

2. Notations and preliminary results

Here, we will restrict ourselves to the two-dimensional case, n = 2. First, we
introduce some notations and provide some results that we need later on.

To begin with, we define the solenoidal spaces

Hp := {v ∈ Lp(Ω)2 : div v = 0}, Vp := {v ∈ W 1,p
0 (Ω)2 : div v = 0}.

Here, p denotes an arbitrary exponent p ≥ 2. These spaces are Banach spaces
with their norms denoted by | · |p respectively | · |1,p. For p = 2, we get the
frequently used solenoidal spaces H := H2 and V := V2, which are Hilbert
spaces with scalar products (·, ·)H respectively (·, ·)V . The dual of V with
respect to the scalar product of H is denoted by V ′ with the duality pairing
〈·, ·〉V ′,V .

We shall work in the standard space of abstract functions from [0, T ] to a
real Banach space X , Lp(0, T ; X), endowed with its natural norm,

‖y‖Lp(X) := ‖y‖Lp(0,T ;X) =

(∫ T

0

|y(t)|pXdt

)1/p

1 ≤ p < ∞,

‖y‖L∞(X) := ess sup
t∈(0,T )

|y(t)|X .

In the sequel, we will identify the spaces Lp(0, T ; Lp(Ω)2) and Lp(Q)2 for 1 <
p < ∞, and denote their norm by ‖u‖p := |u|Lp(Q)2 . The usual L2(Q)2-scalar
product we is denoted by (·, ·)Q to avoid ambiguity.

In all what follows, ‖ · ‖ stands for norms of abstract functions, while | · |
denotes norms of ”stationary” spaces like H and V .

To deal with the time derivative in (2), we introduce the following spaces of
functions y whose time derivatives yt exist as abstract functions,

Wα(0, T ; V ) := {y ∈ L2(0, T ; V ) : yt ∈ Lα(0, T ; V ′)}, W (0, T ) := W 2(0, T ; V ),
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where 1 ≤ α < ∞. Endowed with the norm

‖y‖W α := ‖y‖W α(0,T ;V ) = ‖y‖L2(V ) + ‖yt‖Lα(V ′),

these spaces are Banach spaces, respectively Hilbert spaces in the case of W (0, T ).
Every function of W (0, T ) is, up to changes on sets of zero measure, equivalent
to a function of C([0, T ], H), and the imbedding W (0, T ) ↪→ C([0, T ], H) is
continuous, see Adams (1978), Lions and Magenes (1972). Furthermore, we
introduce the following space of abstract functions in the Lp-context:

W 2,1
p := {y ∈ Lp(0, T ; W 2,p(Ω)2 ∩ Vp) : yt ∈ Lp(0, T ; Lp(Ω)2)},

which is continuously imbedded in C([0, T ], W 2−2/p, p
0 (Ω)2), Ladyhzenskaya, So-

lonnikov and Ural’tseva (1968). Here, W
2−2/p, p
0 (Ω)2 denotes the space of soleno-

idal W 2−2/p, p-functions where zero boundary values are prescribed if p ≥ 4/3.
We abbreviate H2,1 = W 2,1

2 for p = 2. Note, that in this case we have
W

2−2/2, 2
0 (Ω)2 = V . In this article, we will use exponents p ≥ 2.
We define the trilinear form b : V × V × V → R by

b(u, v, w) = ((u · ∇)v, w)2 =
∫

Ω

2∑
i,j=1

ui
∂vj

∂xi
wj dx.

To specify the problem setting, we introduce a linear operator A : L2(0, T ; V ) →
L2(0, T ; V ′) by

∫ T

0

〈(Ay)(t), v(t)〉V ′,V dt :=
∫ T

0

(y(t), v(t))V dt,

and a nonlinear operator B by

∫ T

0

〈(
B(y)

)
(t), v(t)

〉
V ′,V dt :=

∫ T

0

b(y(t), y(t), v(t))dt.

B is continuous for instance as operator from W (0, T ) to L2(0, T ; V ′). Further
properties can be found in Constantin and Foias (1988), Temam (1979), von
Wahl (1985). For convenience, we will use in the sequel the notation

bQ(y, v, w) =
∫ T

0

b(y(t), v(t), w(t))dt.

2.1. The state equation

We begin with the notation of weak solutions for the nonstationary Navier-
Stokes equations (2) in the Hilbert space setting.
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Definition 2.1 (Weak solution) Let f ∈ L2(0, T ; V ′) and y0 ∈ H be given. A
function y ∈ L2(0, T ; V ) with yt ∈ L2(0, T ; V ′) is called a weak solution of (2)
if

yt + νAy + B(y) = f,
y(0) = y0.

(3)

Results concerning the solvability of (3) are standard, see Constantin and Foias
(1988), and Temam (1979) for proofs and further details.

Theorem 2.1 (Existence and uniqueness of solutions) For every f ∈ L2(0, T ; V ′)
and y0 ∈ H, the equation (3) has a unique solution y ∈ W (0, T ). Moreover,
the mapping (y0, u) → y is locally Lipschitz continuous from H × L2(0, T ; V ′)
to W (0, T ).

For more regular data, one expects more regular solutions. The next theorem
states some well-known facts, see for instance Temam (1979) for the details and
Temam (1995) for more regularity results.

Theorem 2.2 (Regularity) For the higher regularity of the weak solutions of (3)
the following holds.

(i) Let y0 ∈ V and f ∈ L2(Q)2 be given. Then the weak solution of (3)
satisfies

y ∈ L2(0, T ; H2(Ω)2) ∩ L∞(0, T ; V ),

yt ∈ L2(0, T ; H).

(ii) Let additionally, y0 ∈ H2(Ω)2∩V and ft ∈ L2(0, T ; V ′) and f(0) ∈ L2(Ω)2

be given. Then the weak solution y of (3) satisfies

yt ∈ L2(0, T ; V ) ∩ L∞(0, T ; H).

(iii) If moreover f ∈ L∞(0, T ; L2(Ω)2) then

y ∈ L∞(0, T ; H2(Ω)2).

The solution mapping (f, y0) → (y, yt) is locally Lipschitz continuous between
the mentioned spaces.

For the proofs of the three statements we refer to Temam (1979), Theorems
III.3.10, 3.5, 3.6.

Remark 2.1 (Linearized state equation) We consider the linearized equation

yt + νAy + B′(ȳ)y = f,
y(0) = y0,

(4)

for a given state ȳ, which is usually the solution of the nonlinear system (3).
Following the lines of Temam, one can proof existence and uniqueness of a weak
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solution y ∈ W (0, T ). Regularity results similar to (i)–(iii) hold, provided the
state ȳ has the same regularity as one wants to get for the solution of the lin-
earized equation, see also Hinze and Kunisch (2001).

Notice that result (ii) implies in particular y ∈ C(Q̄)2. But the prerequisites
are quite restrictive with respect to f . We need that its time-derivative have
some regularity. Also, any other result in the Hilbert theory which leads to con-
tinuous states of class C(Q̄)2 needs regularity of space or time derivatives of the
right hand side, see Constantin and Foias (1988), Sohr (2001), Temam (1979),
von Wahl (1985). In the context of optimal control this is quite problematic.
We will comment on it later on, see remarks at the end of Section 5.3.

Can we gain some ‘intermediate’ regularity of the solution if the right-hand
side is in Lp(Q)2 with p > 2? If then the weak solution would satisfy y ∈
Lp(0, T ; W 2,p(Ω)2) and yt ∈ Lp(0, T ; Lp(Ω)2), we would get immediately y ∈
C([0, T ]; W 1,p(Ω)2) ↪→ C(Q̄)2. Actually, such a result is available. At first, we
have to specify the notation of a strong solution in the Lp-setting.

Definition 2.2 (Strong solution in Lp) Let f ∈ Lp(Q)2 and y0 ∈ W
2−2/p, p
0 (Ω)2

be given. A function y ∈ Lp(0, T ; Vp) with yt ∈ Lp(0, T ; Lp(Ω)2) is called strong
solution to the exponent p > 2 of (2) if

−
∫ T

0

(y, φ′)dt + ν

∫ T

0

(∇y,∇φ)dt +
∫ T

0

b(y, y, φ) =
∫ T

0

(f, φ)dt + (y0, φ(0)) (5)

for all test functions φ ∈ Lq(0, T ; Vq) with φt ∈ Lq(0, T ; Lq(Ω)2) and φ(T ) = 0,
where q is the dual exponent to p, 1/q + 1/p = 1.

Here the space W
2−2/p, p
0 (Ω)2 is the natural trace space. Every abstract function

of Lp(0, T ; W 2,p(Ω)2) with time derivative in Lp(0, T ; Lp(Ω)2) is - after changes
on a zero measure set - continuous with values in this space, Ladyhzenskaya,
Solonnikov and Ural’tseva (1968). Obviously, every strong Lp-solution is a weak
solution. For existence of Lp-solutions we have the following theorem.

Theorem 2.3 (Lp-solutions) Let f ∈ Lp(Q)2 and y0 ∈ W
2−2/p, p
0 (Ω)2 be given

with p ≥ 2. Then the weak solution y of (3) in the sense of Definition 2.1 is a
strong solution and satisfies

y ∈ Lp(0, T ; W 2,p(Ω)2 ∩ Vp),

yt ∈ Lp(0, T ; Lp(Ω)2).

There exists a constant c > 0 such that

‖y‖Lp(W 2,p) + ‖yt‖p + ‖y‖L∞(W 2−2/p, p) ≤ c {|y0|W 2,p + ‖f‖p} .

Moreover, the mapping (f, y0) → y is locally Lipschitz continuous, hence the
strong solution y is unique.

If p = 2 this result reduces to Theorem 2.2(i). For the non-Hilbert space case
with p > 2, it is proven in von Wahl (1977, 1980).
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3. The optimal control problem

3.1. First order necessary optimality conditions

Now we return to our optimal control problem. We briefly recall the necessary
conditions for local optimality. For the proofs and further discussion see Abergel
and Temam (1990), Casas (1993), Gunzburger and Manservisi (1999), Hinze
(2002), Tröltzsch and Wachsmuth (2003) and the references cited therein.

Definition 3.1 (Locally optimal control) A control ū ∈ Uad is said to be locally
optimal in L2(Q)2, if there exists a constant ρ > 0 such that

J(ȳ, ū) ≤ J(yρ, uρ)

holds for all uρ ∈ Uad with ‖ū − uρ‖2 ≤ ρ. Here, ȳ and yρ denote the states
associated with ū and uρ, respectively.

In the following, we denote by B′(ȳ)∗ the formal adjoint of B′(ȳ). For ȳ ∈
W (0, T ), it is a continuous linear operator from L2(0, T ; V ) to L4/3(0, T ; V ′).

Theorem 3.1 (Necessary condition) Let ū be a locally optimal control with
associated state ȳ = y(ū). Then there exists a unique solution λ̄ ∈ W 4/3(0, T ; V )
of the adjoint equation

−λ̄t + νAλ̄ + B′(ȳ)∗λ̄ = αQ(ȳ − yQ) + αR
	curl curl ȳ

λ̄(T ) = αT (ȳ(T ) − yT ).
(6)

Moreover, the variational inequality

(γū + λ̄, u − ū)L2(Q)2 ≥ 0 ∀u ∈ Uad (7)

is satisfied.

Proofs can be found in Gunzburger and Manservisi (1999, 2000), Tröltzsch and
Wachsmuth (2003). The regularity of λ̄ is proven in Hinze and Kunisch (2001).

Here, the operator 	curl curl is defined as

( 	curl curl v, w) =
∫

Q

curl v(x, t) curlw(x, t) dxdt

=
∫

Q

(
∂v1

∂x2
− ∂v2

∂x1

)(
∂w1

∂x2
− ∂w2

∂x1

)
dxdt

for v, w ∈ L2(0, T ; V ). By partial integration, the representation

( 	curl curl v, w) =
∫

Q

(
∂2v2

∂x1x2
− ∂2v1

∂x2
2

)
w1 +

(
∂2v1

∂x2x1
− ∂2v2

∂x2
1

)
w2 dxdt

is obtained.
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In the sequel we need the notation of the normal cone NUad
(ū) of the set of

admissible controls given by

NUad
(ū) =

{{
z ∈ L2(Q)2 : (z, u − ū)2 ≤ 0 ∀u ∈ Uad

}
if ū ∈ Uad

∅ otherwise.
(8)

Then the variational inequality (7) can be written equivalently as the inclusion

νū + λ̄ + NUad
(ū) � 0. (9)

The regularity of the adjoint state depending on the regularity of the data is
stated more precisely in the next lemma. It can be proven following the lines
of Temam (1979), see also Hinze and Kunisch (2001), Rösch and Wachsmuth
(2005). For convenience, we denote by f the right-hand side of (6), and by λT

the initial value αT (ȳ(T ) − yT ).

Theorem 3.2 (Regularity of the adjoint state)
(i) Let λT ∈ H, f ∈ L2(0, T ; V ′), and ȳ ∈ L2(0, T ; V )∩L∞(0, T ; H) be given.

Then there exists a unique weak solution λ of (6) satisfying

λ ∈ L2(0, T ; V ),

λt ∈ L4/3(0, T ; V ′).
(10)

(ii) Let λT ∈ V , f ∈ L2(Q)2, and ȳ ∈ L2(0, T ; H2(Ω)2)∩L∞(0, T ; V ) be given.
Then the unique weak solution λ of (6) satisfies

λ ∈ L2(0, T ; H2(Ω)2) ∩ L∞(0, T ; V ),

λt ∈ L2(0, T ; H).
(11)

(iii) Additionally, let λT ∈ H2(Ω)2∩V , f ∈ L∞(0, T ; L2(Ω)2), ft ∈ L2(0, T ; V ′),
ȳt ∈ L2(0, T ; V ) ∩ L∞(0, T ; H), and ȳ(0) ∈ H2(Ω)2 ∩ V be given. Then
the weak solution λ of (6) satisfies

λ ∈ L∞(0, T ; H2(Ω)2) ∩ L∞(0, T ; V ),

λt ∈ L∞(0, T ; H) ∩ L2(0, T ; V ).

The mapping (f, λT ) → λ is continuous in the mentioned spaces.

The existence of Lp-solutions of the adjoint equation is the topic of the next
Theorem.

Theorem 3.3 Let f ∈ Lp(Q)2 and λT ∈ W
2−2/p, p
0 (Ω)2 be given with p ≥ 2. If

ȳ ∈ Lp(0, T ; W 2,p(Ω)2∩Vp), then the weak solution λ of (6) is a strong solution
and satisfies

λ ∈ Lp(0, T ; W 2,p(Ω)2 ∩ Vp),

λt ∈ Lp(0, T ; Lp(Ω)2).

Moreover, the mapping (f, λT ) → λ is continuous, hence the weak solution λ is
unique.
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The result in the case p = 2 is equivalent to Theorem 3.2(ii). Following the lines
of von Wahl (1977, 1980) one can prove the claim also for p > 2.

Let us introduce the Lagrange function L : W (0, T )×L2(Q)2×W 4/3(0, T ) →
R for the optimal control problem as follows:

L(y, u, λ) = J(u, y)−〈yt, λ〉L2(V ′),L2(V )−ν(y, λ)L2(V )−bQ(y, y, λ)+(u, λ)Q.

This function is twice Fréchet differentiable with respect to (y, u) ∈ W (0, T ) ×
L2(Q)2, see Tröltzsch and Wachsmuth (2003). The reader can readily verify
that the necessary conditions can be expressed equivalently by

Ly(ȳ, ū, λ̄)h = 0 ∀h ∈ W (0, T ) with h(0) = 0,

and

Lu(ȳ, ū, λ̄)(u − ū) ≥ 0 ∀u ∈ Uad.

Here, Ly, Lu denote the partial Fréchet derivative of L with respect to y and u.
In the sequel we denote the pair of state and control (y, u) by v for con-

venience. The second derivative of the Lagrangian L at y ∈ W (0, T ) with
associated adjoint state λ in the directions v1 = (z1, h1), v2 = (z2, h2) ∈
W (0, T )× L2(Q)2 is given by

Lvv(y, u, λ)[v1, v2] = Lyy(y, u, λ)[z1, z2] + Luu(y, u, λ)[h1, h2] (12)

with

Lyy(y, u, λ)[z1, z2] = αT (z1(T ), z2(T ))H + αQ(z1, z2)Q + αR(curl z1, curl z2)Q

− bQ(z1, z2, λ) − bQ(z2, z1, λ)

and

Luu(y, u, λ)[h1, h2] = γ(h1, h2)2.

It satisfies the estimate

|Lyy(y, u, λ)[z1, z2]| ≤ c
(
1 + ‖λ‖L2(V )

) ‖z1‖W (0,T )‖z2‖W (0,T ) (13)

for all z1, z2 ∈ W (0, T ).

3.2. Second-order sufficient optimality conditions

Let v̄ := (ȳ, ū) be an admissible reference pair satisfying the first-order necessary
optimality conditions. We assume further that the reference pair v̄ = (ȳ, ū)



396 D. WACHSMUTH

satisfies the following coercivity assumption on L′′(v̄, λ̄), in the sequel called
second-order sufficient condition:

(SSC)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

There exists δ > 0 such that

Lvv(v̄, λ̄)[(z, h)]2 ≥ δ ‖h‖2
2

holds for all pairs (z, h) ∈ W (0, T ) × L2(Q)2 with z ∈ W (0, T ) being
the weak solution of the linearized equation

zt + Az + B′(ȳ)z = h
z(0) = 0.

Theorem 3.4 Let v̄ = (ȳ, ū) be admissible for the optimal control problem
and suppose that v̄ fulfills the first-order necessary optimality condition with
associated adjoint state λ̄. Assume further that (SSC) is satisfied at v̄. Then
there exist α > 0 and ρ > 0 such that

J(v) ≥ J(v̄) + α ‖u − ū‖2
2

holds for all admissible pairs v = (y, u) with ‖u − ū‖∞ ≤ ρ.

For the proof we refer to Tröltzsch and Wachsmuth (2003). There, Theorem 3.4
was proven in a slightly weaker form: The space of directions in which Lvv has
to be positive definite was shrinked using the concept of strongly active control
constraints. Sufficiency was achieved in a Ls-neighborhood of the reference
control, whereas the quadratic growth takes place in the Lq-norm with q ≤
2 ≤ s ≤ ∞, s = q/(2 − q). The usage of the Ls-norm with s < ∞ was
motivated as follows: if one utilizes a L∞-neighborhood of the reference control
then jumps of the optimal control have to be known a-priorily. For general
objective functionals such jumps can not be excluded. It is one goal of the
present article to show that the quadratic functional given by (1) results in
continuous optimal controls without jumps.

4. Regularity of extremal controls

In this section, we are going to prove continuity in space and time of extremal
controls, i.e. controls satisfying the first-order necessary optimality conditions.
The key tool in our analysis is the well-known projection formula

u(x, t) = Proj[ua(x,t),ub(x,t)]

(
− 1

γ
λ̄(x, t)

)
a.e. on Q, (14)

which is equivalent to the variational inequality (7).
To begin with, we state the assumptions imposed on the various ingredients

of the optimal control problem (1).

(A1)
{

The bounds ua, ub are of class C(Q̄)2. Their time derivatives ua,t, ub,t

exist as functions in L2(Q)2.
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(A2)

⎧⎨
⎩

y0 ∈ H2(Ω)2 ∩ V .
Either αT = 0 or yT ∈ H2(Ω)2 ∩ V .
Either αQ = 0 or yQ ∈ L∞(0, T ; L2(Ω)2) and yQ,t ∈ L2(0, T ; V ′).

Assuming this allows us to prove

Theorem 4.1 Let u ∈ Uad satisfy the first-order necessary conditions of the
optimal control problem (P). Then, u is continuous in Q̄, i.e. u ∈ C(Q̄)2.

Proof. For convenience, we denote the right-hand side of the adjoint equation
(6) by f , i.e. f := αQ(ȳ − yQ) + αR

	curl curl ȳ.
Since u ∈ Uad it follows that u ∈ L2(Q)2. Then, Theorem 2.2(i) yields the

regularity of the associated state y ∈ L2(0, T ; H2(Ω)2)∩L∞(0, T ; V ), y(T ) ∈ V .
The right-hand side f of the adjoint equation is therefore at least of class L2(Ω)2.
Additionally, the initial value λ(T ) is in V . By Theorem 3.2(ii) we conclude that
λ ∈ L2(0, T ; H2(Ω)2) ∩ L∞(0, T ; V ), λt ∈ L2(0, T ; H).

The projection formula (14) gives u ∈ L∞(0, T ; L2(Ω)2). Using a well-
known result of Kinderlehrer and Stampacchia (1980, Thm. II.3.1), we conclude
that ut ∈ L2(Q)2. Now, we can apply Theorem 2.2(ii) and 2.2(iii) to obtain
y ∈ L∞(0, T ; H2(Ω)2), yt ∈ L2(0, T ; V ) ∩ L∞(0, T ; H). Then the right-hand
side of the adjoint equation satisfies f ∈ L∞(0, T ; L2(Ω)2), ft ∈ L2(0, T ; V ′).
The initial value λ(T ) is now of class H2. Thus, Theorem 3.2(iii) implies
λ ∈ L∞(0, T ; H2(Ω)2) and λt ∈ L2(0, T ; V ).

Finally, we want to prove λ ∈ C(Q̄)2. To this end, observe that

λ ∈ Y =
{

w|w ∈ L2(0, T ; H2(Ω)2),
dw

dt
∈ L2(0, T ; V )

}
.

Every function in Y is – up to changes on a zero-measure set – a continuous func-
tion with values in [H2(Ω)2, V ]1/2. And the imbedding of Y in C([0, T ], [H2(Ω)2,
V ]1/2) is linear and continuous, Lions and Magenes (1972), Thm 1.3. Here, [·, ·]θ
denotes the complex interpolation functor, see Triebel (2002). The interpolation
identity [H2(Ω)2, V ]1/2 = H3/2(Ω)2 is proven for instance in Lions and Magenes
(1972), Triebel (2002). The space H3/2(Ω) is continuously imbedded in C(Ω̄),
see Adams (1978). Thus, we obtain λ ∈ C([0, T ], C(Ω̄)2) = C(Q̄)2.

Now, the projection formula (14) together with the assumptions on the box
constraints in (A1) gives u ∈ C(Q̄)2.

As the proof shows, one can even prove H1-regularity of the extremal con-
trols, if the bounds are smooth enough.

(A3) The functions ua, ub are of class H1(Q)2.

Using again, Stampacchia’s Theorem, we have the following

Corollary 4.1 Let (A1),(A2), and (A3) be satisfied. Then every extremal
solution ū ∈ Uad is in H1(Q)2.
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The projection mapping is only bounded in spaces with differentiation order
less than or equal 1. That means, in the Lp-context it is possible to get ū ∈
W 1,p(Q)2 for p < ∞. But, one cannot prove regularity higher than W 1,p of
optimal controls without further assumptions.

Let us mention that the result ū ∈ C(Q̄)2 can also be obtained using the
Lp-solution theory. For 2 < p < ∞ let the following prerequisites be fulfilled:

(A1p) The bounds ua, ub are of class C(Q̄)2.

(A2p)

⎧⎨
⎩

y0 ∈ W
2−2/p, p
0 (Ω)2.

Either αT = 0 or yT ∈ W
2−2/p, p
0 (Ω)2.

Either αQ = 0 or yQ ∈ Lp(Q)2.

Since the proof is analogous to the previous one, we only state the result.

Corollary 4.2 Let (A1p) and (A2p) be satisfied. Then every extremal solution
ū ∈ Uad is in C(Q̄)2. The associated state ȳ and adjoint λ̄ are at least in W 2,1

p .

5. Local stability analysis

Finally, we are dealing with stability of a locally optimal reference triple (ȳ, ū, λ̄)
of the original problem (1). To be more specific, consider the perturbed opti-
mal control problem with perturbation vector z = (zy, z0, zQ, zT , zu) in some
function space Z

min J(y, u, z) =
αT

2
|y(·, T )− yT |22 + (zT , y(T ))Ω +

αQ

2
‖y − yQ‖2

2 + (zQ, y)Q

+
αR

2
‖ curl y‖2

2 +
γ

2
‖u‖2

2 − (zu, u)Q (15)

subject to the perturbed Navier-Stokes equations

yt − ν∆y + (y · ∇)y + ∇p = u + zy in Q,
div y = 0 in Q,
y(0) = y0 + z0 in Ω,

(16)

and the constraint

u ∈ Uad.

Here the natural question arises: How does the optimal triple (y, u, λ) depend
on the perturbation z? This question is answered in the rest of this article.

The plan of this section is as follows: At first, we will introduce the concept
of generalized equations, where we emphasize an abstract stability result due to
Robinson. Secondly, the optimality system is written as a generalized equation
in function spaces. Finally, we prove stability of optimal controls provided a
second-order sufficient optimality condition holds. Under suitable assumptions,
we get even stability of optimal controls with respect to the L∞-norm.
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5.1. Generalized equations

In the sequel, we will apply a result on generalized equations due to Robinson
(1980). First, we recall some basic notations. We consider the generalized
equation

0 ∈ F (x) + N(x), (17)

where F is a C1-mapping between two Banach spaces X and Z, while N : X →
2Z is a set-valued mapping with closed graph.

Let x̄ be a solution of (17). The generalized equation is said to be strongly
regular at the point x̄, if there are open balls BX(x̄, ρx) and BZ(0, ρz) such that
for all z ∈ BZ(0, ρz) the linearized and perturbed equation

z ∈ F (x̄) + F ′(x̄)(x − x̄) + N(x)

admits a unique solution x = x(z) in BX(x̄, ρx), and the mapping z → x
is Lipschitz continuous BZ(0, ρz) from to BX(x̄, ρx). The following theorem
allows to get from stability results for the perturbed linearized equation to
similar results for the perturbed nonlinear problem.

Theorem 5.1 Let x̄ be a solution of (17) and assume that (17) is strongly
regular at x̄. Then there exist open balls BX(x̄, ρ′x) and BZ(0, ρ′z) such that for
all z ∈ BZ(0, ρ′z) the perturbed equation

z ∈ F (x) + N(x)

has a unique solution in x = x(z) ∈ BX(x̄, ρ′x), and the solution mapping z →
x(z) is Lipschitz continuous from BZ(0, ρ′z) to BX(x̄, ρ′x).

5.2. The perturbed optimal control problem

Let (ȳ, ū, λ̄) satisfy the first-order necessary optimality conditions, see Theo-
rem 3.1, together with the second-order sufficient optimality conditions (SSC).
The optimality system consisting of state equation (2), adjoint equation (6) and
variational inequality (7), can be written in the condensed form

F (ȳ, ū, λ̄) +
(
0, 0, 0, 0, NUad

(ū)
)T � 0, (18)

where the function F ,

F : H2,1 × L2(Q)2 × H2,1 → L2(Q)2 × V × L2(Q)2 × V × L2(Q)2 (19)

is given by

F (y, u, λ)=

⎛
⎜⎜⎜⎜⎜⎜⎝

yt + νAy + B(y)
y(0)

−λt + νAλ + B′(y)∗λ
λ(T )

γu + λ

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎝

u

y0

αQ(y − yQ) + αR
	curl curl y

αT (y(T ) − yT )
0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (20)
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We will apply Theorem 5.1 to the generalized equation (18). To do so, we have
to show strong regularity of this equation at the reference triple (ȳ, ū, λ̄). At
first, we investigate the mapping F .

Corollary 5.1 The function F defined by (20) is continuously differentiable
in the setting (19).

Proof. The components of F are affine linear functions except for F1, which
contains the nonlinear part B(y). We derive for y, h ∈ H2,1, v ∈ L2(Q)2

B(y + h)v − B(y)v =
∫ T

0

b(y + h, y + h, v) − b(y, y, v)dt

=
∫ T

0

b(y, h, v) + b(h, y, v) + b(h, h, v)dt.

This gives immediately the directional derivative of B in direction h as B′(y)h =∫ T

0
b(y, h, v) + b(h, y, v)dt. We proceed with

‖B(y + h) − B(y) − B′(y)h‖2 = sup
v∈L2(Q)2\{0}

‖v‖−1
2

∫ T

0

b(h, h, v)dt

≤ sup
v∈L2(Q)2\{0}

‖v‖−1
2 c ‖h‖L4(W 1,4)‖h‖4‖v‖2 ≤ c ‖h‖2

H2,1 ,

which proves Frechét-differentiability of B(y). To prove continuous differentia-
bility we take y1, y2 ∈ H2,1. Then for any direction h ∈ H2,1 and element
v ∈ L2(Q)2 we obtain

∣∣(B′(y1)h − B′(y2)h)v
∣∣ =

∣∣∣∣∣
∫ T

0

b(y1 − y2, h, v) + b(h, y1 − y2, v)dt

∣∣∣∣∣
≤ c‖y1 − y2‖H2,1‖h‖H2,1‖v‖2,

which shows that the mapping y → B′(y) is even Lipschitz continuous from
H2,1 in the space L(H2,1, L2(Q)2).

For convenience, we introduce the space of perturbation vectors Z as

Z := L2(Q)2 × V × L2(Q)2 × V × L2(Q)2 (21)

equipped with the norm ‖z‖Z = ‖zy‖2 + |z0|V + ‖zQ‖2 + |zT |V + ‖zu‖2.
The optimality system of the perturbed problem (15) is equivalent to the

generalized equation

F (y, u, λ) +
(
0, 0, 0, 0, NUad

(u)
)T � z, (22)

where z = (zy, z0, zQ, zT , zu) ∈ Z. The components one to four of this inclusion
are in fact equations.
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The next step in proving strong regularity of (18) is the investigation of the
linearized version of the inclusion (22)

F (ȳ, ū, λ̄) + F ′(ȳ, ū, λ̄)(y − ȳ, u − ū, λ − λ̄) +
(
0, 0, 0, 0, NUad

(u)
) � z.

This generalized equation corresponds to the following system. It consists of
the state equations

yt + νAy + B′(ȳ)y = u + B(ȳ) + zy

y(0) = y0 + z0,

the adjoint equations

−λt + νAλ + B′(ȳ)∗λ = −B′(y − ȳ)∗λ̄ + αQ(y − yQ) + αR
	curl curl y + zQ

λ(T ) = αT (y(T ) − yT ) + zT ,

and the variational inequality

γu + λ + NUad
(u) � zu.

This altogether builds up the optimality system of the perturbed linear-quadratic
optimization problem given by

min J (z)(y, u) =
αT

2
|y(T )− yd|2H +

αQ

2
‖y − yQ‖2

2 +
αR

2
‖ curl y‖2

2 +
γ

2
‖u‖2

2

+ (zQ, y)Q + (zT , y(T ))Ω − (zu, u)Q − bQ(y − ȳ, y − ȳ, λ̄) (23)

subject to the linearized state equation

yt + νAy + B′(ȳ)y = u + B(ȳ) + zy

y(0) = y0 + z0

and the control constraint

u ∈ Uad.

The existence of a unique optimal control of the problem (23) is an easy con-
sequence of the coercivity assumption (SSC). Let us denote the Lagrangian
associated to (23) by L(z). Then it holds for all y, u, λ that

L(z)
vv (y, u, λ) = Lvv(ȳ, ū, λ̄).

Hence, the second-order sufficient condition yields unique solvability of (23) as a
linear-quadratic optimization problem with strong convex objective functional.
We denote its unique solution of (23) by uz = u(z) with associated state yz

and adjoint state λz . For a more detailed discussion of those aspects we refer
to Roub́ıček and Tröltzsch (2002), where the stability analysis is made for the
stationary Navier-Stokes system.
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5.3. Stability of optimal controls in L2(Q)2

Now, we are ready to prove stability of optimal controls in the setting given in
the last section. To verify strong regularity we have to prove Lipschitz continuity
of the solution mapping z → (yz, uz, λz) of the perturbed linearized problem
(23).

Theorem 5.2 Let (SSC) be satisfied for the reference solution v̄ with adjoint
state λ̄. Let additionally y0, yT ∈ V , yQ ∈ L2(Q)2 be given. Then the mapping
z → (yz , uz, λz) is Lipschitz continuous from Z to H2,1 × L2(Q)2 × H2,1.

Proof. Let z1, z2 ∈ Z be given. Denote the optimal controls of the perturbed
problem by ui := uzi with associated states yi and adjoints λi, i = 1, 2. Denote
the differences by z = z1 − z2, u := u1 − u2, y = y1 − y2, and λ = λ1 − λ2.

Throughout the proof we abbreviate (·, ·) := (·, ·)Q.
At first, we consider the variational inequality connected with the constraint

ui ∈ Uad,

(γui + λi − zu,i, u − ui) ≥ 0 ∀u ∈ Uad.

Testing the inequality for ui, i = 1, 2 with uj , j = 2−i, and adding the resulting
two inequalities, we find

−(λ, u) + (u, zu) ≥ γ‖u‖2
2. (24)

Secondly, we consider the state equation. The difference y is the weak solu-
tion of

yt + νAy + B′(ȳ)y = u + zy

y(0) = z0.
(25)

We test this equation by λ = λ1 − λ2 to obtain

(yt, λ) + ν(y, λ)L2(V ) + bQ(ȳ, y, λ) + bQ(y, ȳ, λ) = (u, λ) + (zy, λ). (26)

And thirdly, we investigate the adjoint equations. The difference λ of the
adjoint states satisfies

−λt + νAλ + B′(ȳ)∗λ = −B′(y)∗λ̄ + αQy + αR
	curl curl y + zQ

λ(T ) = αT y(T ) + zT .
(27)

Testing this equation by y = y1 − y2 yields

− (λt, y) + ν(λ, y)L2(V ) + bQ(ȳ, y, λ) + bQ(y, ȳ, λ) =

− 2bQ(y, y, λ̄) + αQ‖y‖2
2 + αR‖ curl y‖2

2 + (zQ, y). (28)
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By integration by parts we find

−(λt, y) = (yt, λ) − (λ(T ), y(T ))H + (λ(0), y(0))H

= (yt, λ) − αT |y(T )|2H − (zT , y(T ))H + (λ(0), z0)H .
(29)

From the combination of (26), (28), and (29), the equation

(u, λ) + (zy, λ) = αT ‖y(T )|2H + (zT , y(T ))H − (λ(0), z0)H

− 2bQ(y, y, λ̄) + αQ‖y‖2
2 + αR‖ curl y‖2

2 + (zQ, y) (30)

results.
We introduce the auxiliary function ỹ as the weak solution of (25) with u = 0.

Now, the coercivity assumption of Lvv comes into play. The pair (y − ỹ, u) fits
in the assumptions of (SSC). With Lvv given by (12), we derive

δ‖u‖2
2 ≤ Lvv(v̄, λ̄)[(y − ỹ, u)]2

= Luu(v̄, λ̄)[u]2 + Lyy(v̄, λ̄)[y]2 + 2Lyy(v̄, λ̄)[y, ỹ]2 + Lyy(v̄, λ̄)[ỹ]2.
(31)

The first and second addend we write according to (12) as

Luu(v̄, λ̄)[u]2 + Lyy(v̄, λ̄)[y]2 = αT |y(T )|2H + αQ‖y‖2
2 + αR‖ curly‖2

2

− 2bQ(y, y, λ̄) + γ‖u‖2.

Using (30) and inequality (24), we proceed with

Luu(v̄, λ̄)[u]2 + Lyy(v̄, λ̄)[y]2

=(u, λ) + (zy, λ) − (zT , y(T ))H + (λ(0), z0)H − (zQ, y) + γ‖u‖2

=(zu, u) + (zy, λ) − (zT , y(T ))H + (λ(0), z0)H − (zQ, y)
≤ c‖z‖Z {‖y‖H2,1 + ‖λ‖H2,1} + (zu, u).

(32)

Since ỹ is the weak solution of a linearized equation, we can conclude

‖ỹ‖W (0,T ) ≤ c‖ỹ‖H2,1 ≤ c {‖zy‖2 + |z0|V } ≤ c‖z‖Z.

Applying (13), we can estimate the third and fourth addend in (31) by

2Lyy(v̄, λ̄)[y, ỹ]2 + Lyy(v̄, λ̄)[ỹ]2 ≤ c
{(‖y‖L∞(H) + ‖y‖L2(V )

) ‖ỹ‖W (0,T )

+ ‖ỹ‖2
W (0,T )

}
≤ c
{‖y‖W (0,T )‖z‖Z + ‖z‖2

Z

}
. (33)

Collecting (31)–(33), we find

δ‖u‖2
2 ≤ c

(‖z‖2
Z + ‖z‖Z {‖y‖H2,1 + ‖λ‖H2,1})+ (zu, u). (34)
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By Theorems 2.2(i) and Lemma 3.2(ii), we estimate the differences of the states
and adjoints as weak solutions of (25) and (27)

‖y‖H2,1 ≤ c {‖u‖2 + ‖zy‖2 + |z0|V }
‖λ‖H2,1 ≤ c

{‖y‖L∞(H) + ‖y‖L2(H2) + ‖zQ‖2 + |zT |V
}

,

which gives immediately

‖y‖H2,1 + ‖λ‖H2,1 ≤ c {‖u‖2 + ‖z‖Z} . (35)

Combining (34) and (35) we get

δ‖u‖2
2 ≤ c‖z‖Z {‖y‖H2,1 + ‖λ‖H2,1 + ‖z‖Z} + (zu, u)
≤ c‖z‖Z {‖u‖2 + ‖z‖Z}
≤ c‖z‖2

Z +
δ

2
‖u‖2

2,

and the claim is proven.

So far, we provided all prerequisites to prove the L2-stability theorem.

Theorem 5.3 Let (SSC) be satisfied for the reference solution v̄ with adjoint
state λ̄. Let in addition y0, yT ∈ V , yQ ∈ L2(Q)2 be given. Then there exists
ρ > 0, such that for all z ∈ Z with ‖z‖Z ≤ ρ, the perturbed optimal control
problem (15) admits a unique solution (yz, uz, λz). Moreover, the mapping z →
(yz, uz, λz) is Lipschitz continuous from Z to H2,1 × L2(Q)2 × H2,1.

Proof. Theorem 5.2 yields strong regularity of the equation (18) at the point
(ȳ, ū, λ̄). So we can apply Theorem 5.1 which finishes the proof.

If the vector of perturbations z is slightly more regular than stated in (21), say

z ∈ Z̃ = L2(Q)2 × V × L2(Q)2 × V × Ls(Q)2

for some 2 < s < ∞ equipped with norm ‖z‖Z̃ = ‖zy‖2+ |z0|V +‖zQ‖2+ |zT |V +
‖zu‖s, then one can show the following

Theorem 5.4 Let (SSC) be satisfied for the reference solution v̄ with adjoint
state λ̄. Let additionally y0, yT ∈ V , yQ ∈ L2(Q)2 be given. Then there exists
ρ > 0, such that for all z ∈ Z̃ with ‖z‖Z̃ ≤ ρ, the perturbed optimal control
problem (15) admits a unique solution (yz, uz, λz). Moreover, the mapping z →
(yz, uz, λz) is Lipschitz continuous from Z̃ to H2,1 × Ls(Q)2 × H2,1.

Proof. The proof is very similar to the proof of Theorem 5.5, see below. It uses
the stability result of the previous Theorem 5.3, the projection formula (14),
and the imbedding H2,1 ↪→ Ls(Q)2 for s < ∞.
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However, this result is maximal in the following sense. Stability of optimal
controls in C(Q̄)2 cannot be achieved using Hilbert space results, since it is not
possible to derive a Lipschitz estimate for the time derivatives of the controls,
for which it would be necessary to employ Theorem 2.2(ii). To this end consider
the following example.

Example 5.1 Let λ1, λ2 ∈ C1[0, T ] be given by λ1(t) = sin(nt) + 2 and λ2(t) =
sin(nt) − 2. Then we have λ1(t) − λ2(t) = 4 and d

dt (λ1(t) − λ2(t)) = 0. With
ua(t) = 0, ub(t) = +∞, and γ = 1 we get

Proj[0,+∞)(−λ1(t))−Proj[0,+∞)(−λ2(t)) = 0− (2− sin(nt)) = sin(nt)− 2,

hence,

d

dt

(
Proj[0,+∞)(−λ1(t)) − Proj[0,+∞)(−λ2(t))

)
= n cos(nt) �= 0,

which proves that we cannot show Lipschitz dependence of the time derivatives
of the projected adjoint states λi.

At this point, we have to use Lp-methods to derive a stability result in the
C(Q̄)2-norm.

Remark 5.1 Obviously, these difficulties do not appear for the unconstrained
problem Uad = L2(Q)2, where the variational inequality is equivalent to u =
− 1

γ λ. Then, any extremal control ū is as smooth as the associated adjoint λ̄
and admits almost the same stability properties, i.e. z → uz is Lipschitz from Z
to H2,1.

5.4. L∞-stability of optimal controls

Here, we give the stability result of optimal controls in norms adequate to the
regularity achieved in Section 4. Again, we are considering the inclusion (18)
and the linearized and perturbed problem (23). Now, we regard F to be a
function in the setting

F : W 2,1
p × L∞(Q)2 × W 2,1

p →
Lp(Q)2 × W

2−2/p, p
0 (Ω)2 × Lp(Q)2 × W

2−2/p, p
0 (Ω)2 × L∞(Q)2. (36)

Again, F is continuously differentiable with respect to the spaces given by (36).
Accordingly, the perturbation vector z has to be in the smaller space of

perturbations Zp,

Zp := Lp(Q)2 × W
2−2/p, p
0 (Ω)2 × Lp(Q)2 × W

2−2/p, p
0 (Ω)2 × L∞(Q)2

which we endow with the norm

‖z‖Zp = ‖(zy, z0, zQ, zT , zu)‖Zp :=‖zy‖p + |z0|W 2−2/p, p

+ ‖zQ‖p + |zT |W 2−2/p, p + ‖zu‖∞.
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Finally, we have to modify the definition of the normal cone NUad
in (8). Here,

this set has to be a subset of L∞(Q)2,

ÑUad
(ū) :=

{{
z ∈ L∞(Q)2 : (z, u − ū)2 ≤ 0 ∀u ∈ Uad

}
if ū ∈ Uad

∅ otherwise.
(37)

Observe that ÑUad
(u) is a non-empty, closed and convex subset of L∞(Q)2.

Theorem 5.5 Let (SSC) be satisfied for the reference solution v̄ = (ȳ, ū) with
adjoint state λ̄. Moreover, assume that y0, yT ∈ W

2−2/p, p
0 (Ω)2, yQ ∈ Lp(Q)2

for some p satisfying 2 < p < ∞, and ua, ub ∈ L∞(Q)2. Then the solution
mapping z → (yz, uz, λz) associated to (23) is Lipschitz continuous from Zp to
W 2,1

p × L∞(Q)2 × W 2,1
p .

Proof. To begin with, notice that the assumptions imply ū ∈ Lp(Q)2. Thus ȳ
as well as λ̄ are strong solutions of the respective equations, i.e. ȳ, λ̄ ∈ W 2,1

p ,
see Theorems 2.3 and 3.3.

Let z1, z2 ∈ Zp be given. Denote the optimal controls of the perturbed
problem by ui := uzi with associated states yi and adjoints λi, i = 1, 2.

At first, Theorem 5.2 yields stability of control, state, and adjoint in L2(Q)2×
H2,1 × H2,1,

‖u1 − u2‖2 + ‖y1 − y2‖H2,1 + ‖λ1 − λ2‖H2,1 ≤ c ‖z1 − z2‖Z2 .

By imbedding arguments, we have

‖λ1 − λ2‖p ≤ c‖λ1 − λ2‖L∞(V ) ≤ c‖z1 − z2‖Z2 .

The projection formula (14) yields,

‖u1 − u2‖p ≤ c {‖λ1 − λ2‖p + ‖zu,1 − zu,2‖p} ≤ c ‖z1 − z2‖Zp .

By Theorem 2.3 the weak solution y1 − y2 of (25) is also a strong solution and
satisfies

‖y1 − y2‖Lp(W 2,p) + ‖y1 − y2‖L∞(W 2−2/p, p) + ‖y1,t − y2,t‖p

≤ c {|z0,1 − z0,2|W 2−2/p, p + ‖zy,1 − zy,2‖p + ‖u1 − u2‖p} ≤ c ‖z1−z2‖Zp .

A similar estimate is valid also for the adjoint states, cf. Theorem 3.3,

‖λ1 − λ2‖Lp(W 2,p) + ‖λ1 − λ2‖L∞(W 2−2/p, p) + ‖λ1,t − λ2,t‖p

≤ c
{‖z1 − z2‖Zp + ‖y1 − y2‖Lp(W 2,p) + ‖y1 − y2‖L∞(W 2−2/p, p)

}
≤ c ‖z1 − z2‖Zp .
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This actually means that the mapping z → λ is Lipschitz form Zp to W 2,1
p . The

space W 2,1
p is continuously imbedded in L∞(Q)2. Hence, it follows using the

projection formula a last time

‖u1 − u2‖∞ ≤ c
{‖λ1 − λ2‖L∞(Q)2 + ‖zu,1 − zu,2‖∞

} ≤ c ‖z1 − z2‖Zp .

Thus, we proved strong regularity of the equation (18) in the stronger setting
(36), and Theorem 5.1 is applicable.

Theorem 5.6 Let (SSC) be satisfied for the reference solution v̄ with adjoint
state λ̄. Additionally, assume that y0, yT ∈ W

2−2/p, p
0 (Ω)2, yQ ∈ Lp(Q)2 for

some p satisfying 2 < p < ∞, and ua, ub ∈ L∞(Q)2. Then there exist ρz > 0
and ρu > 0 such that for all z ∈ BZp(0, ρz) the following holds: the perturbed
inclusion (22) has in BL∞(ū, ρu) a unique solution uz. Moreover, the mapping
z → (yz , uz, λz) is Lipschitz continuous from Zp to W 2,1

p × L∞(Q)2 × W 2,1
p .

Proof. Theorem 5.5 yields strong regularity of the equation (18) at the point
(ȳ, ū, λ̄). So, we can apply Theorem 5.1. Since the state and adjoint equations
are uniquely solvable in general, we need not to restrict yz and λz to neighbor-
hoods of ȳ and λ̄, and the claim follows immediately.

Using the estimates of L′′, see (13), it is easy to show that uz fulfills a suffi-
cient second-order optimality condition for small perturbations. Hence, uz is a
locally optimal control of the problem (15).

Corollary 5.2 Let (SSC) be satisfied for the reference solution v̄ with adjoint
state λ̄. Additionally, assume that y0, yT ∈ W

2−2/p, p
0 (Ω)2, yQ ∈ Lp(Q)2 for

some p satisfying 2 < p < ∞, and ua, ub ∈ L∞(Q)2.
Then there exist ρ′z > 0 and ρ′u > 0 such that for all z ∈ BZp(0, ρ′z) the

following holds: the perturbed optimal control problem (15) has in BL∞(ū, ρ′u)
a unique solution uz. Moreover, the mapping z → (yz, uz, λz) is Lipschitz con-
tinuous from Zp to W 2,1

p × L∞(Q)2 × W 2,1
p .

As already mentioned in Remark 5.1, it is not possible to derive stability
results for bounded optimal controls in W 1

p -norms, 1 ≤ p ≤ ∞. So the result of
Theorem 5.6 cannot be improved in this direction.
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Sritharan, S. (1991) Dynamic programming of the Navier-Stokes equations.

Systems & Control Letters, 16, 299–307.
Temam, R. (1979) Navier-Stokes Equations. North Holland, Amsterdam.
Temam, R. (1995) Navier-Stokes Equations and Nonlinear Functional Analy-

sis. SIAM, Philadelphia, 2nd edition.
Triebel, H. (2002) Function spaces in Lipschitz domains and on Lipschitz

manifolds. Characteristic functions as pointwise multipliers. Revista Mate-
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