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1. Introduction

The most popular models of two-dimensional (2D) linear systems are the models
introduced by Roesser (1975), Fornasini-Marchesini (1976, 1978) and Kurek
(1985). The models have been extended for positive systems in Kaczorek (1996,
2002), Valcher (1997), Xie and Wang (2003). The overviews of some recent
results in positive systems have been given in the monographs of Farina and
Rinaldi (2000), Kaczorek (2002), and in papers by Kaczorek (2003), Xie and
Wang (2003). The upper bound for for the reachability index of the positive 2D
general model has been considered in Kaczorek (2004). The reachability and
minimum energy control of positive discrete-time systems with one delay have
been analyzed in Kaczorek and Busłowicz (2004).

In this paper the notion of internally positive 2D model with delays will be
introduced and necessary and sufficient conditions for the interval positivity and
reachability will be established. The minimum energy control for this class of
2D systems will be formulated and solved. To the best knowledge of the author
these problems for positive 2D systems with delays have not been considered
yet.
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2. Preliminaries
Consider the 2D general model (without delays), Kurek (1985), Kaczorek (2002),

xi+1,j+1 = A0xij + A1xi+1,j + A2xi,j+1 + B0uij + B1ui+1,j + B2ui,j+1

yi,j = Cxij + Duij i, j ∈ Z+ (the set of nonnegative integers) (1)

where xij ∈ R
n, uij ∈ R

m, yij ∈ R
p are the state, input and output vectors and

Ak ∈ R
n×n, Bk ∈ R

n×m, k = 0, 1, 2, Ck ∈ R
p×n and D ∈ R

p×m.
The boundary conditions for (1) are given by

xi0, i ∈ Z+ and x0j , j ∈ Z+ (2)

where xi0 and x0j are known.
Let R

m×n
+ be a set of m × n real matrices with nonnegative entries and R

m
+ =

R
m×1
+ .

Definition 2.1 (Kaczorek, 2002) The model (system) (1) is called internally
positive (shortly positive) if for any boundary conditions xi0 ∈ R

n
+, x0j ∈ R

n
+,

i, j ∈ Z+ and every input sequence uij ∈ R
m
+ , i, j ∈ Z+ we have xij ∈ R

n
+ and

yij ∈ R
p
+ for all i, j ∈ Z+

Theorem 2.1 (Kaczorek, 2002) The model (1) is positive if and only if

Ak ∈ R
n×n, Bk ∈ R

n×m, for k = 0, 1, 2 and C ∈ R
p×n
+ , D ∈ R

p×m
+ . (3)

Consider the 2D general model with delays

x̄i+1,j+1 = A00x̄ij + A10x̄i+1,j + A20x̄i,j+1+

+
h∑

k=1

(A0kx̄i−dik,j−djk
+ A1kx̄i−dik+1,j−djk

+ A2kx̄i−dik,j−djk+1)+ (4)

+ B00uij + B10ui+1,j + B20ui,j+1

yij = C0x̄ij + D0uij , i, j ∈ Z+

where x̄ij ∈ R
n̄, ūij ∈ R

m̄, ȳij ∈ R
p̄ are the state, input and output vectors,

A0k, A1k, A2k ∈ R
n̄×n̄, k = 0, 1, . . . , h, B00, B10, B20 ∈ R

n̄×m̄, C0 ∈ R
p̄×n̄,

D0 ∈ R
p̄×m̄ and dik, djk, k = 1, . . . , h are delays (nonnegative integer).

To simplify the notation we shall consider the model with only one delay
(di1 = d1 ≥ 1, dj1 = d2 ≥ 1) and B0 = B00, B10 = B20 = 0 of the form

x̄i+1,j+1 = A00x̄ij + A10x̄i+1,j + A20x̄i,j+1 + A01x̄i−d1+1,j−d2+
+ A11x̄i−d1+1,j−d2 + A21x̄i−d1,j−d2+1 + B0uij (5)

yij = C0x̄ij + D0uij , i, j ∈ Z+ .

We shall establish the necessary and sufficient condtions under which the
model (5) is positive and reachable. The Cayley-Hamilton theorem will be
extended for the models with delays. The minimum energy control problem will
be formulated and solved.
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3. Positivity of the model with delays

By defining

xij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̄ij

x̄i−1,j

x̄i,j−1

x̄i−1,j−1

.................
x̄i−d1+1,j−d2

x̄i−d1,j−d2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

n, A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A00 0 . . . 0 A01

0 0 . . . 0 0
0 0 . . . 0 0
I 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

n×n, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B0

0
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A10 0 . . . 0 A11

0 0 . . . 0 0
I 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

n×n, A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A20 0 . . . 0 A21

I 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

n×n,

C =
[
C0 0 . . . 0

] ∈ R
p×n, D = D0 ∈ R

p×m (6)

we can write equation (5) in the form (1).
Applying Theorem 2.1 to the obtained equivalent model yields the following

theorem.

Theorem 3.1 The model (5) is positive if and only if

Aki ∈ R
n×n
+ , k = 0, 1, 2, i = 0, 1 B0 ∈ R

n×m
+ , C0 ∈ R

p×n
+ , and D0 ∈ R

p×m
+ .

(7)

In a similar way we may establish that the general model with delays (1) is
positive if and only if all its matrices have nonnegative entries.

4. Solution of the model with delay

The solution to the equation

xi+1,j+1 = A00xij + A10xi+1,j + A20xi,j+1 + A01xi−d1,j−d2 +
+A11xi−d1+1,j−d2 + A21xi−d1,j−d2+1 + B0uij (8)

with boundary conditions

xi0, x0j , i, j ∈ Z+ and k = −1, . . . ,−d1; l = −1, . . . ,−d2 (9)

and given input uij , i, j ∈ Z+ will be derived by the use of the 2D Z transform.



414 T. KACZOREK

Taking into account that

Z[xi+1,j+1]=
∞∑

i=0

∞∑
j=0

xi+1,j+1z
−i
1 z−j

2 = z1z2 [X(z1, z2) − X(z1) − X(z2) + x00]

Z[xi−d1,j−d2 ]=
∞∑

i=0

∞∑
j=0

xi−d1,j−d2z
−i
1 z−j

2 =

= z−d1
1 z−d2

2

[
X(z1, z2) +

−d1∑
k=−1

−d2∑
l=−1

z−k
1 z−l

2

]

Z[xi+1,j ] = z1 [X(z1, z2) − X(z2)] , Z[xi,j+1] = z2 [X(z1, z2) − X(z1)]

where

X(z1, z2) =
∞∑

i=0

∞∑
j=0

xijz
−i
1 z−j

2 , X(z1) =
∞∑

i=0

xi0z
−i
1 , X(z2) =

∞∑
j=0

x0jz
−j
2

we may write the equation (8) as follows

M(z1, z2)X(z1, z2) = N(z1, z2) + B0U(z1, z2) (10)

where

M(z1, z2) = [Iz1z2 − A00 − A10z1 − A20z2 − A01z
−d1
1 z−d2

2 +

− A11z
1−d1
1 z−d2

2 − A21z
−d1
1 z1−d2

2 ]
N(z1, z2) = z1z2 (X(z1) + X(z2) − x00) − A10z1X(z2) − A20z2X(z1)+

+ z−d1
1 z−d2

2

[ −1∑
k=−d1

∞∑
l=−d2

A01xklz
−k
1 z−l

2 +
∞∑

k=0

−1∑
l=−d2

A01xklz
−k
1 z−l

2 +

+
−1∑

k=1−d1

∞∑
l=−d2

A11xklz
1−k
1 z−l

2 +
∞∑

k=0

−1∑
l=−d2

A11xklz
1−k
1 z−l

2 +

+
−1∑

k=−d1

∞∑
l=1−d2

A21xklz
−k
1 z1−l

2 +
∞∑

k=0

−1∑
l=1−d2

A21xklz
−k
1 z1−l

2

]

U(z1, z2) =
∞∑

i=0

∞∑
j=0

uijz
−i
1 z−j

2 .

Let

M−1(z1, z2) =
∞∑

i=0

∞∑
j=0

Φijz
−(i+1)
1 z

−(j+1)
2 . (11)
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Comparison of the matrix coefficients at the same powers of z1 and z2 of the
equality

M(z1, z2)

⎡
⎣ ∞∑

i=0

∞∑
j=0

Φijz
−(i+1)
1 z

−(j+1)
2

⎤
⎦=

⎡
⎣ ∞∑

i=0

∞∑
j=0

Φijz
−(i+1)
1 z

−(j+1)
2

⎤
⎦!M(z1, z2)=I

(12)

yields

Φij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I (the identity matrix) for i = j = 0
A00Φi−1,j−1 + A10Φi,j−1+
+A20Φi−1,j + A01Φi−d1−1,j−d2−1+
+A11Φi−d1,j−d2−1 + A21Φi−d1−1,j−d2 for i ≥ 0 j ≥ 0 i + j > 0
0 (the zero matrix) for i < 0 or/and j < 0 .

(13)

From (12) it follows that

A00Φi−1,j−1 + A10Φi,j−1 + A20Φi−1,j + A01Φi−d1−1,j−d2−1+
+ A11Φi−d1,j−d2−1 + A21Φi−d1−1,j−d2 =

= Φi−1,j−1A00 + Φi,j−1A10 + Φi−1,jA20+
+ Φi−d1−1,j−d2−1A01 + Φi−d1,j−d2−1A11 + Φi−d1−1,j−d2A21. (14)

From (13) for (8) satisfying (7) we have Φij ∈ R
n×n
+ for i, j ∈ Z+.

Knowing the matrices A00 A10 A20 A01 A11 A21 of the equation (8) and
using (13) we may find the transition matrices Φij for i, j ∈ Z+.

From (10) and (11) we have

X(z1, z2) = M−1(z1, z2) [N(z1, z2) + B0U(z1, z2)] = (15)

=
∞∑

i=0

∞∑
j=0

Φijz
−(i+1)
1 z

−(j+1)
2 [N(z1, z2) + B0U(z1, z2)]

and using the inverse 2D Z transform to (15) we obtain

xij = xbc
ij +

i−1∑
k=0

j−1∑
l=0

Φi−k−1,j−l−1B0ukl for i, j ∈ Z+ (16)
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where

xbc
ij =

i∑
k=0

(Φi−k,j − Φi−k−1,jA20)xk0 +
j∑

l=0

(Φi,j−l − Φi,j−l−1A10)x0l+

−Φi,jx00 +
−1∑

k=−d1

∞∑
l=−d2

Φi−d1−k−1,j−d2−l−1A01xkl+

+
∞∑

k=0

−1∑
l=−d2

Φi−d1−k−1,j−d2−l−1A01xkl +
−1∑

k=1−d1

∞∑
l=−d2

Φi−d1−k,j−d2−l−1A11xkl+

+
∞∑

k=0

−1∑
l=−d2

Φi−d1−k,j−d2−l−1A11xkl +
−1∑

k=−d1

∞∑
l=1−d2

Φi−d1−k−1,j−d2−lA21xkl+

+
∞∑

k=0

−1∑
l=1−d2

Φi−d1−k−1,j−d2−lA21xkl (17)

is the transient component depending on the boundary conditions (9). Therefore
the following theorem has been proved.

Theorem 4.1 The solution satisfying the boundary condition (9) of the equation
(8) has the form (16), (4).

In a similar way the solution to the model (1) can be derived.

5. Generalization of the Cayley-Hamilton theorem

Note that the inverse matrix M−1(z1, z2) can be always written in the form

M−1(z1, z2) =
H(z1, z2)
d(z1, z2)

(18)

where

H(z1, z2) =
N1∑
i=0

N2∑
j=0

Hijz
i
1z

j
2, Hij ∈ R

n×n

is a 2D polynomial matrix and

d(z1, z2) =
N1∑
k=0

N2∑
l=0

dijz
k
1zl

2, dij ∈ R

is a 2D polynomial.
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Theorem 5.1 Let M−1(z1, z2) have the form (18) and Φij be the transition
matrices defined by (13). Then

N1∑
i=0

N2∑
j=0

dijΦi+k1,j+k2 = 0, for k1, k2 ∈ Z+. (19)

Proof. Using (18) and (11) we may write

H(z1, z2) =

(
N1∑
k=0

N2∑
l=0

dijz
k
1zl

2

)⎛⎝ ∞∑
i=0

∞∑
j=0

Φijz
−(i+1)
1 z

−(j+1)
2

⎞
⎠ . (20)

Comparison of the matrix coefficients at the same powers of z−v
1 z−w

2 for v, w ∈
Z+, (v + w > 0) of the equality (20) yields (19).

Theorem 5.1 is an extension of the well-known Cayley-Hamilton theorem for
the 2D systems with delays.

Example 5.1 Consider equation (8) with

A10 =
[

0 1
1 0

]
, A20 =

[−1 0
1 1

]
, A01 =

[
1 0
0 1

]
, (21)

A00 = A11 = A21 =
[

0 0
0 0

]
, and d1 = d2 = 1.

Using (13) we obtain

Φ11 =
[

1 0
0 1

]
, Φ22 =

[
4 0
0 4

]
, Φ24 = Φ42 =

[
9 0
0 9

]
, Φ33 =

[
10 0
0 10

]
,

Φ35 = Φ53 =
[

26 0
0 26

]
, Φ44 =

[
35 0
0 35

]
, Φ55 =

[
106 0
0 106

]
. (22)

In this case the inverse matrix (18) has the form

M−1(z1, z2) =
[

z1z2 + z2 − z−1
1 z−1

2 −z1

−z1 − z2 z1z2 − z2 − z−1
1 z−1

2

]−1

=
H(z1, z2)
d(z1, z2)

where

H(z1, z2) =
[

(z1z2)3 − z2
1z

3
2 − z1z2 z3

1z2
2

z3
1z2

2 + z2
1z

3
2 (z1z2)3 + z2

1z3
2 − z1z2

]

d(z1, z2) = (z1z2)4 − 2(z1z2)2 − z2
1z4

2 − z4
1z

2
2 − (z1z2)3 + 1. (23)
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Using (19), (23) and (5) we obtain for k1 = k2 = 0

Φ44 − 2Φ22 − Φ24 − Φ42 − Φ33 + I =

=
[

35 0
0 35

]
− 2

[
4 0
0 4

]
−
[

9 0
0 9

]
−
[

9 0
0 9

]
−
[

10 0
0 10

]
+
[

1 0
0 1

]
=
[

0 0
0 0

]
and for k1 = k2 = 1

Φ55 − 2Φ33 − Φ35 − Φ53 − Φ44 + Φ11 =

=
[

106 0
0 106

]
− 2

[
10 0
0 10

]
−
[

26 0
0 26

]
−
[

26 0
0 26

]
−
[

35 0
0 35

]
+
[

1 0
0 1

]
=

=
[

0 0
0 0

]
.

6. Reachability of the model with delay
Consider the positive 2D model with delays described by the equation (8).

Definition 6.1 The positive 2D model (8) is called reachable in the rectangle

Dqt = {(i, j) : i, j ∈ Z+, 0 ≤ i < q, 0 ≤ j < t}
if for every state xf ∈ R

n
+ there exists an input sequence uij ∈ R

m
+ for (i, j) ∈

Dqt which transfers the model from zero boundary condition to the desired state
xf i.e. xqt = xf .

Definition 6.2 The positive 2D model (8) is called reachable if for every xf ∈
R

n
+ there exist a rectangle Dqt and an input sequence uij ∈ R

m
+ for (i, j) ∈ Dqt

which transfers the model from zero boundary conditions to the desired state xf ,
i.e. xqt = xf .

A column is called monomial if and only if it contains only one positive entry
and the remaining entries are zero.

Theorem 6.1 The positive 2D model (8) is reachable in the rectangle Dqt if
and only if the reachability matrix

Rqt = [Φq−1,t−1B0, Φq−2,t−1B0, Φq−1,t−2B0, . . . , Φ01B0, Φ00B0] (24)

contains n linearly independent monomial columns.

Proof. From (16) for i = q, j = t and zero boundary conditions we have

xf = xqt = Rqtu
00
qt (25)

where u00
qt =

[
uT

00, uT
10, uT

01, . . . , u
T
q−2,t−1, uT

q−1,t−1

]T and T denotes trans-
pose.

From (25) it follows that there exists for every xf ∈ R
n
+ an input sequence

uij ∈ R
m
+ , (i, j) ∈ Dqt if and only if the matrix (24) contains n linearly inde-

pendent monomial columns.
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Theorem 6.2 The positive 2D model (8) is reachable if

rank Rqt = n (26)

and

RT
qt

[
Rqt RT

qt

]−1 ∈ R
mqt×n
+ . (27)

Moreover, the input sequence that steers the model from zero boundary condition
to xf ∈ R

n
+ is given by

u00
qt = RT

qt

[
Rqt RT

qt

]−1
xf (28)

where Rqt is defined by (24).

Proof. If the condition (26) is satisfied then the matrix RqtR
T
qt is invertible and

from (25) we have

u00
qt = RT

qt

[
RqtR

T
qt

]−1
xf ∈ R

mqt
+

since (27) holds.

7. Minimum energy control
Consider the positive 2D model (8) and the performance index

I(u) =
q−1∑
i=0

t−1∑
j=0

uT
ijQuij (29)

where Q ∈ R
m×m is a symmetric positive definite weighting matrix. The mini-

mum energy control problem for the positive 2D model (8) can be stated as fol-
lows: Given the matrices A00, A10, A20, A01, A11, A21 ∈ R

n×n
+ , B0 ∈ R

n×m
+ ,

the positive integers q, t (defining the rectangle Dqt), the final state xf ∈ R
n
+

and the weighting matrix Q, find an input sequence uij ∈ R
m
+ for (i, j) ∈ Dqt

which transfers the model (8) from zero boundary condition to the desired final
state xf and minimizes the performance index (29). The problem of minimal
energy control for standard (nonpositive) system was formulated and solved
by J. Klamka (1991) and for positive 1D system with delays in Kaczorek and
Busłowicz (2004).

To solve the problem we define the matrix

W = RqtQ̄qtR
T
qt ∈ R

n×n (30)

where Rqt is the reachability matrix of the form (24) and

Q̄qt = diag
[
Q−1, . . . , Q−1

] ∈ R
mqt×mqt.

From (30) it follows that the matrix W is nonsingular if and only if (26) holds.
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Define the input sequence ûij for (i, j) ∈ Dqt by

û00
qt =

[
ûT

00, ûT
10, ûT

01, . . . , û
T
q−2,t−1, ûT

q−1,t−1

]T
= Q̄qtR

T
qtW

−1xf . (31)

From (31) it follows that û00
qt ∈ R

mqt
+ for any xf ∈ R

n
+ if and only if

Q̄qtR
T
qtW

−1 ∈ R
mqt×n
+ . (32)

Note that if W−1 ∈ R
n×n
+ and Q−1 ∈ R

m×m
+ then the condition (32) is satisfied

since Rqt ∈ R
n×mqt
+ .

Theorem 7.1 Let us assume that
i) the model (8) is reachable in the rectangle Dqt

ii) the condition (32) is satisfied
and ūij ∈ R

m
+ for (i, j) ∈ Dqt is any input sequence that transfers the model

from zero boundary condition to the desired final state xf ∈ R
n
+. Then the input

sequence ûij ∈ Dqt defined by (31) transfers also the model from zero boundary
conditions to the state xf and minimizes the performance index (29), i.e.

I(û) ≤ I(ū). (33)

Moreover, the minimal value of (29) is given by

I(û) = xT
f W−1xf . (34)

Proof. If the model (8) is reachable in the rectangle Dqt and (32) holds, then
for any xf ∈ R

n
+ we have ûij ∈ R

m
+ , (i, j) ∈ Dqt.

We shall show that the input sequence (31) steers the model from zero bound-
ary conditions to the state xf , i.e. xqt = xf . From (16) for i = q, j = t, xbc

ij = 0
and (24), (30), (31) we have

xqt = Rqtû
00
qt = RqtQ̄qtR

T
qtW

−1xf = xf

since RqtQ̄qtR
T
qtW

−1 = I.
Both input sequences ūij and ûij , (i, j) ∈ Dqt transfer the model (8) from

zero boundary conditions to xf . Hence Rqtū
00
qt = Rqtû

00
qt and

Rqt

(
û00

qt − ū00
qt

)
= 0. (35)

From (31) we have RT
qtW

−1xf = Q̄−1
qt û00

qt and from (35) we obtain

(
û00

qt − ū00
qt

)T
RT

qtW
−1xf =

(
û00

qt − ū00
qt

)T
Q̂qtû

00
qt = 0 (36)

where

Q̂qt = Q̄−1
qt = diag [Q, . . . , Q] ∈ R

mqt×mqt.
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Using (36) it is easy to show that

(ū00
qt )

T Q̂qtū
00
qt = (û00

qt )
T Q̂qtû

00
qt +

(
ū00

qt − û00
qt

)T
Q̂qt

(
ū00

qt − û00
qt

)
. (37)

The inequality (33) holds since the last term in (37) is always nonnegative.
To obtain the minimum value of (29) we substitute (31) into (29)

I(û) = I(û00
qt ) =

q−1∑
i=0

t−1∑
j=0

ûT
ijQûij =

(
Q̄qtR

T
qtW

−1xf

)T
Q̂qt

(
Q̄qtR

T
qtW

−1xf

)
=

= xT
f W−1RqtQ̄qtR

T
qtW

−1xf = xT
f W−1xf

since Q̂qtQ̄qt = I and W−1RqtQ̄qtR
T
qt = I.

Theorem 7.2 Let the weighting matrix Q have the form Q = Ia, a > 0. Then

û00
qt = RT

qt

[
Rqt, RT

qt

]−1
xf (38)

minimizes the performance index (29) for Q = Ia, a > 0 and its minimal value
is given by

I(û) = axT
f

[
Rqt, RT

qt

]−1
xf (39)

Proof. If Q = Ia, then Q̄qt = Ia−1 ∈ R
mqt×mqt
+ and W = a−1

[
Rqt, RT

qt

] ∈
R

n×n. From (31) we have

û00
qt = Q̄qtR

T
qtW

−1xf = Ia−1RT
qta
[
Rqt, RT

qt

]−1
xf = RT

qt

[
Rqt, RT

qt

]−1
xf .(40)

Substitution of (38) into (29) for Q = Ia yields (39).

Example 7.1 Consider the positive 2D model (8) with the matrices

A10 =

⎡
⎣ 0 1 0

0 0 0
0 0 0

⎤
⎦ , A20 =

⎡
⎣ 0 1 0

1 0 0
0 1 0

⎤
⎦ , A01 =

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦ , (41)

A00 = A11 = A21 = 0, B0 =

⎡
⎣ 1 0

0 0
0 1

⎤
⎦ , d1 = d2 = 1.

Find the optimal input sequence that transfers the model from zero boundary con-

ditions to the final state xf =

⎡
⎣ 1

1
1

⎤
⎦ and minimizes the performance index (29)

with q = t = 2, Q =
[

2 0
0 2

]
.
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Using (13) and (24) we obtain the reachability matrix of the form

R22 = [Φ11B0, Φ01B0, Φ10B0, Φ00B0] =

= [(A00 + A10A20 + A20A10)B0, A10B0, A20B0, B0] =

=

⎡
⎣ 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

⎤
⎦ .

By Theorem 5 the model is reachable in the rectangle

D22 = {(i, j) : i, j ∈ Z+, 0 ≤ i < 2, 0 ≤ j < 2} .

Taking into account that Q = 2
[

1 0
0 1

]
and using (38) we obtain the desired

optimal input sequence of the form

û00
22 = [û00, û10, û01]T = RT

22

[
R22 RT

22

]−1
xf = [1, 0, 0, 0, 1, 0, 0, 1]T . (42)

8. Concluding remarks
The notion of internaly positive 2D model (system) has been introduced. The so-
lution to the 2D linear model with delays has been derived by using 2D Z trans-
form. The necessary and sufficient conditions for the internal positivity and for
reachability of the positive 2D models have been established.

The Cayley-Hamilton theorem for 2D linear models with delays has been ex-
tended. The minimum energy control for the internally positive 2 D models with
delays has been formulated and solved. The considerations are given in details
for the model (8) only with d1 and d2 delays, but they can be easily extended for
the model (1) with many delays. Using the well-known relationship between 2D
models the considerations can be extended for the Fornasini-Marchesini models
and the Roesser model. Extension of these considerations for continuous-time
2D models with delays is an open problem.
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