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Abstract: This paper addresses the numerical solution of opti-
mal control problems for systems described by ordinary differential
equations with control constraints. The state equation is discretized
by a general explicit Runge-Kutta scheme and the controls are ap-
proximated by functions that are piecewise polynomial, but not nec-
essarily continuous. We then propose an approximate gradient pro-
jection method that constructs sequences of discrete controls and
progressively refines the discretization. Instead of using the exact
discrete cost derivative, which usually requires tedious calculations,
we use here an approximate derivative of the cost functional defined
by discretizing the continuous adjoint equation by the same Runge-
Kutta scheme backward and the integral involved by a Newton-Cotes
integration rule, both involving maximal order intermediate approx-
imations. The main result is that strong accumulation points in L2,
if they exist, of sequences generated by this method satisfy the weak
necessary conditions for optimality for the continuous problem. In
the unconstrained case and under additional assumptions, we prove
strong convergence in L2 and derive an a posteriori error estimate.
Finally, numerical examples are given.
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1. Introduction

The numerical solution of optimal control problems has been studied in the lit-
erature using various approaches. Discretization methods have been treated in
Dontchev (1996), Dontchev, Hager and Veliov (2000), Veliov (1997), using Euler
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or Runge-Kutta schemes, and error estimates were derived. Abstract results on
approximations to generalized solutions, error estimates, and application to fi-
nite difference schemes for control-state constrained problems have been given in
Malanowski, Buskens, Maurer (1998). In Dontchev et al. (1995), second order
sufficiency conditions were proved and applied to the convergence of methods
based on SQP and to penalty/multiplier methods. In Dunn (1996), the con-
vergence of the gradient projection method in an infinite dimensional setting is
analyzed. Mixed discretization/optimization methods using polynomial para-
meterizations and matching Runge-Kutta schemes were considered in Schwartz
and Polak (1996). Optimization methods for discretized nonconvex optimal
control problems using relaxed controls have been studied in Chryssoverghi,
Coletsos and Kokkinis (1999), and in Chryssoverghi, Coletsos and Kokkinis
(2001) where non-matching trapezoidal schemes were used.

In this paper, we consider an optimal control problem for systems described
by nonlinear ordinary differential equations, with a (not necessarily bounded)
control constraint set. In order to solve this problem numerically, we propose an
approximate gradient projection method that constructs sequences of discrete
controls and progressively refines the discretization during the iterations. The
state equation is discretized by an explicit Runge-Kutta scheme of maximal
global order m and the controls are approximated by vector functions whose
components are piecewise polynomial of degree l ≤ m − 1, but not necessarily
continuous. Since the matching adjoint of the discrete state equation and the
derivative of the cost functional usually involve tedious calculations of partial
derivatives of composed functions, we use at each iteration an approximate cost
derivative defined by discretizing the continuous adjoint equation by the same,
but nonmatching, Runge-Kutta scheme backward and the integral defining the
cost derivative by a Newton-Cotes integration rule with nodes equal to the l+1
polynomial interpolation points, both schemes involving maximal global order
approximations of intermediate values of states and adjoints. Since the discrete
adjoints are nonmatching here, the exact derivative of the discrete cost is not
defined in the adjoint form, and one must necessarily use a progressive refining
procedure, with the adjoint matching only in the limit. This approach also
reduces computing time and memory and generates a single infinite sequence of
controls. The main result is that strong accumulation points in L2, if they exist,
of sequences generated by this method satisfy the weak necessary conditions for
optimality for the continuous problem. In the case of the coercive unconstrained
problem and the discrete gradient method, we prove strong convergence in L2

and derive an a posteriori error estimate. Finally, several numerical examples
are given.

2. The continuous optimal control problem

Consider the following optimal control problem, with state equation

y′(t) = f(t, y(t), w(t)) in I := [0, T ], y(0) = y0,
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where y(t) ∈ Rp, constraints on the control w

w(t) ∈ U in I,

where U is a convex, closed, but not necessarily bounded, subset of Rq, and cost
functional to be minimized

G(w) := g(y(T )).

If the problem involves an additional integral cost

G(w) := g(y(T )) +
∫ T

0

ḡ(t, y, u)dt,

we can classically transform it into a problem with final cost only by adding to
the system the scalar differential equation

ȳ′ = ḡ(t, y, u), ȳ(0) = 0,

and setting

G̃(w) := g(y(T )) + ȳ(T ).

For any integer n ≥ 1, we denote by ‖v‖ := (
n∑

j=1

v2
j )1/2 the Euclidean norm

and by |v| := max
1≤j≤n

|vj | the max norm in Rn, by ( · , · )2 and ‖ · ‖2 the usual

inner product and norm in L2 := L2(I,Rn), and by ‖ · ‖∞ the usual norms in
L∞ := L∞(I,Rn) and C(I,Rn) corresponding to the norm | · | in Rn. We define
the set

W = {w ∈ L2(I,Rq) | w : I → U },
endowed with the relative norm topology of L2, and the set of admissible con-
trols W∞ := W ∩ L∞, also endowed with the L2 norm. Let Bn

ρ denote the
closed ball in Rn, with center 0 and radius ρ. Setting D∞ := I × Rp × Rq, we
make the following general assumptions:

f, fy := ∂f/∂y, fu := ∂f/∂u are continuous on D∞ ,
f, fy, fu are Lipschitz continuous w.r.t. (y, u) on I × Rp ×Bq

ρ, for every
ρ > 0, with Lipschitz constant independent of t but depending on ρ,
g, ∇g are Lipschitz continuous on Bp

ρ , for every ρ > 0, with Lipschitz
constant depending on ρ.

In the case of an additional integral cost, we suppose that
ḡ, ḡy, ḡu are Lipschitz continuous w.r.t. (y, u) on I ×Bp

ρ ×Bq
ρ, for every ρ,

with Lipschitz constant independent of t but depending on ρ.
The above assumptions concerning f, fy, fu, ḡ, ḡy, ḡu can be relaxed to the
same properties, but finitely piecewise in t, i.e. for t belonging to each interval
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of a partition of I into a finite number of intervals. Then, in particular, for
every w ∈ W∞, the state equation has a unique absolutely continuous solution
y := yw. Moreover, for every given b0 ≥ 0, there exists b1 ≥ 0 such that
‖yw‖∞ ≤ b1, for every w ∈W∞, with ‖w‖2 ≤ b0 (or ‖w‖∞ ≤ b0). The following
results are standard.

Proposition 2.1 Under the above assumptions, the mappings w �→ yw, from
W∞ to C(I,Rp), and w �→ G(w), from W∞ to R, are continuous.

Since optimal control problems may have no classical solutions, they are
also reformulated in the relaxed form, and the relative theory and methods
have been developed using this formulation (for such nonconvex problems, see
Chryssoverghi, Coletsos and Kokkinis, 1999, 2001, and the references there).

Proposition 2.2 Given controls w,w′ ∈ W∞, the directional derivative of the
functional G is given by

DG(w,w′ − w) := lim
α→0+

G(w + α(w′ − w)) −G(w)
α

=
∫

I

z(t)T fu(t, y(t), w(t))[w′(t) − w(t)]dt,

where y := yw, and the adjoint state z := zw is defined by the equation

z′(t) = −fy(t, y(t), w(t))T z(t) in I, z(T ) = ∇g(y(T )).

Moreover, the mappings w �→ zw, from W∞ to C(I,Rp), and (w,w′) �→
DG(w,w′ − w), from (W∞)2 to R, are continuous.

Theorem 2.1 If the control w ∈ W∞ is optimal, then w is extremal, i.e.

DG(w,w′ − w) ≥ 0, for every w′ ∈ W∞,

and this condition is equivalent to the weak pointwise minimum principle

z(t)T fu(t, y(t), w(t))w(t) = min
u∈U

[z(t)T fu(t, y(t), w(t))u], in I.

Conversely, if G is convex and w ∈ W∞ is extremal, then w is optimal.

For example, if f is affine in (y, u) and g convex, then G is clearly convex.
Also, in the case of the additional integral cost, if f is affine in (y, u), ḡ convex
in (y, u), and g convex, then G is convex.

3. Discretizations

Let (Nn)n≥1 be a sequence of positive integers. We suppose that Nn → ∞ as
n→ ∞ and that for each n, either Nn+1 = Nn, or Nn+1 = MNn, where M ≥ 2
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is a positive integer. For each n ≥ 1, we define the discretization ∆n by setting

N := Nn, hn := T/N, tni = ihn, i = 0, ..., N,
Ini := [tn,i−1, tn,i), i = 1, ..., N − 1, InN := [tn,N−1, tnN ].

For simplicity of presentation, the intervals Ini are chosen here of equal
length; in fact the subintervals I1i of the initial discretization could be of non-
equal length, in which case each discretization ∆n+1 would be obtained by
dividing the length of the subintervals of ∆n either by one or by M . We suppose
that hn ≤ 1, for every n.

For given l + 1 (l ≤ m− 1) interpolation points tkni in each Ini of the form

tkni = tn,i−1 + hn/l, k = 0, ..., l,

(note that the tkni must be equidistant here), define the set of discrete admissible
controls

Wn = {wn ∈W∞ | wn ∈ Πl(Ini) on Ini, wni(tkni) = wk
ni ∈ U,

k = 0, ..., l, i = 1, ..., N},
where Πl(Ini) denotes the set of q-vector functions whose components are poly-
nomials (simply called polynomials) of degree ≤ l on Ini, and where it is under-
stood that the values at the possible interpolation jump points tkni = tn,i−1, tni

are right/left limit values, on each Ini. Consider the (vector) divided differences
(abbreviated by DD in the sequel) of order 1, ..., l, relative to the interpolation
points tkni, k = 0, ..., l, of a discrete control wn, for each i = 1, ..., Nn. Clearly,
the values wk

ni of the discrete controls are bounded by some constant b̄ indepen-
dent of k, i, n (we shall say uniformly bounded) if and only if the corresponding
piecewise (vector) Lagrange interpolation polynomials wn are bounded by some
b̄′ independent of i, n (uniformly bounded). Using the Lagrange interpolation
polynomial in Newton form, we can see that if the DD of order 1, ..., l′ ≤ l of
the wn (i.e. of the wk

ni, k = 0, ..., l, for each i = 1, ..., Nn) are bounded by some

L̄ independent of k, i, n (uniformly bounded), then the piecewise (w.r.t. the
o

Ini)
derivatives of order 1, ..., l′ ≤ l of the wn are bounded by some L̄′ independent of
i, n (uniformly bounded). Conversely, if the piecewise derivatives of order 1, ..., l
of the wn are uniformly bounded by some L̄′, then, by the Mean Value Theorem,
the divided differences of order 1, ..., l of the wn are uniformly bounded also by
L̄′. Note that we have Wn ⊂Wn′ , for every n′ > n. Note also that Wn �⊂W in
general, except if l = 0, or if l = 1 and t0ni = tn,i−1, t1ni = tni. If the first order
DD of wn ∈ Wn are bounded by some L̄, then |w′

n(t)| ≤ L̄′ for a.a. t ∈ I, and
we have

d(wn(t), U) := min
u∈U

|wn(t) − u| ≤ L̄′hn, for a.a. t ∈ I,

hence wn belongs to the set

W̃n = {w ∈ L2(I,Rq)
∣∣∣ w : I → Ũn } ⊃W,
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where the convex L̄′hn-neighborhood Ũn of U is defined by

Ũn = {v ∈ Rq
∣∣ d(v, U) ≤ L̄′hn } ⊃ U.

In the sequel, for a given Runge-Kutta or integration scheme, we shall say
that the maximal global order of this scheme is m if this scheme has been
constructed so as to yield a global truncation error O(hm

n ) for f sufficiently
smooth (e.g. f ∈ Cm in (t, y, u)); the effective global order will then be µ,
µ ≤ m, with global error O(hµ

n), depending on the smoothness of f . The
maximal (resp. effective) local order is then m+ 1 (resp. µ+ 1).

Next, we discretize the state equation by an explicit Runge-Kutta scheme
of maximal global order m, and with m intermediate points (not necessarily
distinct), which can be written in the form

φj
ni = f(t̄jni, yn,i−1 + hn

j−1∑
s=1

αisφ
s
ni, w̄

s
ni), w̄j

ni = wni(t̄
j
ni), j = 1, ...,m,

t̄jn,i = tn,i−1 + θ̄jhn, with θ̄j ∈ [0, 1], j = 1, ...,m, θ̄1 = 0, θ̄m = 1,

yni = yn,i−1 + hn

m∑
j=1

βjφj
ni, with

m∑
j=1

βj = 1, βj ≥ 0, j = 1, ...,m,

i = 1, ..., N,

yn0 = y0.

This scheme can be written in the general form

yni = yn,i−1 + hnF (̄tni, yn,i−1, w̄ni, hn), i = 1, ..., N, yn0 = y0,

with t̄ni = (t̄1ni, ..., t̄
m
ni), w̄ni = (w̄1

ni, ..., w̄
m
ni). Setting t = (t1, ..., tm), u =

(u1, ..., um), and

E∞ := {(t, y,u, h)| t ∈ Im, y ∈ Rp, u ∈ Um, h ∈ [0, 1]},
we can see that the function F is continuous on E∞, Lipschitz continuous w.r.t.
(y,u) on E∞, and satisfies

F (t, ..., t, y, u, ...u, 0) = f(t, y, u) in D∞.

In the sequel, L denotes various Lipschitz constants, independent of n.

Proposition 3.1 Let b̄′ ≥ 0 be given. There exists b2 ≥ 0 such that, for every
wn ∈Wn, with ‖wn‖∞ ≤ b̄′, the corresponding discrete state yn := (yn0, ..., ynN )
satisfies ‖yni‖ ≤ b2, i = 0, ..., N .

Proof. The Lipschitz continuity of F implies that for (t, y,u, h) ∈ E∞

‖F (t, y,u, hn)‖ ≤ ‖F (t, 0,u, hn)‖ + ‖F (t, y,u, hn) − F (t, 0,u, hn)‖
≤ C + L ‖y‖ .
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The discrete scheme yields by summation

yni = y0 +
i∑

j=1

hnF (̄tnj , yn,j−1, w̄nj, hn),

hence

‖yni‖ ≤ ∥∥y0
∥∥ + CT + Lhn

i−1∑
j=0

‖ynj‖.

It then follows form the discrete Bellman-Gronwall inequality (see Thomee,
1997) that there exists b2 such that ‖yni‖ ≤ b2, i = 0, ..., N .

For wn ∈ Wn, with corresponding state yn, we define the discrete cost

Gn(wn) := g(ynN ),

the continuous piecewise affine functions

ŷn(t) := yn,i−1+(t−tn,i−1)F (̄tni, yn,i−1, w̄ni, hn), for t∈Ini, i=1, ..., N,

and the piecewise constant functions

y−n (t) := yn,i−1, y
+
n (t) := yni, for t ∈ Ini, i = 1, ..., N.

Let b̄′ ≥ 0 be given. We set

b := max(b1, b2),

E := {(t, y,u, h)
∣∣ t ∈ Im, ‖y‖ ≤ b, u ∈ Um, |u| ≤ b̄′, h ∈ [0, 1]},

B := max
E

‖F (t, y,u, h)‖.

Theorem 3.1 (Consistency) Let (wn ∈ Wn) be a sequence with ‖wn‖∞ ≤ b̄′ and
first order DD of the wn uniformly bounded. If wn → w in L2, then y−n → y,
y+

n → y, uniformly, and Gn(wn) → G(w), as n→ ∞.

Proof. Let ε > 0 be given. By our assumptions, wn is Lipschitz continuous
w.r.t. t with some constant L̄′ (independent of i and n) on each Ini. Since F is
uniformly continuous on the compact set E, there exists δ > 0 such that

‖F (t1, y1,u1, h
′) − F (t2, y2,u2, h

′′)‖ ≤ ε,

for |t1 − t2| ≤ δ, ‖y1 − y2‖ ≤ δ, |h′ − h′′| ≤ δ and |u1 − u2| ≤ δ. Now choose n
such that hn ≤ min(δ, δ/B, δ/L̄′). By construction of ŷn, we clearly have

‖ŷn(t1) − ŷn(t2)‖ ≤ B|t1 − t2|, t1, t2 ∈ I,∥∥ŷn(t) − y0
∥∥ ≤ BT, for t ∈ I,
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which show that (ŷn) is a bounded sequence of equicontinuous functions on I.
We have also

‖ŷn(t) − yn,i−1‖ ≤ Bhn ≤ δ, for t ∈ Ini, i = 1, ..., N.

By the definition of ŷn, we can write

ŷ′n(t) = f(t, ŷn(t), wn(t)) + αn(t), on each Ini, i = 1, ..., N,

where

αn(t) := F (̄tni, yn,i−1, w̄ni, hn) − f(t, ŷn(t), wn(t))
= F (̄tni, yn,i−1, w̄ni, hn) − F (t, ..., t, ŷn(t), wn(t), ..., wn(t), 0),

for t ∈ Ini, i = 1, ..., N , and we have

‖αn(t)‖ ≤ ε, for t ∈ Ini, i = 1, ..., N.

Therefore αn → 0 uniformly on I. By integration, we get

ŷn(t) = y0 +
∫ t

0

[f(s, ŷn(s), wn(s)) + αn(s)]ds.

By Ascoli’s theorem, there exist a subsequence (ŷn)n∈J and a continuous func-
tion y such that ŷn →

n∈J
y uniformly. We write

ŷn(t) = y0 +
∫ t

0

[f(s, ŷn(s), wn(s)) − f(s, y(s), wn(s))]ds

+
∫ t

0

[f(s, y(s), wn(s)) − f(s, y(s), w(s))]ds

+
∫ t

0

f(s, y(s), w(s))ds +
∫ t

0

αn(s)ds.

Since f is Lipschitz continuous w.r.t. (y, u) onD∞ for bounded y,u, and wn → w
in L2, hence in L1, passing to the limit for n ∈ J in this equation, we obtain

y(t) = y0 +
∫ t

0

f(s, y(s), w(s))ds,

which shows that y = yw. Since y is uniformly continuous, it follows easily that
also y−n → y, y+

n → y. The convergence of the original sequences follows then
from the uniqueness of the limit. Finally, by the continuity of g, we have

Gn(wn) := g(ynN ) → g(y(T )) := G(w).
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Theorem 3.2 (i) (Lipschitz continuity) Let (wn ∈ Wn), (w̃n ∈ Wn) be se-
quences with ‖wn‖∞ ≤ b̄′, ‖w̃n‖∞ ≤ b̄′, and first order DD of the wn, w̃n

uniformly bounded, and let yn, ỹn be the corresponding discrete states. Then

max
0≤i≤N

‖yni − ỹni‖ ≤ c‖wn − w̃n‖∞,
|Gn(wn) −Gn(w̃n)| ≤ c‖wn − w̃n‖∞,

where the constant c is independent of n.
(ii) (Equicontinuity) Let (un ∈ Wn), (vn ∈ Wn) be sequences with ‖un‖∞ ≤ b̄′,
‖vn‖∞ ≤ b̄′, and first order DD of the wn, vn uniformly bounded. For given
α ∈ [0, 1], set wnα := un +α(vn − un) and let ynα be the corresponding discrete
state. The discrete states ynα and costs Gn(wnα) are Lipschitz equicontinuous
w.r.t. α

max
0≤i≤N

‖yniα − yniα̃‖ ≤ c′|α− α̃|,
|Gn(wnα) −Gn(wnα̃)| ≤ c′′|α− α̃|,

where the constants c′ and c′′ are independent of n, (un) and (vn).

Proof. (i) We write

ynj − yn,j−1 = hnF (̄tnj , yn,j−1, w̄nj, hn),

for j = 1, ..., i, and summing over j, we get

yni − y0 = hn

i∑
j=1

F (̄tnj , yn,j−1, w̄nj, hn),

and similarly for w̃n, ỹn. Hence

yni − ỹni = hn

i∑
j=1

[F (̄tnj , yn,j−1, w̄nj , hn) − F (̄tnj , ỹn,j−1, ¯̃wnj , hn)]

= hn

i∑
j=1

[F (̄tnj , yn,j−1, w̄nj , hn) − F (̄tnj , ỹn,j−1, w̄nj , hn)]

+hn

i∑
j=1

[F (̄tnj , ỹn,j−1, w̄nj , hn) − F (̄tnj , ỹn,j−1, ¯̃wnj , hn)],

therefore

‖yni − ỹni‖ ≤ hnL
i∑

j=1

‖yn,j−1 − ỹn,j−1‖ + Lhn

N∑
j=1

max
1≤k≤m

(
∣∣w̄k

nj − ¯̃wk
nj

∣∣)

‖yni − ỹni‖ ≤ Lhn

i∑
j=1

‖yn,j−1 − ỹn,j−1‖ + LT ‖wn − w̃n‖∞.
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It then follows from the discrete Bellman-Gronwall inequality that

‖yni − ỹni‖ ≤ c‖wn − w̃n‖∞, i = 0, ..., N,

and the second inequality follows from the Lipschitz continuity of g.
(ii) Since the controls un, vn belong to a bounded subset of L∞, the Lipschitz
equicontinuity of ynα and Gn(wnα) follows by setting wn := wnα, w̃n := wnα̃.

The following theorem gives the discrete error estimates relative to a fixed
discrete control.

Theorem 3.3 For wn ∈Wn, with ‖wn‖∞ ≤ b̄′ and DD of order 1, ...,min(l, µ),
µ ≤ m, of wn bounded by L̄, let yn be the corresponding discrete state and ỹn

the corresponding solution of the continuous state equation. If f is sufficiently
smooth (e.g. f ∈ Cµ) w.r.t. (t, y, u) (w.r.t. (t, y) if l = 0), then
(i) max

0≤i≤N
‖yni − ỹn(tni)‖ ≤ chµ

n,

(ii) |Gn(wn) −G(wn)| ≤ chµ
n,

(iii) |Gn(wn) −Gn′(wn)| ≤ chµ
n, n′ > n, and Nn �= Nn′ , where c denotes

various constants, independent of n and wn.

Proof. The control wn and its derivatives of order ≤ min(l, µ) are bounded by a
constant independent of n and wn. The first estimate follows from classical error
estimates of the Runge-Kutta method (see e.g. Hairer, Norsett and Wanner,
1993). Next, since g is Lipschitz continuous, we get

|Gn(wn) −G(wn)| = |g(ynN ) − g(ỹn(T ))| ≤ L|ynN − ỹn(T )| ≤ chµ
n.

Now let n′ > n with Nn �= Nn′ and let ỹn′ denote the continuous state cor-
responding to wn, considered as an element of Wn′ . Then obviously ỹn = ỹn′

and

|Gn(wn) −Gn′(wn)| =
∣∣g(ynNn) − g(yn′Nn′ )

∣∣
≤ |g(ynNn) − g(ỹn(T ))| + ∣∣g(ỹn′(T )) − g(yn′Nn′ )

∣∣ ≤ c(hµ
n + hµ

n′) ≤ chµ
n.

Remark. Note that if we suppose that f is Lipschitz continuous w.r.t. (t, y, u)
on I × Rp ×Bq

ρ, for every ρ > 0, with Lipschitz constant independent of t (but
possibly depending on ρ), then the inequalities in Theorem 3.3 hold with µ = 1.

Next we define, for given wn ∈ Wn, with corresponding discrete state yn,
the approximate discrete adjoint zn as the solution of the initial Runge-Kutta
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scheme applied formally backward to the continuous time adjoint equation

ψj
ni = fy(t̄jni, ȳ

j
ni, w̄

j
ni)

T (zn,i−1 + hn

j+1∑
s=m

αisψ
s
ni), j = m, ..., 1,

zn,i−1 = zni + hn

1∑
j=m

βjψj
ni,

i = N, ..., 1,
znN = ∇g(ynN ),

and using (instead of the exact values) intermediate state approximations ȳj
ni

at the points t̄jni, of maximal local order m (hence inducing, at best, a local
error O(hm+1

n ) in the adjoint scheme, and a global one O(hm
n )), which can be

computed as linear combinations of the intermediate function evaluations φj
ni

of the Runge-Kutta scheme for the state equation, with some additional func-
tion evaluations, if m ≥ 5 (for such Runge-Kutta approximations, see Enright
et al., 1986, Hairer, Norsett and Wanner, 1993, Chap. II-6, and Papakostas
and Tsitouras, 1997). These evaluations require much less computations than
the direct calculation of the matching adjoint of the discrete state equation,
which requires the computation of Jacobians w.r.t. y of multi-stage composed
functions.

Now let (as above) yk
ni, z

k
ni be approximations also of maximal local order

m of the state and adjoint, and wk
ni the exact control values, at the interpola-

tion points tkni. For given wn, w
′
n ∈ Wn, and yn, zn corresponding to wn, the

approximate discrete derivative of the cost functional G is defined by apply-
ing formally, on each Ini, some Newton-Cotes integration rule (recall that the
points tkni are equidistant), with nodes tkni and of maximal global order m′, to
the continuous time cost derivative, and using in this rule the approximate val-
ues yk

ni, z
k
ni (instead of the exact values), and the exact control interpolation

values wk
ni = wn(tkni)

DnG(wn, w
′
n − wn) := hn

N∑
i=1

l∑
k=0

Ck
l (zk

ni)
T fu(tkni, y

k
ni, w

k
ni)(w

′k
ni − wk

ni).

The Ck
l are the coefficients of the integration rule, with

l∑
k=0

Ck
l = 1, Ck

l ≥ 0,

k = 0, ..., l, and it is understood, in the calculation of DnG, that the polynomial
pieces are extended by continuity, at the two end-points, to each closed interval
Īni, i = 1, ..., N . Here also the computation of Jacobians w.r.t. u of composed
functions required for the calculation of the discrete cost derivative using the
matching adjoint is thus avoided. In order to simplify the minimizations of the
augmented Hamiltonian in the Algorithm of Section 4, we have chosen here
integration nodes that coincide with the interpolation points. The procedure
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can often be further simplified if we can also choose the interpolation points to
coincide with some of the Runge-Kutta intermediate points, since we have less
function evaluations in this case.

Define the Ini-piecewise constant functions

wk
n(t) = wk

ni in Ini, i = 1, ..., N,

and similarly for yk
n, z

k
n.

Lemma 3.1 For 0 ≤ k ≤ l and any sequence (wn ∈ Wn) with first order DD of
the wn uniformly bounded, wn → w if and only if wk

n → w, in L2 strongly or
weakly.

Proof. Since the functions wn are piecewise Lipschitz continuous with some con-
stant L̄′ independent of n, we have, for any sequence (wn ∈Wn) as above

∥∥wn − wk
n

∥∥
2
≤

√
qT

∥∥wn − wk
n

∥∥
∞ ≤

√
qT L̄′hn → 0,

where q is the dimension of the control space, and the lemma follows.

Theorem 3.4 (i) (Consistency) Let (wn ∈ Wn), (w′
n ∈ Wn) be sequences with

‖wn‖∞ ≤ b̄′, ‖w′
n‖∞ ≤ b̄′, and first order DD of the wn, w

′
n uniformly bounded.

If wn → w and w′
n → w′ in L2 strongly, then yk

n → y = yw, zk
n → z = zw,

uniformly, and

DnG(wn, w
′
n − wn) → DG(w,w′ − w).

(ii) (Error estimates) If f, fy are sufficiently smooth (e.g. f, fy ∈ Cµ) w.r.t.
(t, y, u) ((t, y) if l = 0), and the DD of order 1, ...,min(l, µ), µ ≤ m, of the wn

are uniformly bounded, then

max
0≤i≤N

‖zni − z̃n(tni)‖ ≤ chµ
n,

where z̃n denotes the exact solution of the continuous adjoint equation corre-
sponding to wn and ỹn. If the DD of order 1, ...,min(l, µ, µ′), µ ≤ m, µ′ ≤ m,
of the wn, w

′
n are uniformly bounded, and f, fy, fu are sufficiently smooth, then

|DnG(wn, w
′
n − wn) −DG(wn, w

′
n − wn)| ≤ chµ̄

n, with µ̄ = min(µ, µ′).

Proof. (outline) (i) The convergence of the sequences (yk
n), k = 0..., l, to y follows

from the convergence y−n → y (Theorem 3.1) and the construction of the yk
ni,

which are O(hn) approximations of yn,i−1. The convergence of the sequences
(ẑn), (z−n ), (z+

n ) to z is proved similarly to Theorem 2 and using the convergence
of the states. The convergence zk

n → z follows then from the convergence z+
n → z
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and the construction of the zk
n, which are O(hn) approximations of zn,i+1. Next,

define the Ini-piecewise constant functions on I

uk
n(t) := fu(tkn(t), yk

n(t), wk
n(t))T zk

n(t), k = 0, ..., l.

Since wn → w (hence wk
n → w, by Lemma 3.1) in L2, tkn → t, yk

n → y, zk
n → z

uniformly,
∥∥wk

n

∥∥
∞ ≤ b̄′, and fu is uniformly continuous in (t, y, u) and Lipschitz

continuous in u, it follows easily that

uk
n → fu( · , y, w)T z in L2, k = 0, ..., l.

Since also w′k
n → w′ in L2 and

l∑
k=0

Ck
l = 1, we obtain

DnG(wn, w
′
n − wn) → DG(w,w′ − w).

(ii) The error estimate concerning the adjoints follows from the construction
of the Runge-Kutta scheme, which contains here (in the worst case) O(hµ

n)
approximations of the exact state values at the tni (Theorem 3.3) and of the
intermediate exact values at the t̄jni (which both induce a O(hµ+1

n ) local error),
instead of the exact values. The last estimate follows from the O(hµ+1

n ) Runge-
Kutta local errors on the state and adjoint values at the tkni and the O(hµ′+1

n )
local error due to integration.

The following control approximation result is proved in Polak (1997). Let
W̄n denote the set of discrete piecewise constant controls. We have W̄n ⊂ Wn

for every n.

Proposition 3.2 For every w ∈ W (or w ∈ W∞), there exists a sequence
(wn ∈ W̄n) such that wn → w in L2.

4. Approximate gradient projection method

We describe now an approximate discrete gradient projection method that pro-
gressively refines the discretization during the iterations, thus reducing comput-
ing time and memory and avoiding the tedious calculation of the exact discrete
adjoint and the derivative of the cost functional for higher order schemes.

For a given constant L′ ∈ [0,+∞], define the projection subset of admissible
controls

W ′
n := {wn ∈ Wn | the first order DD of wn are bounded by L′} ⊂Wn,

(with W ′
n = Wn if L′ = +∞, i.e. if there are no DD constraints), and for

wn ∈Wn, the discrete norm

‖wn‖2
2,n := hn

N∑
i=1

l∑
k=0

Ck
l

∥∥wk
ni

∥∥2
=

l∑
k=0

Ck
l

∥∥wk
n

∥∥2

2
.
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Algorithm

Step 1. Choose an initial discretization ∆1, an m-point Runge-Kutta scheme,
an integer l ∈ [0,m − 1], an (l + 1)-node Newton-Cotes integration rule, an
integer M ≥ 2 (if U = Rq, or U �= Rq with l ≤ 1), or M = l (if U �= Rq with
l > 1), L′ ∈ [0,+∞], b, c ∈ (0, 1), s ∈ (0, 1] (s ∈ (0,+∞) if U = Rq), γ > 0,
w1 ∈W ′

1, and set n := 1, κ := 1.

Step 2. Find vn ∈W ′
n such that

en := DnG(wn, vn − wn) + (γ/2)‖vn − wn‖2
2,n

= min
v′

n∈W ′
n

[
DnG(wn, v

′
n − wn) + (γ/2)‖v′n − wn‖2

2,n

]
,

and set dn := DnG(wn, vn − wn).

Step 3. (Armijo step search) Set and α0 = s. If the inequality

Gn(wn + αl(vn − wn)) −Gn(wn) ≤ αlben,

is not satisfied, set successively αl+1 := cαl and find, if it exists, the first
αl ∈ (0, 1], say ᾱ, such that it is satisfied. [Optional : Else, set successively
αl+1 := αl/c and find the last αl ∈ (0, 1], say ᾱ, such that this inequality is
satisfied.]
If ᾱ is found, set αn := ᾱ, w̃n := wn +αn(vn −wn), nκ := n, κ := κ+1. Else,
set w̃n := wn.

Step 4. Define wn+1 by:
(a) U = Rq, or U �= Rq with l ≤ 1: Set Nn+1 = Nn or Nn+1 = M Nn, according
to the chosen refining procedure. In both cases, set wn+1 := w̃n.
(b) U �= Rq with l > 1: Set Nn+1 = Nn or Nn+1 = l Nn (refining proce-
dure). If Nn+1 = Nn, set wn+1 := w̃n. If Nn+1 = l Nn, then, for each
i = 1, ..., Nn+1, compute the multi-vector of new interpolation values w̃n+1,i :=
(w̃0

n+1,i, ..., w̃
l
n+1) of w̃n on In+1,i for the discretization ∆n+1, and find the

projection Pn+1,iw̃n+1,i of w̃n+1,i onto U l+1 subject to the (linear) first order
DDn+1 constraints (i.e. first order DDn+1 bounded by L′). Then define wn+1 as
the piecewise polynomial function of degree ≤ l interpolating these projection
values on each In+1,i, for the discretization ∆n+1.

Step 5. Set n := n+ 1 and go to Step 2.

Define the set of successful iterations K := (nκ)κ∈N (see Step 3).

Theorem 4.1 We suppose that f, fy, fu are at least Lipschitz continuous w.r.t.
(t, y, u) ((t, y) if l = 0). If K is finite (resp. infinite) and there exists a sub-
sequence (wn)n∈L⊂N (resp. (wn)n∈L⊂K) that converges strongly in L2 to some
w, that is bounded in L∞ if U is unbounded, and is such that the first order DD
of the wn, n ∈ L, are uniformly bounded if L′ = +∞, then w is admissible and
extremal, and en →

n∈L
0, dn →

n∈L
0, w̃n →

n∈L
w.
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Proof. (i) By the construction of wn+1 in Step 4, we can see by induction that
wn ∈ W ′

n for every n. Note that wn does not belong to the set W in general
(except if l = 0, or if l = 1 and t0ni = tni, t1ni = tn,i+1), but to a larger convex
set W̃n (see Section 3). We shall first show that if a subsequence (wn)n∈J

converges strongly in L2, is bounded in L∞ if U is unbounded, and the first
order DD of the wn are uniformly bounded, then the corresponding subsequence
(vn)n∈J constructed in Step 2 converges strongly in L2 to some v. Define the
Ini-piecewise constant functions

uk
n(t) := wk

n(t) − (1/γ)fu(tkn(t), yk
n(t), wk

n(t))T zk
n(t), k = 0, ..., l.

These functions are also uniformly bounded by our assumptions. Now, one can
easily see (by completing the square) that Step 2 amounts to minimizing, for
each i, the quadratic function (or each square separately if L′ = +∞)

l∑
k=0

Ck
l

∥∥v′k − uk
ni

∥∥2

w.r.t. the vector v′ = (v′0, ..., v′l) on the convex set

Ul+1 := {v := (v′0, ..., v′l) ∈ U l+1|
v′0, ..., v′l satisfy the first order DD constraints}

i.e. to finding, for each i, the projection vni = (v0
ni, ..., v

l
ni) = Pl+1uni of the vec-

tor uni = (u0
ni, ..., u

l
ni) onto Ul+1 w.r.t. the inner product (( · , · )) =

l∑
k=0

Ck
l ( · , · )

of (Rq)l+1, or equivalently, the projection vn = P̃l+1(un) of the corresponding
piecewise constant multi-vector function un, with u(t) := (u0

ni, ..., u
l
ni) ∈ Ul+1

on each Ini, onto the convex set of piecewise constant multi-vector functions

Wl+1 = {v′ ∈ L2(I,Rq)l+1| v′(t) := (v′0, ..., v′l) ∈ Ul+1 on each Ini},

w.r.t. the inner product (( · , · ))2 =
l∑

k=0

Ck
l ( · , · )2 of (L2)l+1. Since the first

order DD of the wn are uniformly bounded by our assumptions in the two cases
L′ �= +∞, L′ = +∞, similarly to the proof of Theorem 3.4, we get

un → (u
0
, ..., u

l
) in (L2)l+1 strongly, where u = w − (1/γ)fu( · , y, w)T z.

By the construction of the yk
ni, z

k
ni, which are O(hn) approximations of yn,i−1,

zn,i+1, respectively, since the wk
ni, their first order DD, and the yk

ni, z
k
ni, are

uniformly bounded, and since fu is assumed Lipschitz continuous in (t, y, u),
we can see that the uk

ni and their first order DD are also uniformly bounded.
Since the sequence of (discrete) projections (vn)n∈J is also bounded in L∞ and
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belongs to the weakly closed set W l+1, by Alaoglu’s Theorem there exist a
subsequence (vn)n∈K⊂J and v ∈ W l+1 such that (vn) →

n∈K
v in (L2)l+1 weakly.

Now let vn be the piecewise vector polynomial (of degree ≤ l) interpolating the
values vk

ni, k = 0, ..., l, at the points tkni, k = 0, ..., l, on each Ini. The first order
DD of the vn are also uniformly bounded in the two cases L′ �= ∞ and L′ = ∞,
because: either (a) (L′ �= ∞) vni = Pl+1uni ∈ Ul+1 for each i, or (b) (L′ = ∞)
vni = Pl+1uni ∈ Ul+1 = U l+1, i.e. vk

ni = Puk
ni, k = 0, ..., l, separately, where

the projection P onto U does not augment distances. Hence, by Lemma 3.1,
we have in the limit v = (v

0
, ..., v

l
). Now let any φ ∈ W , and let (φn ∈ W̄n) be

a sequence that converges strongly to φ in L2 (Proposition 3.2). Since clearly
(φn

0
, ..., φn

l
) ∈ Wl+1, we have

l∑
k=0

Ck
l (vk

n, φn)2 =
l∑

k=0

Ck
l (uk

n, φn)2, with
l∑

k=0

Ck
l = 1,

and passing to the limit, for n ∈ K, we get

(v, φ)2 = (u, φ)2.

Since this holds for every φ ∈ W , we have v = P̃ u, where P̃ is the projection
operator onto W in L2, and clearly v ∈ L∞. On the other hand, since vn ∈
Wl+1, we have

‖‖vn‖‖2
2 :=

l∑
k=0

Ck
l (vk

n, v
k
n)2 =

l∑
k=0

Ck
l (uk

n, v
k
n)2

→
n∈K

l∑
k=0

Ck
l (u, v)2 =

l∑
k=0

Ck
l (v, v)2 =

∥∥∥∥
∥∥∥∥(v

0
, ..., v

l
)
∥∥∥∥
∥∥∥∥

2

2

.

Therefore, vn →
n∈K

(v
0
, ..., v

l
) in (L2)l+1 strongly, hence vn→v= P̃ u (by Lemma 3.1)

in L2 strongly, and this holds also for n ∈ J , since the limit P̃u is unique.
(ii) Let n0 be fixed and suppose that an Armijo step αn cannot be found for
n ≥ n0, i.e. the set K is finite. Since by our assumption wn →

n∈L⊂N
w, we

have vn →
n∈L

v, as in (i). Since the minimized function in Step 2 vanishes for

v′n := wn ∈W ′
n, we have en ≤ 0, hence dn ≤ en ≤ 0. By Theorem 3.4 (i)

en →
n∈L

e := DG(w, v − w) + (γ/2)‖v − w‖2 ≤ 0,

dn →
n∈L

d := DG(w, v − w) ≤ e ≤ 0.

Let us show that e = d = 0. Suppose that e < 0. Let b′, b′′ be such that
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b < b′ < b′′ < 1. By the definition of the directional derivative, we have

G(w + α(v − w)) −G(w) = α(d+ εα) ≤ b′′αd ≤ b′αdn,

for α ∈ [0, δ], n ≥ n1 ≥ n0, n ∈ L,

for some n1 sufficiently large and δ ∈ (0, s] sufficiently small, where s is the
Armijo initial step. Since (α �→ Gn(w+α(vn−w))−Gn(w) )n∈L is a bounded se-
quence (Proposition 3.1) of (Lipschitz) equicontinuous functions (Theorem 3.2)
that converges pointwise on [0, 1] to the function α �→ G(w+α(v−w))−G(w)
(Theorem 3.1), the convergence is uniform on [0, 1], by Ascoli’s Theorem. Hence

Gn(wn + α(vn − wn)) −Gn(wn) ≤ αb′dn + ηn

= α(b′dn +
ηn

α
) ≤ bαdn ≤ bαen,

for α ∈ [cδ/2, δ], n ≥ n2 ≥ n1, n ∈ L,

which shows that the Armijo step αn can be found for n ≥ n2, n ∈ L, a
contradiction. Therefore, we must have e = 0 and en →

n∈L
0. Next, by Step 2, we

have

DnG(wn, v
′
n − wn) + (γ/2)‖v′n − wn‖2

2,n ≥ en, for every v′n ∈ Wn.

Let v′ ∈ W∞ be any control and (v′n ∈ W̄n ⊂ W ′
n) a sequence converging to v′

(Proposition 3.2). Passing to the limit in the above inequality, for n ∈ L, we
clearly find, using also Lemma 3.1, that

DG(w, v′ − w) + (γ/2)‖v′ − w‖2
2 ≥ 0.

Replacing w′ by w + λ(v′ − w), for arbitrary λ ∈ (0, 1], and dividing by λ, we
get

DG(w, v′ − w) + (λγ/2)‖v′ − w‖2
2 ≥ 0,

therefore

DG(w, v′ − w) ≥ 0, for every v′ ∈ W∞.

Since, in particular, d = DG(w, v−w) ≥ 0, and d ≤ 0, we get d = 0 and dn →
n∈L

0.

It follows that ‖vn − wn‖2,n →
n∈L

0, hence ‖vn − wn‖2 →
n∈L

0 (by Lemma 3.1), and

w = v = P̃ u ∈W . Since wn →
n∈L

w and (wn)n∈L is bounded in L∞, we have also

w ∈ L∞, hence w ∈ W∞. Therefore w is admissible and extremal.

(iii) Suppose now that an Armijo step αn can be found for each n = nκ, κ ∈ N,
i.e. for every n ∈ K, where the set K is infinite. We have κ → ∞, and by our
assumption wn →

n∈L⊂K
w. Similarly to (ii), we obtain

Gn(wn + α(vn − wn)) −Gn(wn) ≤ αbdn ≤ αben,

for α ∈ [cδ/2, δ], n ≥ n2 ≥ n1, n ∈ L,
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which shows that for n ≥ n2, n ∈ L, the Armijo step satisfies αn ≥ cδ. Therefore
(see definition of w̃n in Step 3)

Gn(w̃n) −Gn(wn) = Gn(wn + αn(vn − wn)) −Gn(wn)
≤ αnben ≤ cδben ≤ cδbe/2 := a < 0, for n ≥ n3 ≥ n2, n ∈ L.

Consider now the case where Nn+1 = l Nn and wn+1 is defined by the Nn+1 =
l Nn discrete projections in Step 4. Since wn, vn, hence w̃n, satisfy the first
order DDn constraints, the w̃n have uniformly bounded first derivatives. The
linear interpolant w̄n+1,i := Ln+1,iw̃n+1,i of w̃n on In+1,i w.r.t. the two points
t0n+1,i, t

l
n+1,i takes a multi-vector of intermediate values w̄ := (w̄0

n+1,i, ..., w̄
l
n+1)

that belongs to U l+1 since U is convex and clearly satisfies the first order DDn+1

constraints. It yields at most a (uniform in i, n) O(hn+1) discrete interpolation
error |w̄n+1,i − w̃n+1,i|∞,n+1,i on In+1,i. By the minimum norm property of the
piecewise discrete projections in Step 4, we then have

‖Pl+1w̃n+1,i − w̃n+1,i‖2,n+1,i ≤ ‖w̄n+1,i − w̃n+1,i‖2,n+1,i

≤ c′|w̄n+1,i − w̃n+1,i|∞,n+1,i ≤ O(hn+1),

for each i = 1, ..., Nn+1, hence |wn+1 − w̃n|∞,n+1 ≤ O(hn+1). Since the first
order DD of the w̃n (see above) and wn+1 (by the projections in Step 4, as
above for vn) are uniformly bounded, so are their first derivatives, and we have

|wn+1 − w̃n|∞ ≤ O(hn+1).

By Theorem 3.2 (i), we then get

|Gn+1(wn+1) −Gn+1(w̃n)| ≤ |wn+1 − w̃n|∞ ≤ O(hn+1) = O(hn).

This trivially holds also in the cases where wn+1 = w̃n in Step 4.
Gathering our above results and using Theorem 3.3 (iii), with µ = 1, we have
the three following cases:

Gn+1(wn+1) −Gn(wn) = Gn+1(w̃n) −Gn(wn) +O(hn) =
= Gn(w̃n) −Gn(wn) + O(hn) ≤ a+O(hn), forn ≥ n3, n ∈ L ⊂ K,

Gn+1(wn+1) −Gn(wn) = Gn(w̃n) −Gn(wn) +O(hn)
≤ αnben +O(hn) ≤ O(hn), for n ∈ K, and n < n3 or n /∈ L,

and since wn+1 := wn for n /∈ K (unsuccessful iterations)

Gn+1(wn+1) −Gn(wn)=Gn(wn) −Gn(wn) +O(hn)=O(hn), forn /∈ K.

Since hn+1 = hn or hn+1 ≤ hn/2 anyway, we obtain

Gn+1(wn+1) −G1(w1) ≤
∑

1≤κ≤n

Chκ +
∑

n3≤κ≤n, κ∈L

a

≤ 2Ch1 +
∑

n3≤κ≤n, κ∈L

a →
n∈N

−∞
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which contradicts the boundedness of the sequence (Gn(wn) := g(ynN ))n∈N

(Proposition 3.1). Therefore e = 0 and en →
n∈L

0. Similarly to (ii), d = 0, dn →
n∈L

0,

and w is admissible and extremal. Finally, since w̃n = wn + α(vn − wn), for
n ∈ K ⊃ L, wn →

n∈L
w, and ‖vn − wn‖2 →

n∈L
0, we have also w̃n →

n∈L
w.

One can easily see that Theorem 4.1 remains valid if en is replaced by dn

in Step 2, but en usually gives better results. If the limit extremal control w
is Lipschitz continuous, then the first order DD constraints are usually inactive
if the constant L′ is chosen sufficiently large, and we can then take L′ = +∞
(i.e. W ′

n = Wn), thus simplifying the projection procedures in Steps 2 and 4.
The control wn+1 constructed by piecewise discrete projections in Step 4 yields
actually a much more accurate approximation of w̃n than the piecewise linear
interpolate (see the above proof), if f and the boundary of U are piecewise
smooth and the control w is continuous piecewise smooth, with possibly a finite
number of discontinuity points of its derivative (folding points), which may be
either a priori known, or approximated with high accuracy (see the comments
to the Numerical Examples).

In the next theorem, we prove strong convergence in L2 and derive an a
posteriori error estimate in the case of the approximate gradient method applied
to the unconstrained problem, without DD constraints.

Theorem 4.2 We suppose that U = Rq, that f, fy, fu are sufficiently smooth
to guarantee the error estimates of Theorems 4 and 5, and that the linear direc-
tional derivative of G

DG(u, v − u) := (G′(u), v − u)2, G′(u) := fT
u z,

is Lipschitz continuous

‖G′(v) −G′(u)‖2 ≤ L‖v − u‖2, for every u, v ∈ L∞,

and strongly monotone (coercive)

(G′(v) −G′(u), v − u)2 ≥ β‖v − u‖2
2, for every u, v ∈ L∞.

If the sequence (wn) generated by the Algorithm is such that the wn and the DD
of order 1, ...,min(l, µ, µ′), µ ≤ m, µ′ ≤ m′ (see Theorems 3.3 and 3.4), of the
wn are uniformly bounded, then the sequences (wn) and (w̃n := wn+1) converge
strongly in L2 to the unique optimal control w, the sequences (en), (dn), defined
in Step 2 of the Algorithm, converge to zero, and we have the a posteriori error
estimate

‖wn − w‖2
2 ≤ (1/β2)(2γ|dn| +O(hµ̄

n)), with µ̄ = min(µ, µ′).
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Proof. Since here U = Rq and there are no DD constraints, Step 2 reduces to
a projection onto Rq for each i, k separately, hence we have the approximate
values

vk
ni = wk

ni − (1/γ)fu(tkni, y
k
ni, w

k
ni)

T zk
ni, k = 0, ..., l, i = 1, ..., N,

uk
ni := vk

ni − wk
ni = −(1/γ)fu(tkni, y

k
ni, w

k
ni)

T zk
ni, k = 0, ..., l, i = 1, ..., N.

On the other hand, we have the exact functions

ṽn(t) = wn(t) − (1/γ)fu(t, ỹn(t), wn(t))T z̃n(t),

ũn(t) := ṽn(t)−wn(t) = −(1/γ)fu(t, ỹn(t), wn(t))T z̃n(t)=−(1/γ)G′(wn),

where ỹn, z̃n are the exact state and adjoint corresponding to wn. Let vn (resp.
un := vn −wn) be the piecewise vector polynomial (of degree ≤ l) interpolating
the O(hµ

n) approximate values vk
ni (resp. uk

ni := vk
ni − wk

ni), k = 0, ..., l, at the
points tkni, k = 0, ..., l, on each Ini. We have

dn = DnG(wn, un) = −(1/γ)hn

N∑
i=1

l∑
k=0

Ck
l

∥∥uk
ni

∥∥2
= −(1/γ)

l∑
k=0

Ck
l

∥∥uk
n

∥∥2

2
.

The sequence (ũn) and the sequences of piecewise derivatives of order 1, ...,
min(l, µ, µ′) of ũn are bounded in L∞ by our assumptions. Taking then into
account the Runge-Kutta and numerical integration errors (Theorem 3.4, (ii)),
we have

d̃n := DG(wn, ũn) = (G′(wn), ũn)2 = −(1/γ)‖ũn‖2
2 = dn +O(hµ̄

n).

We shall first show that en →
n∈N

0. We have dn ≤ en ≤ 0. Suppose that there

exists β > 0 and a subsequence (en)n∈L such that en ≤ −β < 0 for every
n ∈ L. Using the Mean Value Theorem, taking into account the Runge-Kutta
and interpolation errors, and setting

wnα := wn + αun, enα := (1/θnα)(G′(wn + θnααun)−G′(wn), θnααun)2,

we have

G(wnα) −G(wn) = (G′(wn + θnααun), αun)2

= α(G′(wn), un)2 + enα = α(d̃n +O(hµ̄
n) +O(hl+1

n )) + enα

= α(dn +O(hµ̄
n) + O(hl+1

n )) + enα := α(dn + ηn) + enα,

for some θnα ∈ (0, 1) ( which holds also for α = 0, with θn0 = 1).

Since the sequence (un) is clearly bounded in L∞, hence in L2, and G′ is Lip-
schitz, we have

|enα| ≤ Lθnαα
2‖un‖2

2 ≤ Lα2‖un‖2
2 ≤ α2M,
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hence

G(wnα) −G(wn) ≤ α(dn + ηn + αM).

Let b′, b′′ be such that 0 < b < b′ < b′′ < 1. Since dn ≤ en ≤ −β < 0, we then
have, for α ∈ [0, δ], with δ = (1 − b′′)β/M , and n ≥ n1, n ∈ L

G(wnα) −G(wn) ≤ α(dn + ηn + αM) ≤ α(dn + ηn + δM)
≤ α(dn+ηn+(1−b′′)β) ≤ α(dn+ηn−(1−b′′)dn) = α(b′′dn+ηn) ≤ αb′dn,

hence, by Theorem 3.3

Gn(wnα)−Gn(wn)≤αb′dn+O(hµ̄
n)=α[b′dn+(1/α)O(hµ̄

n)]≤αbdn≤αben,

for α ∈ [cδ/2, δ], n ≥ n2, n ∈ L.

A contradiction follows, similarly to the proof of Theorem 4.1, (ii) and (iii), in
both cases, i.e. when K is finite or infinite. Therefore en →

n∈N
e = 0. We can

easily see here that en = dn/2, hence dn →
n∈N

d = 0.

Now, since G′ is strongly monotone, we have

β‖wn − wn′‖2
2 ≤ (G′(wn) −G′(wn′), wn − wn′)2

≤ ‖G′(wn) −G′(wn′ )‖2‖wn − wn′‖2,

hence

β2‖wn − wn′‖2
2 ≤ 2(‖G′(wn)‖2

2 + ‖G′(wn′)‖2
2) = 2γ(

∣∣∣d̃n

∣∣∣ +
∣∣∣d̃n′

∣∣∣)
= 2γ(|dn| + |dn′ |) +O(hµ̄

n) +O(hµ̄
n′) → 0, as n, n′ → ∞,

showing that (wn) is a Cauchy sequence, which therefore converges to some
w ∈ L2. Since (wn) is clearly bounded in L∞, we have also w ∈ L∞, i.e. w is
admissible. We then show as in the proof of Theorem 4.1 (ii) that w is extremal.
Since our assumptions imply that G is strictly convex, w is the unique optimal
control. Finally, keeping n fixed and passing to the limit in n′, we obtain the
requested posteriori error estimate.

For example, if f is affine w.r.t. (y, u) and the cost G is of the form

G(w) := g0(y(T )) +
∫ T

0

[g1(t, y(t)) + g2(t, w(t))]dt,

where g0y and g1y are Lipschitz and monotone w.r.t. y (the vector function φ(y)
is monotone if (φ(y1)−φ(y2), y1−y2)2 ≥ 0, for every y1, y2), and g2u is Lipschitz
and strongly monotone w.r.t. u, then it can be shown that G′ is Lipschitz and
strongly monotone.
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5. Numerical examples

Set I := [0, 1], and define the reference control w̄ = (w̄1, w̄2), where

w̄1(t) :=
{

0, t ∈ [0, σ)
et−σ−1
e1−σ−1 , t ∈ [σ, 1]

w̄2(t) :=
e1−t − 1
e− 1

, t ∈ I,

with σ ∈ [0, 1), and the reference state ȳ(t) := (e−t, e−t, 0), t ∈ I.

a) Consider the following optimal control problem, with state equations

y′1 = −y2 + w1 − w̄1,
y′2 = −y1 + w2 − w̄2,
y′3 = [(y1 − ȳ1)2 + (y2 − ȳ2)2 + (w1 − w̄1)2 + (w2 − w̄2)2]/2,
y1(0) = y2(0) = 1, y3(0) = 0,

control constraint set U := [0, 1]2, and cost to be minimized G(w) := y3(1).
Clearly, the optimal control here is w∗ = w̄, with optimal state y∗ = ȳ and cost
G(w∗) = G(w̄) = 0.

The Algorithm was applied to this example using the 4th order 4-point
Runge-Kutta scheme, with θ̄2 = 1/3, θ̄3 = 2/3, the 3/8-Newton-Cotes 4th order
4-point integration rule, and piecewise cubic controls (l = 3) with interpolation
points coinciding with the Runge-Kutta points

tkni = t̄kni = tn,i−1, tn,i−1 + hn/3, tn,i−1 + 2hn/3, tni.

We used the following successive step sizes

hn = 3−j/60, for Kj + 1 ≤ n ≤ K(j + 1), j = 0, 1, 2,

with refining factor M = l = 3, refining period K = 13, first order DD con-
straints constant L′ = 10, gradient projection parameter γ = 0.35, Armijo step
search parameters b = c = 0.5, s = 1, option skipped in Step 3, constant initial
control (0.5, 0.5), and a priori known folding point of w̄: σ = 0.5. The results
obtained at the last iteration of each period are shown in Table 1, where

εn := max
1≤i≤N

[ max
0≤k≤l

∣∣w̃k
ni − w∗(tkni)

∣∣]
with w̃n as defined in Step 3 of the Algorithm,
ηn := max

0≤i≤N
(|ỹni−y∗(tni)|), where ỹn corresponds to w̃n,

ζn := Gn(w̃n),

and en was defined in Step 2 of the Algorithm. The last control and state curves
obtained are practically identical to the exact ones and are therefore not shown.
It turned out that the first order DD constraints were inactive in this example,
and this is due to the fact that here the first derivative of the approximated
control w∗ = w̄ is bounded by ≈ 1.54 << L′ = 10. Note that this problem has
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actually inactive control constraints, though active in the gradient projection
procedure. The known folding point σ = 0.5 is equal here to some point tni

of the discretization for each n. The last control discrete max error found is
≈ O(h4), where h̄ := hn̄ = 1/540 is the last step size, i.e. at the last iteration
n̄. Note that here f (which contains w̄) and w∗ = w̄ are smooth on each of the
two intervals [0, 0.5], [0.5, 1].

Table 1.
n εn ηn ζn −en

13 0.309·10−3 0.139·10−3 0.385·10−7 0.239·10−6

26 0.603·10−7 0.184·10−7 0.386·10−11 0.389·10−14

39 0.674·10−11 0.185·10−11 0.473·10−13 0.294·10−22

b) The approximate gradient method, without control constraints (U = Rq),
without DD constraints, with K = 10, σ = 0 (no folding point of w̄), and
the rest of the parameters as in Example (a), was applied to the modified above
problem and yielded the results shown in Table 2, where the last control discrete
max error is also ≈ O(h̄4). Here f and w∗ are smooth.

Table 2.
n εn ηn ζn −en

10 0.519·10−4 0.512·10−4 0.208·10−8 0.548·10−7

20 0.107·10−7 0.107·10−7 0.386·10−11 0.240·10−14

30 0.227·10−11 0.229·10−11 0.473·10−13 0.105·10−21

c) With the inactive control constraint set [0, 1]2 replaced by the active one
[0.2, 1]2, K = 9, σ = 0 (no folding point of w̄), and the rest of the parameters
as in Example (a), we obtained the results shown in Table 3. The last control
discrete max error must probably be ≈ O(h̄2) (comparing to en̄). Figs. 1 and 2
show the two components of the approximate extremal control w̃n̄ ≈ w∗ at the
last iteration. Note that since the necessary conditions for optimality are also
sufficient here, the method actually approximates the optimal control w∗. Here
f is smooth and w∗ has three folding points, as one can see in Figs. 1 and 2.

Table 3.
n ζn −en

9 0.470258001785180·10−2 0.457·10−6

18 0.470246757760872·10−2 0.534·10−14

27 0.470246707328355·10−2 0.147·10−15
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Figure 1. Example (c), Approximate optimal control, 1st control component.

Figure 2. Example (c), Approximate optimal control, 2nd control component.

In the above applications of the Algorithm, only 0-2 search iterations in
Step 3 were sufficient to find the Armijo step, for each n. The above results
with progressive refining were found to be of similar accuracy to those obtained
with constant last step size h̄ := hn̄ = 1/540, but required here about half the
computing time.

We describe now a procedure for approximating with high accuracy the
possible folding points of the extremal control. Consider e.g. Example (c),
where f is smooth and the control w∗ is piecewise smooth with a finite number
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(3 here) of folding points τj ∈ I, j = 1, 2, 3, where w∗ reaches or leaves the
boundary ∂U of U . When applying the method as above, the first order DD
(resp. DD of order ≤ l = 3) of the wn are uniformly bounded near (resp. off) the
folding points, hence the schemes used are locally 2nd (resp. globally 4th) order
near (resp. off) these points. Hence the last states, adjoints, costs, and cost
derivatives, hence w∗, are thus approximated with an ≈O(h̄2) global discrete
max error. Using then, for each folding point τj , j = 1, 2, 3, two computed values
of the last control wn̄ in U at two consecutive discretization points tkni nearest
from the left (resp. right) its guessed value, if w∗ is reaching (resp. leaving)
∂U , we linearly extrapolate these values, i.e. we find the point τ ′j near these
two points where the linear interpolant w.r.t. these two points intersects ∂U ;
in most cases, i.e. if the trajectory t �→ wn(t) is not nearly tangent to ∂U , τ ′j is
thus an ≈ O(h̄2) approximation of τj . Then the τ ′j can be chosen as three points
t1ij of a new (uneven) initial discretization, and we can reapply the method.
The control w∗ is then computed with an ≈ O(h̄3) error, due to the ≈ O(h̄2)
perturbations of the exact points τj and the finite number of these points. We
can repeat the above procedure, using now three new appropriate points tk1ij

and
a local quadratic extrapolation, to compute ≈ O(h̄3) approximations τ ′′j of the
τj . Finally, a third application of the method yields an ≈ O(h̄4) approximation
of w∗, with the method behaving now essentially as if the folding points were
known, as in Example (a). This approximation procedure can be generalized
to problems with sufficiently smooth f , and constraint set U with piecewise
smooth boundary, defined by a finite number of equations.

A priori known non-smoothness points of f w.r.t. t should of course be
chosen to be equal to some of the points t1i of each first discretization used.

Now, given discrete control values computed with discrete max error ≈
O(h̄4), using the above schemes and piecewise cubic polynomials, and after
the above procedure, if necessary, the last cubic interpolant w̃n in Step 3 yields
then an ≈ O(h̄4) continuous max error. Any piecewise quadratic (resp. linear,
constant) interpolant of some of these values would clearly yield an ≈ O(h̄3)
(resp. ≈ O(h̄2), ≈ O(h̄)) continuous max error anyway.

Suppose that the data are sufficiently smooth (i.e. f is t−piecewise smooth
in (t, y, u), with known discontinuity points in t, and the boundary of U is piece-
wise smooth) and that the extremal control w∗ is continuous piecewise smooth
with possibly a finite number of folding points, which are either a priori exactly
predictable, or approximated as above with high accuracy. Then an important
factor in obtaining such essentially maximal order discrete errors at the interpo-
lation points is the use of maximal order approximate state and adjoint values
at all the intermediate Runge-Kutta and integration/interpolation points. On
the other hand, since here the method is progressively refining, where new inter-
mediate values of interpolating polynomials are used, say periodically, at each
new refining, the use of maximal degree polynomials contributes also to this
result.
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6. Final comments

A discrete, progressively refining, gradient projection method that uses approx-
imate adjoints and cost derivatives given by the general non-matching Runge-
Kutta and integration schemes, in conjunction with piecewise polynomial dis-
crete controls, which are not necessary continuous, has been applied to an opti-
mal control problem involving ordinary differential equations with control con-
straints. The use of approximate non-matching schemes avoids the heavy calcu-
lation of the matching discrete adjoint and cost derivative, and the progressive
refining reduces computing time and memory. This procedure seems to yield
very accurate approximations of the extremal control and of the correspond-
ing states, costs and cost derivatives, when this extremal control is continuous
and piecewise smooth with a priori known discontinuity points of the control
derivative (or even with unknown such points, after an additional approxima-
tion procedure), or piecewise smooth with a priori known discontinuity points.
In the unconstrained case, we prove strong convergence in L2 and derive an a
posteriori estimate. It seems difficult to obtain an error estimate for the con-
strained problem, but some results could probably be obtained in this direction
under additional smoothness assumptions. Progressively refining methods using
exact or approximate cost derivatives can be applied to a broad class of classi-
cal or relaxed optimal control problems involving ordinary or partial differential
equations, and also to state constrained problems, via penalty functionals (see
Chryssoverghi, Coletsos and Kokkinis, 1999, 2001).
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