
Control and Cybernetics

vol. 34 (2005) No. 2

A logarithmic barrier function method for solving
nonlinear multiobjective programming problems

by

M. Tlas and B. Abdul Ghani

Scientific Services Department, Atomic Energy Commission
P.O. Box 6091, Damascus, Syria

Abstract: An interior point method for solving nonlinear mul-
tiobjective programming problems, over a convex set contained in
the real space Rn, has been developed in this paper. In this method
a new strictly concave logarithmic barrier function has been sug-
gested in order to transform the orginal problem into a sequence of
unconstrained subproblems. These subproblems can be solved us-
ing Newton method for determining Newton’s directions along which
line searches are performed. It also has been proved that the number
of iterations required by the suggested algorithm to converge to an
ε-optimal solution is O(m |ln ε|), depending on predetermined error
tolerance ε and the number of constraints m.

Keywords: multiobjective programming, interior methods,
Newton method, barrier functions

1. Introduction

Karmarkar (1984) proposed an algorithm for solving linear programming prob-
lems in at most o(n3.5L) arithmetic operations. This proposal has led to a
new cycle in optimization research. His algorithm is based on transfering the
proposed problem to an equivalent one. Its objective function is a logarithmic
potential function, which was immediately recognized as a penalized objective
function. This method is found to be superior to the simplex method pro-
posed by George Dantzig because it is faster and capable of treating problems
of greater sizes.

G. de Ghellinck and J.Ph. Vial (1986) presented an algorithm for solving
linear programming problem in polynomial time based on the Newton method
and an other one in 1987 for solving a set of linear equations on the non-negative
orthant. By this algorithm, the problem can made equivalent to a maximization
of a simple concave function with a similar set of linear equations.

Renegar (1988), and Iri and Imai (1986) proposed algorithms for solving
linear programming problems in polynomial time. The algorithms were based

488 M. TLAS, B. ABDUL GHANI

on two main ideas: the analytical centre concept and the Newton’s method.
Recently, many approaches to convex programming using the analytical centre
idea and Newton’s method have been reported by Mehrotra and Sun (1990)
for convex quadratic programming and by Hertog, Roos, and Terlaky (1991,
1992) for linear programming and for a class of smooth convex programming
problems.

Following these proposals it is useful to generalize these ideas of interior
points technique to the domain of multiobjective programming. Therefore two
algorithms are proposed for solving multiobjective programming problems based
on the interior points and on the substitution rates concept.

An interior points method for solving general nonlinear multiobjective pro-
gramming problems is developed in this paper. The method is based on a line
search along the Newton’s direction with respect to a certain strictly concave
potential function (barrier function). It is proven that, after each line search,
the potential function value is reduced by at least a certain constant amount.
Using this result, it can be shown that the number of iterations required for the
algorithm to converge to a good (compromise) solution is bounded.

Two main cases for solving multiobjective programming problems (MOP)
were treated in this paper. The first case was based on certain and precise
knowledge of substitution rates (Steuer, 1986). In this case, the decision-maker
has to be capable of presenting his global preferences through a utility function
U(f1, . . . , fp) (where p is the number of objective functions). This function is
supposed to satisfy certain conditions (continuously differentiable, concave or
quasi-concave, and strictly increasing in f) on the space F (X) which is the
image of the feasible set X by the objective functions fi(x), (i = 1, . . . , p). The
substitution rates in this case are exactly the quotients of partial derivatives
of U(f1, . . . , fp) or can simply be evaluated by the comparison method of Dyer
(1973) and Steuer (1986). The second case is based on uncertain and imprecise
knowledge of substitution rates. In this case also the utility function is known
but practice has shown that the precise values of substitution rates are very
difficult to obtain (Dyer, 1973, and Wallenius, 1975). It is easier to estimate
them with intervals. Here, it is assumed that the decision-maker is capable of
evaluating lower and upper bounds for all substitution rates (including the case
when only their estimates are available) which allows for the construction of a
polar cone in the objectives space Rp. The cone will be sharp, polyhedral, and
included in the positive orthant of Rp .

2. The problem

The problem considered, in this work, is to maximize the objective functions
fi(x) (i = 1, . . . , p) under the inequality constraints gi(x) ≥ 0 (i = 1, . . . ,m)
where the functions fi(x) (i = 1, . . . , p) and gi(x) ≥ 0 (i = 1, . . . ,m) are
concave with continuous first and second-order derivatives. Suppose that the
interior of the feasible regionX = {x ∈ Rn\gi(x) ≥ 0 (i = 1, . . . ,m)} (denoted

Logarithmic barrier function for nonlinear multiobjective programming 489

IntX) is non-empty and bounded in the real space Rn. In mathematical form,
the considered problem becomes:

Maximize fi = fi(x) (i = 1, . . . , p) , MOP
subject to gi(x) ≥ 0 (i = 1, . . . ,m) .

The previously mentioned cases of substitution rates will be now fully discussed.

3. Certain and precise knowledge of substitution rates

In this case, the decision-maker would suggest his global preferences through
a utility function, U(f1, . . . , fp), which is continuously differentiable, concave
within F (X) and strictly increasing in f . The substitution rates will be given
by the following equalities, see Steuer, 1986:

wi =

∂U(f(x))
∂fi

∂U(f(x))
∂f1

(i = 1, . . . , p)

where f1 is considered as a reference criterion.

3.1. The concavity of the utility function on the decision space X

Let V (x) = U(f1(x), . . . , fp(x)), where functions fi(x) (i = 1, . . . , p) are contin-
uously differentiable and concave on X . If the function U(f1, . . . , fp is continu-
ously differentiable, concave and strictly increasing on F (X), then the function
V (x) is concave on X .

Consider the following relation:

Rp ⊇ F (X)

R

V

���
��

��
��

��
�

Rp ⊇ F (X) X ⊆ Rn�� F
X ⊆ Rn

R

U

����
��

��
��

��
�

where V = UoF and

∇xV (x) =
p∑

j=1

∂U(f(x))
∂fj

∇xfj(x) .

Since U is strictly increasing in f on F (X), then ∂U
∂fj

> 0 (j = 1, . . . , p). The
functions fi(x) (i = 1, . . . , p) are concave on X . Therefore:

∀ x, x∗ ∈ X ; fj(x∗) ≤ fj(x) + ∇T
x fj(x)(x∗ − x) (j = 1, . . . , p) ,

490 M. TLAS, B. ABDUL GHANI

then:
p∑

j=1

∂U

∂fj
(fj(x∗) − fj(x)) ≤

p∑
j=1

∂U

∂fj
∇T

x fj(x)(x∗ − x) .

Using the last inequality, it can be found that:

∇T
x V (x)(x∗ − x)=

(p∑
j=1

∂U

∂fj
∇T

x fj(x)
)

(x∗ − x) ≥
p∑

j=1

∂U

∂fj
(fj(x∗) − fj(x))

= ∇T
xU(f(x))(f(x∗) − f(x)).

As the function U is concave on F (X), then:

∇T
xV (x)(x∗ − x) ≥ ∇T

xU(f(x))(f(x∗) − f(x))
≥ U(f(x∗)) − U(f(x)) = V (x∗) − V (x)

so that V (x∗)−V (x) ≤ ∇T
xV (x)(x∗ −x), which signifies that the function V (x)

is concave on X .

3.2. A logarithmic barrier function and its derivatives

Associate the following multiplicative barrier function with the primal problem
(MOP):

ψk(x) =
[(p∑

i=1

wk
i ∇xfi(xk)

)T

(x− xk) + U(f(xk)) − zk

]s m∏
i=1

gi(x)

(k = 0, 1, . . .)

where xk ∈ Int X, zk ∈ R is an arbitrary lower bound so that U(f(xk)) > zk,
k is the number of iterations and s is an integer number greater or equal to m
(the number s plays the role of a weight). The function ψk(x) is defined on X ,
strictly concave (Renegar, 1988), Hertog et al., 1991,1992), and close to zero
when x goes to the boundary of X . It is difficult to find the first and second
derivatives of ψk(x), therefore, it is useful to use the first and second derivatives
of lnψk(x):

φk(x) = lnψk(x) =s ln
[(p∑

i=1

wk
i ∇xfi(xk)

)T

(x − xk) + U(f(xk)) − zk

]

+
m∑

i=1

ln gi(x) (k = 0, 1, . . .) .

This function is also defined only in the interior IntX of the feasible region
X , twice continuously differentiable, strictly concave and close to −∞ when x

Logarithmic barrier function for nonlinear multiobjective programming 491

goes to the boundary of X . Hence this logarithmic barrier function (potential
function) attains the optimal value in its domain (for fixed z) at a unique point
denoted x. The necessary and sufficient Karush-Kuhn-Tucker (KKT) conditions
for this optimum are:

gi(x) ≥ 0 (i = 1, . . . ,m)

∇U(f(x)) +
m∑

i=1

ui ∇gi(x) = 0, ui ≥ 0 (i = 1, . . . ,m) (1)

gi(x)ui = c× U(f(x)) − z

s
(c > 0)

where ui (i = 1, . . . ,m) denote the dual variables of the problem (MOP).
Differentiating the function φk(x) gives:

Gk(x) =∇φk(x) = s

p∑
i=1

wk
i ∇xfi(xk)

(
p∑

i=1

wk
i ∇xfi(xk)

)T

(x− xk) + U(f(xk)) − zk

+
m∑

i=1

1
gi(x)

∇gi(x) (k = 0, 1, . . .) .

The vector Gk(x) will simply be called the gradient of φk(x).
Further differentiation will yield:

Hk(x) =∇2φk(x) = − s

(
p∑

i=1

wk
i ∇xfi(xk)

)(
p∑

i=1

wk
i ∇xfi(xk)

)T

[(
p∑

i=1

wk
i ∇xfi(xk)

)T

(x − xk) + U(f(xk)) − zk

]2

+
m∑

i=1

(
1

gi(x)
∇2gi(x) − 1

(gi(x))2
∇gi(x)∇T gi(x)

)
(k = 0, 1, . . .) .

The matrix Hk(x) will simply be called the Hessian matrix of φk(x).

The following algorithm is designed to work in the relative interior of the fea-
sible set X and solving nonlinear multiobjective problems (MOP) with certain
and precise knowledge of substitution rates.

3.3. Algorithm 1

Step 0. Initialization Let k = 0, error tolerance ε > 0, starting point
x0 ∈ IntX , and lower bound z0 ∈ R so that U(f(x0)) > z0.

Step 1. Calculating the potential function, gradient and Hessian

wk
i (i = 1, . . . , p), φk(xk), Gk(xk) and Hk(xk) .

492 M. TLAS, B. ABDUL GHANI

Step 2. Determining the feasible direction Find the unique solution
of the following system of linear equations: Hk(xk)dk = −Gk(xk), where dk

denotes the solution of this linear system.

Step 3. Length of step Find the scalars:

λ∗ = argmax φk(xk + λdk) and
λ ≥ 0

λk = argmax U(f(xk + λdk))
0 ≤ λ ≤ λ∗ .

Step 4. Updating Define the new point xk+1 = xk + λkdk.

Step 5. Stopping criterion If
∥∥dk

∥∥ < ε then stop. The point xk+1 is
then considered as a compromise solution (efficient solution) in X of problem
(MOP) and consequently the point (f1(xk+1), . . . , fp(xk+1)) is considered as a
non dominated solution in F (X) of (MOP), else the new bound will be defined
as follows: zk+1 = zk + θ (U(f(xk+1) − zk) where θ is an arbitrary number
chosen from the interval (0,1), k = k + 1 and go to Step 1.

Note: In practice it would probably be wise to choose 0 < θ < 1 initially large
and then reduce it in later iterations if Newton’s method begins having trouble
in approximating centers, where the center is the point maximizing the function
φk(x).

3.4. The easily demonstrable properties

1. The direction dk, determined in Step 2 of the Algorithm 1, is a strict ascent
direction of φk(x) at xk ∈ Int X .
From Step 2 of the Algorithm 1, it can be seen that:

[Gk(xk)]T dk = −[dk]T [Hk(xk)]T dk .

From the strict concavity of φk(x), it follows that: [dk]T [Hk(xk)]T dk < 0 , so
[Gk(xk)]Tdk > 0.

2. The point xk+1 = xk + λkdk is feasible.
The proof can be completely derived from Step 3 of the Algorithm 1.

3.5. The reduction of the potential function value

It is known that:

φk(x) = ln
[(p∑

i=1

wk
i ∇xfi(xk)

)T

(x− xk) + U(f(xk)) − zk

]s

+
m∑

i=1

ln gi(x) (k = 0, 1, . . .) ,

Logarithmic barrier function for nonlinear multiobjective programming 493

φk+1(x) = ln
[(p∑

i=1

wk+1
i ∇xfi(xk+1)

)T

(x− xk+1) + U(f(xk+1)) − zk+1

]s

+
m∑

i=1

ln gi(x) (k = 0, 1, . . .)

and φk+1(x) − φk(x) =

= s ln

(
p∑

i=1

wk+1
i ∇xfi(xk+1)

)T

(x − xk+1) + U(f(xk+1)) − zk+1

(
p∑

i=1

wk
i ∇xfi(xk)

)T

(x − xk) + U(f(xk)) − zk

.

Now when x = xk+1, then: φk+1(xk+1) − φk(xk+1) =

= s ln
U(f(xk+1)) − zk+1(

p∑
i=1

wk
i ∇xfi(xk)

)T

(xk+1 − xk) + U(f(xk)) − zk

and φk+1(xk+1) − φk(xk+1) =

= s ln
(1 − θ)(U(f(xk+1)) − zk)(

p∑
i=1

wk
i ∇xfi(xk)

)T

(xk+1 − xk) + U(f(xk)) − zk

.

As the function U is concave, then:

φk+1(xk+1) − φk(xk+1) ≤ s ln(1 − θ) and 0 < θ < 1 .

3.6. The available solution after O(m |ln ε|) iterations can be con-
verted to an ε-optimal solution

Wolfe’s formulation of the dual problem associated with the primal problem
(MOP) is defined as follows:

Minimize U(f(x)) +
m∑

i=1

uigi(x)

subject to ∇U(f(x)) +
m∑

i=1

ui ∇gi(x) = 0 DMOP

ui ≥ 0 (i = 1, . . . ,m)

where the vectors x and u are the primal and dual variables, respectively.

494 M. TLAS, B. ABDUL GHANI

It is well-known that, if x is a feasible solution of the primal problem (MOP)
and (x∗, u) is a feasible solution of the dual problem (DMOP), then:

U(f(x)) ≤ U(f(x∗)) +
m∑

i=1

uigi(x∗) . (2)

Let z∗ denote the value of the utility function at the optimal solution of
problem (MOP) and let zk be the value of the utility function at the point xk,
then:

z∗ − zk+1

z∗ − zk
=
z∗ − zk − θ(U(f(xk+1)) − zk)

z∗ − zk

= 1 − θ
U(f(xk+1)) − zk

z∗ − zk
(0 < θ < 1) (3)

Using inequality (2), it can be seen that:

z∗ ≤ U(f(xk+1))+
m∑

i=1

uigi(xk+1) ⇒ z∗−zk ≤ U(f(xk+1))−zk+
m∑

i=1

uigi(xk+1)

Using (1), it follows that:

z∗ − zk ≤ U(f(xk+1)) − zk +m
U(f(xk+1)) − zk

s
⇒

z∗ − zk ≤
(
1 +

m

s

)
(U(f(xk+1)) − zk) .

Substitution of the last inequality into (3) gives:

z∗ − zk+1

z∗ − zk
≤ 1 − θ

(
1 + m

s

)−1 = 1 − θ s
m+s ⇒

z∗ − zk+1 ≤
(
1 − θ s

m+s

)
(z∗ − zk)

z∗ − zk ≤
(
1 − θ s

m+s

)
(z∗ − zk−1)

z∗ − zk−1 ≤
(
1 − θ s

m+s

)
(z∗ − zk−2)

...

z∗ − z1 ≤
(
1 − θ s

m+s

)
(z∗ − z0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒z∗−zk+1 ≤
(
1−θ s

m+s

)k+1

(z∗ − z0) .

As z∗−U(f(xk+1)) ≤ z∗−zk+1, so: z∗−U(f(xk+1)) ≤ (1−θ s
m+s)k+1(z∗−z0) .

Since ln(1 − v) < −v for v < 1, then

ln(z∗ − U(f(xk+1)) ≤ (k + 1) ln(1 − θ s
m+s) + ln(z∗ − z0) ⇒

ln(z∗ − U(f(xk+1)) ≤ (k + 1)(−θ s
m+s) + ln(z∗ − z0) .

Logarithmic barrier function for nonlinear multiobjective programming 495

The aim is to find the number of iterations K so that: ln(z∗−U(f(xk+1)) < ln ε
then:

−θ(k + 1) <
m+ s

s
ln

ε

z∗ − z0
⇒ θ(k + 1) > −m+ s

s
ln

ε

z∗ − z0
⇒

k + 1 > −m+ s

θ s
ln

ε

z∗ − z0
⇒ k > −1 − m+ s

θ s
ln

ε

z∗ − z0
.

From this inequality, it can be seen that the number of iterations K for an
ε-optimal solution is at most: K =

⌊
−1 − m+s

θ s ln ε
z∗−z0

⌋
+ 1 1. It is clear from

this equality that the number of iterations K reduces when s goes to infinity
and θ goes to one. Taking z∗ − z0 < 1

ε the number of iterations K described as
follows: K = O(m |ln ε|).

3.7. Convergence of Algorithm 1

From Algorithm 1 it is found that
∥∥dk

∥∥ = 0, which implies

Gk(xk) = 0 ⇒
s

U(f(xk)) − zk

p∑
i=1

wk
i ∇xfi(xk) +

m∑
i=1

1
gi(xk)

∇gi(xk) = 0 ,

1
∂U(f(xk))

∂f1

× s

U(f(xk)) − zk

p∑
i=1

∂U(f(xk))
∂fi

∇xfi(xk)

+
m∑

i=1

1
gi(xk)

∇gi(xk) = 0 ,

1
∂U(f(xk))

∂f1

× s

U(f(xk)) − zk
∇U(f(xk)) +

m∑
i=1

1
gi(xk)

∇gi(xk) = 0 ,

∇U(f(xk)) +
∂U(f(xk))

∂f1
× U(f(xk)) − zk

s

m∑
i=1

1
gi(xk)

∇gi(xk) = 0 .

Taking

c =
∂U(f(xk))

∂f1
> 0 and ui = c× U(f(xk)) − zk

s
× 1
gi(xk)

(i = 1, . . . ,m)

we find:

∇U(f(xk)) +
m∑

i=1

ui ∇gi(xk) = 0, gi(xk) > 0 (i = 1, . . . ,m) ,

gi(xk)ui = c× U(f(xk)) − zk

s
(i = 1, . . . ,m),

1�u� denotes the integer part of the real number.

496 M. TLAS, B. ABDUL GHANI

which means that the accumulation point xk satisfies the KKT conditions.
As the proposed algorithm creates a sequence of interior points

{
xk

}
k=0,1,...

contained in IntX and converges to a solution satisfying the KKT conditions,
under the assumptions used in the paper, then by the general theory of con-
vergence (Minoux, 1983) we conclude that the accumulation point xk which is
found by the algorithm is an optimal solution of the problem (MOP) in X and
consequentely the point (f1(xk), . . . , fp(xk)) is a non-dominated point of the
problem in F (X).

3.8. Some notes on Algorithm 1

1. The convergence of Algorithm 1, to a good (compromise) solution, is assured
under some hypotheses on the proposed utility function (strictly increasing,
concave, and continuously differentiable).
2. The substitution rates provided by the decision-maker are exactly the quo-
tients of partial derivatives of the utility function.
3. The substitution rates are utilized for determining the feasible direction.
4. The determination of the feasible direction will be calculated by the deter-
mination of the solution of a system of linear equations at every iteration.
5. The calculations are very simple to carry out.
6. The convergence to a satisfying (compromise) solution is relatively fast.

4. Uncertain and imprecise knowledge of substitution rates

In this case, the utility function is also known as in the first case but, as practice
has shown, the values of substitution rates wi (i = 1, . . . , p) are very difficult to
obtain (Dyer, 1973, and Wallenius, 1975). Then it is very easy and preferable for
the decision-maker to evaluate lower and upper bounds for all substitution rates
wi (i = 2, . . . , p) and w1 = 1 (this, by the way, is well-suited to the situations
when the the substitution rates are not known with high accuracy).

Taking into consideration the function f1 as a reference criterion, all the
above mentioned proposals allow the construction of a polar cone in the space
of objective functions Rp.

Let mi and Mi (i = 2, . . . , p) be the lower and upper bounds proposed by
the decision-maker, respectively, so that: 0 < mi ≤ wi ≤ Mi (i = 2, . . . , p) and
w1 = 1. Define the following polar cone:

Λ = {z ∈ Rp\z =
2(p−1)∑

j=1

λjq
j , λj ≥ 0 (j = 1, . . . , 2(p− 1))}

in the space Rp generated by the Cartesian products of intervals [mj ,Mj] (j =
2, . . . , p) where qj (j = 2, . . . , p) are the generators of this cone. The generators
of Λ are just the rows of the following matrix:

Logarithmic barrier function for nonlinear multiobjective programming 497

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 m2 0 0 · · · 0 0
1 M2 0 0 · · · 0 0
1 0 m3 0 · · · 0 0
1 0 M3 0 · · · 0 0
. .
1 0 0 0 · · · 0 mp

1 0 0 0 · · · 0 Mp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R2(p−1)×p .

The following algorithm is designed to work in the relative interior of the feasible
set X and to solve the nonlinear multiobjective problems (MOP) with uncertain
and imprecise knowledge of substitution rates.

4.1. Algorithm 2

Step 0. Initialization Let k =0, error tolerance ε > 0, starting point
x0 ∈ IntX , and lower bound z0 ∈ R so that U(f(x0)) > z0.
Step 1. Calculating the potential function, gradient, Hessian and
polar cone Let the decision-maker evaluate the lower and upper bounds
mk

j and Mk
j (j = 2, . . . , p) for all substitution rates wk

j (j = 2, . . . , p), where
0 < mk

j ≤ wk
j ≤Mk

j (j = 2, . . . , p) and wk
1 = 1. Construct the matrix:

Ak =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 mk
2 0 0 · · · 0 0

1 Mk
2 0 0 · · · 0 0

1 0 mk
3 0 · · · 0 0

1 0 Mk
3 0 · · · 0 0

. .
1 0 0 0 · · · 0 mk

p

1 0 0 0 · · · 0 Mk
p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R2(p−1)×p .

Let qk(i) be the i-th row of the matrix Ak (i = 1, . . . , 2(p− 1)),

φk
i (x) = s ln

[(p∑
j=1

qk
j (i)∇xfj(xk)

)T

(x− xk) + U(f(xk)) − zk

]

+
m∑

j=1

ln gj(x) (i = 1, . . . , 2(p− 1)) ,

Gk
i (x) = s

p∑
j=1

qk
j (i)∇xfj(xk)

(
p∑

j=1

qk
j (i)∇xfj(xk)

)T

(x − xk) + U(f(xk)) − zk

+
m∑

j=1

1
gj(x)

∇gj(x) (i = 1, . . . , 2(p− 1)) ,

498 M. TLAS, B. ABDUL GHANI

Hk
i (x) = − s

×
(

p∑
j=1

qk
j (i)∇xfj(xk)

)(
p∑

i=1

qk
j (i)∇xfj(xk)

)T

[(
p∑

j=1

qk
j (i)∇xfj(xk)

)T

(x − xk) + U(f(xk)) − zk

]2

+
m∑

j=1

(
1

gj(x)
∇2gj(x) − 1

(gj(x))2
∇gj(x)∇T gj(x)

)
(i = 1, . . . , 2(p− 1)) .

Step 2. Determining the feasible direction Find the unique solutions
of the following systems of linear equations:

Hk
i (xk) d = −Gk

i (xk) (i = 1, . . . , 2(p− 1)) .

Let dk(i) denote the solution of the system number i.
Step 3. Length of step Find the scalars:

λ∗(i) = arg max φk
i (xk + λdk(i)) and

λ ≥ 0

λk(i) = argmax U(f(xk + λdk(i)))
0 ≤ λ ≤ λ∗(i) (i = 1, . . . , 2(p− 1)) .

Step 4. Updating Define the new points v(i) = xk + λk(i)dk(i) (i =
1, . . . , 2(p − 1)). Choose u∗ ∈ {1, 2, . . . , 2(p − 1)} such that U(f(v(u∗))) ≥
U(f(v(i))) (i = 1, . . . , 2(p− 1)). Put xk+1 = v(u∗).
Step 5. Stopping criterion If

∥∥dk(u∗)
∥∥ < ε then stop. The point xk+1

is then considered as a satisfying or compromise solution (efficient solution) in
X of problem (MOP) and consequently the point (f1(xk+1), . . . , fp(xk+1)) is
considered as a nondominated solution in F (X) of (MOP), else define the new
bound as follows: zk+1 = zk + θ (U(f(xk+1) − zk), where 0 < θ < 1, k = k + 1
and go to Step 1.

4.2. Some notes on Algorithm 2

1. This method does not need precise knowledge of substitution rates. It is
enough to know lower and upper bounds for all substitution rates.
2. The convergence, to a satisfiying (compromise) solution, is assured.
3. The calculation of steps is very simple.
4. The improvement direction is determined by the lower and upper bounds of
substitution rates and by solving systems of linear equations.

5. Numerical results

A multiobjective example has been solved. The example was chosen to satisfy
the assumptions used in the paper with the objective functions f1(x), f2(x) and

Logarithmic barrier function for nonlinear multiobjective programming 499

the constraint functions gi(x) (i = 1, . . . , 4) concave with continous first and
second order-derivatives. The utility function U(f1, f2) is continously differen-
tiable, concave withn F (X) and strictly increasing in f .

Maximize U(f1(x), f2(x))
g1(x) = x1 + x2 − 8 ≥ 0
g2(x) = −x1 − x2 + 20 ≥ 0
g3(x) = x1 − 2 ≥ 0
g4(x) = x2 − 3 ≥ 0
f1(x) = −(x1 − 1)
f2(x) = −(x2 − 2)

U(f1, f2) = −f2
1 − f2

2

The example will now be solved using the Algorithm 1 (i.e., certain knowl-
edge of substitution rates) with starting point x0 = (9, 7)T , s = 16 and z0 =
−100.

Table 1. Results from Algorithm 1 for the example

k zk xk dk λk xk+1 U(xk+1) θ

0 -100 9 -8.107589 0.703216 3.298614 -52.886202

7 2.701107 8.899462

1 -57.597582 3.298614 1.34596 1.84484 5.781695 -33.653382 0.9

8.899462 -1.95943 5.284627

2 -36.047802 5.781695 -2.9517 0.961414 2.943889 -24.102995 0.9

5.284627 1.27273 6.508247

3 -25.297476 2.943889 1.07758 1.07774 4.105240 -21.673278 0.9

6.508247 -0.964711 5.468539

4 -22.035698 4.105240 0.376034 1.93319 4.832185

5.468539 -0.653433 4.205329 -19.549118 0.9

5 -19.797776 4.832185 -0.933974 0.405839 4.453142 -19.168970 0.9

4.205329 1.19822 4.691613

6 -19.483373 4.453142 -1.0374 0.538876 3.894112 -18.600447 0.5

4.691613 0.938943 5.197587

7 -19.04191 3.894112 0.336447 2.09001 4.597290 -16.044759 0.5

5.197587 -0.686932 3.761892

8 -17.543335 4.597290 -1.70956 0.601132 3.569619 -14.052577 0.5

3.761892 1.60948 4.729402

9 -15.797956 3.569619 0.543029 8 0.922009 4.070297 -13.176950 0.5

4.729402 -0.859918 3.936550

10 -14.487453 4.070297 -1.92906 0.291137 3.508676 -12.543945

3.936550 1.93568 4.500098

500 M. TLAS, B. ABDUL GHANI

The solution obtained using Algorithm 1 is x∗ = (3.508676, 4.500098)T (for
s = 16, the values of objective functions at this point are f1(x∗) = −2.508676
and f2(x∗) = −2.500098) and the value of the utility function at this point
is U(x∗) = −12.543945. The optimal solution computed by the method of
Geoffrion, Dyer and Feinberg (see Steuer, 1986) is x∗ = (3.5, 4.5)T and the
value of the utility function at this point is −12.5.

The same example will now be solved using the Algorithm 2 (i.e., uncertain
knowledge of substitution rates) with starting point x0 = (9, 7)T , s = 16, z0 =
−100 and w0 = (1, 0.625)T .

Illustration of functioning of Algorithm 2:

q0(1) = (1, 0.5)T q0(2) = (1, 1)T

d0(1) = (−8.43893, 3.54073)T d0(2) = (−6.001954,−0.245536)T

λ0(1) = 0.594703 λ0(2) = 0.908809
v(1) = (3.981343, 9.105683)T v(2) = (3.545370, 6.776855)T

U(v(1)) = −59.379137 U(v(2)) = −29.297252

x1 = (3.545370, 6.776855)T

U(x1) = −29.297252

w1 = (1, 1.876684)T , θ = 0.9, z1 = −36.367527

q1(1) = (1, 1)T q1(2) = (1, 2)T

d1(1) = (0.379907, −3.18451)T d1(2) = (1.73729, −3.48318)T

λ1(1) = 0.577112 λ1(2) = 0.806338

v(1) = (3.764619, 4.939036)T v(2) = (4.946213, 3.968235)T

U(v(1)) = −16.281051 U(v(2)) = −19.446546

x2 = (3.764619, 4.939036)T

U(x2) = −16.281051

w2 = (1, 1.063089)T , θ = 0.9, z2 = −18.289699

q2(1) = (1, 0.5)T q2(2) = (1, 1.5)T

d2(1) = (−2.43983, 2.32887)T d2(2) = (1.73705,−2.13573)T

λ2(1) = 0 λ2(2) = 0.194586

This means d2(1)is not feasible v(2) = (4.102625, 4.523453)T

direction U(v(2)) = −15.994097

x3 = (4.102625, 4.523453)T

U(x3) = −15.994097

Logarithmic barrier function for nonlinear multiobjective programming 501

w3 = (1, 0.813328)T , θ = 0.9, z3 = −16.223657

q3(1) = (1, 0.5)T q3(2) = (1, 1)T

d3(1) = (−0.863161, 1.27463)T d3(2) = (−0.419999, 0.199151)T

λ3(1) = 0 λ3(2) = 2.59149
v(2) = (3.014202, 5.039551)T

U(v(2)) = −13.29588

x4 = (3.014202, 5.039551)T

U(x4) = −13.29588

w4 = (1, 1.50906)T , θ = 0.9, z4 = −13.588658

q4(1) = (1, 1)T q4(2) = (1, 2)T

d4(1) = (0.395569, −0.462255)T d4(2) = (0.403449, −0.348167)T

λ4(1) = 0 λ4(2) = 0.864968
v(2) = (3.363172, 4.738398)T

U(v(2)) = −13.083406

x5 = (3.363172, 4.738398)T

U(x5) = −13.083406

w5 = (1, 1.158781)T , θ = 0.9, z5 = −13.133931

q5(1) = (1, 1)T q5(2) = (1, 1.5)T

d5(1) = (0.163878, −0.211998)T d1(2) = (0.408839, −0.306208)T

λ5(1) = 1.92294 λ5(2) = 0
v(1) = (3.678210, 4.330739)T

U(v(1)) = −12.605153

x6 = (3.678210, 4.330739)T

U(x6) = −12.605153

w6 = (1, 0.87026)T , θ = 0.9, z6 = −12.658031

q6(1) = (1, 0.5)T q6(2) = (1, 1)T

d6(1) = (−0.114788, 0.123788)T d6(2) = (−0.175578, 0.165129)T

λ6(1) = 0.663474 λ6(2) = 0.509191
v(1) = (3.602051, 4.412869)T v(2) = (3.588807, 4.414821)T

U(v(1)) = −12.592606 U(v(2)) = −12.533282

x7 = (3.588807, 4.414821)T

U(x7) = −12.533282

502 M. TLAS, B. ABDUL GHANI

w7 = (1, 0.932793)T , θ = 0.9, z7 = −12.545757

q7(1) = (1, 0.5)T q7(2) = (1, 1)T

d7(1) = (−0.028588, 0.032225)T d7(2) = (−0.089551, 0.083922)T

λ7(1) = 0 λ 7(2) = 0.47625
v(2) = (3.546158, 4.454789)T

U(v(2)) = −12.50891

x8 = (3.546158, 4.454789)T

U(x8) = −12.50891

w8 = (1, 0.964115)T , θ = 0.9, z8 = −12.512595

q8(1) = (1, 0.5)T q8(2) = (1, 1)T

d8(1) = (−0.008318, 0.009266)T d8(2) = (−0.046360, 0.044927)T

λ8(1) = 0 λ8(2) = 0.470701
v(2) = (3.524336, 4.475936)T

U(v(2)) = −12.502531

x9 = (3.524336, 4.475936)T

U(x9) = −12.502531

w9 = (1, 0.9808267)T , θ = 0.9, z9 = −12.503537

q9(1) = (1, 0.5)T q9(2) = (1, 1)T

d9(1) = (−0.002283, 0.002555)T d9(2) = (−0.024403, 0.023986)T

λ9(1) = 0 λ9(2) = 0.472045
v(2) = (3.512817, 4.487258)T

U(v(2)) = −12.500702

x10 = (3.512817, 4.487258)T

U(x10) = −12.500702

w10 = (1, 0.989829)T , θ = 0.9, z10 = −12.500986

q10(1) = (1, 0.5)T q10(2) = (1, 1)T

d10(1) = (−0.000644, 0.000719)T d10(2) = (−0.012836, 0.012722)T

λ10(1) = 0 λ10(2) = 0.472464

v(2) = (3.506752, 4.493269)T

U(v(2)) = −12.500196

x11 = (3.506752, 4.493269)T U(x11) = −12.500196

The solution obtained using Algorithm 2 is x∗ = (3.506752, 4.493269)T (for
s = 16, the values of objective functions at this point are f1(x∗) = −2.506752
and f2(x∗) = −2.493269) and the value of the utility function at this point is
U(x∗) = −12.500196.

Logarithmic barrier function for nonlinear multiobjective programming 503

6. Conclusion

An interior point algorithm for nonlinear multiobjective programming was suc-
cessfully developed using a logarithmic barrier function method. Each iteration,
in the suggested algorithm, consists of a Newton step followed by a reduction
in the value of the logarithmic barrier function. The algorithm requires a small
(almost constant) number of iterations to solve the multiobjective program-
ming problems. Further investigations are needed to compare the efficiency of
the proposed algorithm with other methods in the domain of multiobjective
programming.

Acknowledgment

Authors would like to express their thanks to the Director General of AECS
Prof. I. Othman for his continuous encouragement, guidance and support. They
also thank Dr A. Al-Mohamad for his revision. Special thanks go to the review-
ers for their constructive suggestions aimed at improving the quality of this
paper.

References

De Ghellinck, G. and Vial, J. Ph. (1986) A polynomial Newton method
for linear programming. Algorithmica 1, 425–453.

De Ghellinck, G. and Vial, J. Ph. (1987) An extention of Karmarkar’s
algorithm for solving a system of linear homogenous equations on the
simplex. Mathematical Programming 39, 79–92.

Dyer, J. (1973) A time-sharing computer program for the solution of the
multiple criteria problem. Management Science 19 (12), 1379-1383.

Hertog, D., Roos, C. and Terlaky, T. (1992) A large-step analytic cen-
ter method for a class of smooth convex programming problems. SIAM
J. Optimization 2 (1), 55-70.

Hertog, D., Roos, C. and Terlaky, T. (1991) A potential-reduction vari-
ant of Renegar’s short- following method for linear programming. Linear
Algebra and its Applications 152, 43-68.

Iri, M. and Imai, H. (1986) A multiplicative barrier function method for lin-
ear programming. Algorithmica 1, 455-482.

Karmarkar, N. (1984) A new polynomial time algorithm for linear program-
ming. Combinatorica 4, 373-395.

Mehrotra, S. and Sun, J. (1990) An algorithm for convex quadratic pro-
gramming that requires O(n3.5L) arithmetic operations. Mathematics of
Operations Research 15 (2), 342-363.

Minoux, M. (1983) Programmation mathématique. Théorie et algorithmes.
Dunod, Paris.

Renegar, J. (1988) A polynomial-time algorithm based on Newton’s method
for linear Programming. Mathematical Programming 40, 59-93.

504 M. TLAS, B. ABDUL GHANI

Steuer, R. (1986) Multiple Criteria Optimization: Theory, Computation, and
Application. Wiley series in probability and mathematical statistics ap-
plied, John Wiley & Sons.

Wallenius, J. (1975) Comparative evaluation of some interactive approaches
to multicriterion optimization. Management Science 21 (12), 1387-1396.

