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Abstract: The target of this research in the queueing theory is
to prove the law of the iterated logarithm (LIL) under the conditions
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1. Introduction - an historical perspective

The paper deals with the LIL on extreme values for the total waiting time of a
customer and the waiting time of a customer in the phases of a multiphase queue-
ing system (MQS). The MQS is a queueing system when a customer does not
visit the same queueing node twice (see, for example, Karpelevich and Kreinin,
1994). The multiphase queueing system is a special case of the open Jackson
network.

Limit theorems (diffusion approximations) and the LIL for the queueing
system under the conditions of heavy traffic are closely connected (they belong
to the same field of research, i.e. investigations on the theory of queueing
systems in heavy traffic). Therefore, first we shall try to trace the development
of research on the general theory of a queueing system in heavy traffic.

One of the main trends of research in the queueing theory is related with the
asymptotic analysis of explicit formulas or equations that describe the distrib-
ution of one or more characteristics of a queueing system. To make an analysis
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of this kind we certainly assume the existence itself of such explicit formulas
or equations, and, in addition, an unrestricted approximation of a queueing
system to some limit. It was namely in this field that in 1962 J. Kingman
obtained the first results on the behaviour of single-server queueing systems
in heavy traffic (see Kingman, 1962a, b). The single-server queue case, where
intervals between the arrival time of customers to the system are independent
nonnegative identically distributed random variables and there is only one server
that works independently of external flow under the conditions of heavy traffic,
has been studied in detail in (Kendall, 1961; Prohorov, 1963; etc.). Later on,
there appeared many works designated to the various aspects of diffusion ap-
proximations of the models of queueing theory (see the survey paper of Whitt,
1974, and books of Borovkov, 1972 and 1980; Karpelevich and Kreinin, 1994).
The authors of respective works (Harrison, 1985; Harrison and Nguyen, 1993;
Kobyashi, 1974; Reiman, 1984; etc.) laid the basis for investigations on the
diffusion approximation of queueing networks.

Due to technical difficulties, intermediate models — multiphase queues — are
considered infrequently. Let us consider the works on the diffusion approxima-
tion of multiphase queues in greater detail. In Harrison (1978), it has been
proved that a stationary distribution of waiting time in a two-phase queueing
system is approximated by a limit distribution of a two-dimensional diffusion
process with reflection. In Grigelionis and Mikulevicius (1987), it has been
proved that the limit processes for the waiting time of a customer in a heavy
traffic queueing system can also have discontinuous trojectories. The book of
Karpelevich and Kreinin (1994) deals mainly with a multiphase queueing sys-
tem with identical service in the phases of the system and also states the general
theory of diffusion processes with reflection. In Minkevicius (1986, 1997), func-
tional limit theorems in a multiphase queueing system for important probability
characteristics (waiting time of a customer and queue length of customers) have
been proved.

The works on extreme values of queueing systems in heavy traffic are also
sparse. In one of the papers of this kind by Iglehart (1972), limit theorems for
extreme values of the queue length of customers in a single-server queue are
proved. Kuo-Hwa Chang (1977) proved that the distribution of the maximum
queue length in a random time interval for queueing systems in heavy traffic
converges to a novel extreme value distribution. The papers on the LIL of
queueing systems in heavy traffic are also not so numerous. In Iglehart (1971),
the LIL for multiple channel queues is studied. In Minkevic¢ius (1995, 1997),
the LIL for the queue length of customers and the virtual waiting time of a
customer in multiphase queues are proved. Sakalauskas and Minkevi¢ius (2000)
also present the proof of a theorem on the LIL for the virtual waiting time of
an open Jackson network in heavy traffic.

Note that various variants on the LIL in different domains of applications
can be found in the survey by Bingham (1986).
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2. Notations

Let D be a space of real-valued right-continuous functions in [0, 1] having left
limits and endowed with the Skorokhod topology induced by the metric d (under
which D is complete and separable).

In this paper, theorems on the LIL for extreme values of phases for the total
waiting time of a customer and the waiting time of a customer in multiphase
queues in heavy traffic are proved. The main tool for the analysis of multiphase
queues in heavy traffic is a LIL for partial sums of independent identically
distributed random variables (the proof can be found in Strassen, 1964).

We investigate here a k-phase queue (i.e., when a customer is served at the
j-th phase of the queue, he goes to the j + 1-st phase of the queue and after the
customer has been served in the k-th phase of the queue, he leaves the queue).
Let us denote by t,, the time of arrival of the n-th customer; by S§LJ ) _ the service
time of the n-th customer in the j-th phase; z, = tn41 — tn; by Tjn4; - the
departure of the n-th customer from the j-th phase of the queue, j = 1,2, ..., k.

Let interarrival times (z,) at the multiphase queue and service times (Sr(l] ))

at each phase of the queue for j = 1,2, ..., k be mutually independent identically
distributed random variables.

Next, denote by W,(Lj ) the waiting time of the n-th customer at the j-th

phase of the queue,Y,gj ) = §=1 W,(f) stands for the total waiting time of the
n-th customer up to the j-th phase of the queue, j =1,2,...,k.

Suppose that the waiting time of a customer at each phase of the multi-
phase queue is unbounded, the service principle of customers is ”first come, first
served”. All random variables are defined on the common probability space
(Q,FP).

We form such modified MQS in which Wy(ﬂ) =0, j=12,....k n<k.
Limit distributions for modified MQS and usual MQS which work in heavy
traffic conditions are the same (see, for example, Iglehart, 1973). Later on we
can investigate only modified MQS and admit that n > k.

Denote by MX and DX the mean and variance of the random variable X,

n—1
Sjn =59 = zny Sjm =3 65 Som=0, Sjn=>5-1n— S,
=1

Tjm = Tjm —tny Ton =0, Zjnt1 = Tjn —0jnt1, Ton =0,

a; =M1, ap=0, j=1,2,...k,

Dz, =02 >0, DSV =¢? >0, DSk =¢2 |,

DSW =2, 62 =02+ 02, 6} =02+ 021, a(n)=V2nnlnn,
[x] - is the integer part of the number . Let S;jo=0,7=1,2,... k.

We assume here that the following conditions are fulfilled:
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there exists a constant v > 0 such that
M|§;,|*T7 < j=1,2 k (1)
Sup 7, OO? j Y A
n>1

and
ap > Qg1 > - > o > a1 > 0. (2)

3. The results

One of the main results of the work is a theorem on the LIL for the global
maxima of the total waiting time of a customer.

THEOREM 3.1 If conditions (1) and (2) are fulfilled, then

o g T —ow
-— 1<y 0 n
P| m =="== =1|=1
n— 00 Ok * a(n)

and

max max Yl(]) —QaE-n
1<j<k 0<I<n

P | lim

=—-1|=1
n—o0o 5]@ ! a(n)

Proof. Denote random functions in D as follows

max max Yl(j) — ay, - [nt]
1< <k 0<I<[nt]

Y™(t) =
®) 0% - a(n) 7
max max &j;— oy - [nt]
Sn 1<j<k 0<i<[nt]
X (t) - ~ Y
0% - a(n)

max max S;; — g - [nt]
G (p) — 1S9k OSI<[nt]

or - a(n)

max Sk — oy - [nt]
Gn () — 0<1<[nt]

o1 - a(n)

Sk.int] — Q- [0t
Sg(t)zw, teo,1].

or - a(n)

First we prove that, if conditions (1) are fulfilled, then for each fixed & > 0,

P ( m d(Y",X") > 5) = 0. (3)

n—oo
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In Minkevicius (1986), p. 718, it is proved that, for j = 1,2,...,k and n > k,
Tjm = max (Zj-11 = 1) + Sjn, Fon =0,

Tjn = Max(Tj—1,n—1+ 0jn; Tjn—1+ djn); Ton =0. (4)

Note that Wr(zjf)(jfl) =max(7j, — Tj—1,,;0), 7=1,2,...,kand n> k.
Therefore, (see (4))

W = max(7jnt-1) = Tt 0)
= max(Zj pnt(j-1) = Tj—1n+(-1); 0)
=Tjntj ~ Lj—1n+(—1) ~ Ojnt(i—1)
=Tjny(i-1) T 0jmt(i-1) ~ Lji-1,n—(j-2) ~ Oj—1,n+(j-2) ~ Ojn+(i—1)
=Tjnt(j-1) = Lj—1n—(i-2) = Oj-1,n+(i-2)
={&jn — i1} H{Ejnrg-1) — Tin} —{&j-1n1(G-2) — Tj-1n}

— V5—-1,n+(j—-2)» ] = 172a . '7k' (5)

Also, denote

i =Tip — Ti 1 0, = max max |0,
Yin j.n j—1,ny On 1§j§k0§l§2n|J’ B

Vi ={Zjn+G-1) — Tin} = {&j-1,n4G-2) = Tj—1n} = Gj—1m+(-2)

J
Vi :g ; Cip = max |¥ig =1,2,...,k
’7],71 A 171,71; 7,n 1§l§n|’y]’|’ J 3 4y ) vy
i—

Cp = max max |,/
n 1§j§k0§l§n|%’|

Note that (4) implies:

Tjn — Tjo1n = O@&Xn(-%j—l,l —851) = (@510 — Sjn) 20, j=1,2,... k.

SO, Yjn 2 0, ] = 1,2,...,k.
Then

Wr(zj) =Yin +Vins Yjin >20,5=12,.. k. (6)

By summing up equality (6), we obtain v = Zjn + Viny Tjn > 0, j =
1,2,...,k. Therefore,

() . « . - A
max Y;”’ < max Z,;; + max |[¥;;| = max T;; +c¢;, < max T;;+ ¢
0<i<n = o0<i<n oglgnm’ll 0<isn BTSN = G2pg, AT e
i=1,2,... .k
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So

max max Y,Ej) < max (max &;; + é,) = max max &+ Cy.
1<j<k 0<i<n 1<j<k 0<Ii<n 1<j<k 0<i<n

We also have that for j =1,2,...,k

max Yl(]) > max (Z;; + min 9;;) = max £;; + min
0<i<n 0<i<n 0<i<n 0<i<n 0<i<n

= max Z;; — max (—9;,;) > max &;; — ¢j,n > Max &;; — &y,
0<i<n 0<I<n 0<I<n 0<i<n

So (see (8))

max max Y, > max (max &;; — é,) = max max &j; — Cp.
1<j<k 0<i<n 1<j<k 0<Ii<n 1<j<k 0<i<n

(7) and (9) yield

| max max Yl(j) — max max &;;| < é,.
1<j<k 0<i<n 1<j<k 0<i<n

Let us try to evaluate ¢,,. Therefore, (see again (4))

1Zjn41 = Zjn| = [Tjnt2 = Ojnt1 — Tjnt1 — 6j—1,n]
<|zjnr2 = Tjngrl + 10501l +10i-1,0] < |Tj 042 — Tjnpa| + 2571
< 30y 4 |max(zj_1m — Tj1m1 + Tj1m1

- 1;}%&5(_1(133‘—1,[ = Sj1) = Sju; 0)]

< 30n + | max(zj-1,n — Tj—1.n-1 — Gjm; 0)]
<36, + | max(zj_1,n — j—1,n—1; 0)] + on
<o+ |Tjrm = Tjm1| < oo < 4Gon < 4kby, §=1,2,... k.

Thus, (see (3))

iml S |Zjnr-1) = Tinl + | Zjn4G-2) — Ziml + 10j-1,n4(-2)
j—1 j—2

<Y {l&jnti = Emaa-nF+ Y {1 -1nti = -t nsa-1) |} + 0n
i=1 i=1

< (j —1)4kb, + (j — 2)4kdy, + 6, < 826, j=1,2,... k.

We obtain from (12) that

k

J
en < s (3 oo ) < '
Cn < @%Xk(i:l dnax |7iq]) < g%xk(i:l qmax |vi.)

< k- max max |y;| <8k max |61 < 8k34,,.
0<;j<k 0<I<n 0<i<n

(7)

(12)
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From (13) and (10) it follows that

| max max Yl(j) — max max &j;| <c-0p, (14)
1<j<k 0<i<n 1<j<k 0<i<n

where ¢ = 8k3, §,, = max max |J;,].
1<j<k0<i<on
Denote R = £, 6 = max sup M|J;,|**" < co. Note that a(n) > /n, if
1<k p>1
n > e°. Therefore, (see (14)) for each fixed € > 0,

e,

(d(Y”,X’") > e)

< P( max | max max VY — max max &5 > 5-a(n)>

0<m<n 1<j<k0<I<m 1<j<k 0<I<m
k 2n
5 M|

<P<0£nn?><<n5m>s.a(n)> SZZR‘H“Y(\/H)‘H‘V (15)

j=11=1
|4ty
_ o MS; | 2% fg?ngMJM
TR SR
2k -t § é

gttty plt+3 o nlt3s’

~ ~ 2]{3 . (3k)12+3"/
where ¢ = é(e) = W.5<oo.

It follows from (15) that for each fixed € > 0,

c

P (d(Y”,X’") > e) < 7 (16)

From (16) and the Boreli - Cantelli lemma we can derive (3).
Let us prove now that for each fixed ¢ > 0,

P(EﬁﬂX%gﬂ>e)=o (17)

n—oo

Hence, (see again (4))

Tjn — Sjn = o@ﬂxn(ij_l’l — SjJ) >0, j=1,2,...,k, on=0.

So
ignZS]n, ]:1527ak (18)
Thus, (see (18)),

max max £;; > max max 5. (19)
1<j<k0<i<n 7 1<j<k 0<I<n
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Hence, (see again (4)) for j=1,2,...,k,
AL < o _g. G .
Tjn < max (Tj-21 = Sj-11)) + max Sji + Sjn

J
< z; max S —Sin <...< max S;; — S;
= j’"+0§l§n 3,1 jn = —Z{ il z,n}

{Oréllagxn Sitt+Sjn. (20)

|
-M“

i=1

So according to (20), we have

J
:zj,n<2{max Si,l}JrSj,n, i=1,2,... k. (21)
i=1

0<i<n

In view of (21), we obtain

0<i<n ~ 0<i<n 0<p<li

J
max &;; < max <Z{ max Si,p} + SjJ)
i=1

k

< E {max S;;} + max S;; < max S;; + k- max max S;,
— : 0<i<n 7" T 0<i<n
=

0<i<n 1<j<k 0<I<n
i=1,2,... k.
Consequently,
max max #;; < max max Sj;+ k- max max Sj;. (22)
1<j<k 0<i<n 1<j<k 0<i<n 1<j<k 0<i<n
Denote ¢, = max max S;;. We assume that S;o =0, j =1,2,...,k. So,
1<j<k 0<i<n
cn > 0.
From (19) and (22) we get
| max max Z;; — max max S;;| < k- cy. (23)
1<j<k 0<i<n 1<j<k 0<I<n

Therefore, using (23) we get, for each fixed € > 0, that
P(d(X™, 5") > ¢)

<P | max | max max &;; — max max S;;| >¢-a(n)
0<m<n ' 1<j<k 0<I<m 1< <k 0<I<m

| ™

£ ~
<P | max ¢, > —-a(n) | <P | max (max max 5j;)
0<m<n k 0<m<n 1<j<k0<I<m

: a(n))

>

<P|( max max S;; > —-a(n) ) < Pl=—=" >,

= <1§j§k0§l§n P (n) _z; a(n) k
]:

(24)
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We shall prove that, if conditions (2) are satisfied, then for each fixed € > 0

i, S
PlIm =—" —>¢c]|=0, j=1,2,... k. (25)
n—o  a(n)

Functions {Sjn,n > 1,7 =1,2,...,k} have a negative drift (see conditions
(2)). Thus, (25) follows from the strong law for {S;,,n > 1,5 = 1,2,...,k}
(see Iglehart, 1973; p. 583). So, (17) is proved (see (24) and (25)).

Let us prove that, if conditions (2) are satisfied, then for each fixed € > 0

P ( m d(S", 87 > 5) —0. (26)
n—oo
But

P (5”50 > <)

§P< max | max max S;; — max Si;| >¢e-a(n )>
0<m<n ' 1<j<k0<I<m 0<Ii<m

=P < max (max max Sj; — max Sk;) >¢€- a(n))
0<m<n 1<j<k 0<I<m 0<i<m

< —

<P (mm<mm 22X S = Jmax Ski) > € an >)

<P - :

<P (o ( max (S50 S0) > - an))

Si1)) > e-a(n)

Mw

=P | max ( max (
0<i<n 1<j<k—

.
Il

J

B

<P :
=Pl (2 ij>> 7o)

Mw

<P| max max S;;) > - a(n)
1< <h— i — 0<i<n
< =" -
(ngag Sii>e-aln )Z > (27)
Also, using conditions (2), just like in (25), we obtain for each fixed ¢ > 0
3%, S
PlIm —"—>¢c]=0, j=1,2,...,k (28)

we a(n)

So, (26) is proved (see (27) and (28)).
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Let us prove now that, if conditions (2) are satisfied, then for each fixed
e>0

P(m d(§g,s,?)>a>=0, J=1,2,.. .k (29)

n—oo

Hence, for j =1,2,...,k

P (d(St,

(Sr, 81 > ><P(max|maXSkl—Skm|>€a( ))
P<max max Sk — Sk,m)>e~a(n))
<

0<m<n 0<ZI<

0<m<n 0<I<m

=P | max ( max (—Sk,m-1)) >¢- a(n)) (30)

0<m<n O<l<m
=P —Ski1) >e- <P —Ski1) >e- :
(Oglggn o@i’fn( ki) > € a(ﬂ)) < (Org%xn( ki) > € a(ﬂ))

From conditions (2) we know that —aj < 0. So similarly as in (25) or (28),
using (2) and (30), we can prove (29).
Finally, using the triangle inequality, (3), (17), (26) and (29) we obtain for
each fixed € > 0 that
P ( Tm d(Y™, S0 > 5)

n—oo

§P(m d(Y",X”)>6) +P(E d(X™,S™) >€)

n—oo n—oo

P (T d(S",5¢) > <) +P (T d(Sp,57) > <) =0. (31)
So, (see (31))

P ( m d(Y™, S) > 5) =0, (32)
if conditions (1) and (2) are fulfilled.

Using the Strassen LIL for partial sums of independent identically distrib-
uted random variables, we obtain that

P(m SP(t) = 1)) - 1andP<li_m SP(t) = _1)) =1

n—=00 n—00

Applying this and (32), we get the proof of Theorem 3.1.
The proof of Theorem 3.1 is complete. ]

The next theorem, establishing the LIL for the global maxima of the waiting
time of a customer, is proved similarly as Theorem 3.1.
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THEOREM 3.2 If conditions (1) and (2) are fulfilled, then

max max VVl(j) — (ak —ak—1)n
77— 1<j<k0<Ii<n

P | lim — =1]=1 and
n—o0 Ok a(n)
max max VVl(j) — (ak —ak—1)n
. 1<j<k0<i<n
P| lim — =-1]=1
oo Gy - a(n)

Proof. Denote random functions in D as follows

max max VVl(j) — (o) — ag—1) - [nt]

! L<j<k 0<I<[n]
W™(t) = |
v Gk - a(n)
X™(t) = jpax mmax (T = 1) = (o = ax) - [nf]
= O”\-k . a(n) ,
§n(t) = 2% oé?éf;t](—sj,z) — (ag — ag_1) - [nt]

G - a(n)

—5. ) = — 1) [nt
n s _Oéfllg[);t]( k1) — (0 — agp—1) - [nt]

) 61 - a(n)

5 o (TSkng) — (g — ag—1) - [nt]
o1 - a(n)

, telo,1].

First we prove that, if conditions (2) are satisfied, then for each fixed € > 0

P ( Tm d(W", X") > 5) —0. (33)
n—oo
Similarly as in (14), we can prove that
| max max VVl(j) — max max (Z;; — &j—11)] < c¢- on, (34)
1<j<k 0<I<n 1<j<k 0<I<n

where ¢ = 8k3, 6p = max max |0;.1]- The further proof of the theorem is just
1<j<k 0<I<2n

the same as in (14)-(16). Consequently, (33) is proved.
Now we prove that, if conditions (2) are fulfilled, then for each fixed € > 0

P (n@o d(X", 8" > e) —0. (35)

Thus, (see (18), (21))

n
i‘jm _ij—l,n S Z{ max S’i,l} _Sj7n S k-Cn _Sj7n’ ]: 1,2,...,](}.
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Hence it follows that

Tir — Qi < . _ S.
1295, 0202, (B0 = 2am10) = o, g (B en = i)
= max max (—S;;) + k- cp. (36)

1<j<k 0<I<n

Analogously (see again (18), (21)) for j =1,2,...,k
j—1
i‘jm — J%j—l,n Z — Z {O@F&Xn SN} + Sjﬁb — Sj—l,n Z —k- Cp — Sjﬁb' (37)
=1 &

Therefore, (see (37))

max max (&;; — ;_1,) > max max (—k-c, — Sj)
1<j<k 0<i<n 1<j<k 0<i<n
= —k-cn, + max max (—S;,). (38)

1<j<k 0<i<n
(36) and (38) imply that

B _ SN <Ek-c..
| max max (2, —&j-11) — max max (=S| <k-cn (39)

Then (see (24) and (39)), for each fixed € > 0

P (d(f(",é’") > E) <P ( maxn|cm| > a(n))

0<m< k
- g-a(n)
<P | max max max S;; > (40)
1<j<k 0<m<n0<I<m  *’ k
e-a(n) & 0Zisy Sji €
<P | max max Sj; > SZP — > -
1<j<k0<i<n k — a(n) k
=

Note that aj—1 —a; < 0, 7 = 1,2,...,k (see (2)). Making use of this and
analogously as in (25) we obtain, for each fixed € > 0, that

max S
Pl Tim &5 s:|=0 j=12.. .,k (41)

we a(n)

So, (see (3) and (41))
P ( m d(X",5") > a) = 0. (42)

The proof that
P(m (", 8 >z—:) —0 and P(m (ST, 8y) >z—:) ~0

is similar to that of (27) and (30).
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From this, the triangle inequality, (33), (35) and (42), we obtain, for each
fixed € > 0, that

P (n@o d(W™, 5,) > a) —0. (43)

Applying this and the Strassen LIL to partial sums of independent identically
distributed random variables (see (43) and the end of the proof of Theorem 3.1),
we get the proof of Theorem 3.2.

The proof of Theorem 3.2 is complete. ]
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