
Control and Cybernetics

vol. 34 (2005) No. 2

A discrete-time software reliability-growth model and its
application for predicting the number of errors

encountered during program testing

by

K. Worwa

Faculty of Cybernetics, Military Technical University
00-908 Warszawa, Kaliskiego 2, Poland

e-mail: kworwa@isi.wat.waw.pl

Abstract: An approach to evaluate the number of errors en-
countered during the program testing process is proposed in the pa-
per. Considerations are based on some program reliability-growth
model, constructed for an assumed scheme of the program testing
process. In this model the program under testing is characterized
by means of the so-called characteristic matrix and the program
testing process is determined by means of so-called testing strategy.
The formula for determining the mean value of the predicted num-
ber of errors encountered during the program testing is obtained.
This formula can be used if the characteristic matrix and the testing
strategy are known. Formulae for evaluating this value when the
program characteristic matrix is not known are also proposed.

Keywords: software testing, software reliability, software reli-
ability-growth model.

1. Introduction

An important step in the development of many software systems is some form
of reliability assessment. In some cases, it is essential to have confidence that
software achieves a required level of reliability before it is put into service. With
the aim of achieving this goal software reliability-growth models are widely used
to describe the process of software reliability growth as a direct consequence of
detecting and removing software failures during the software testing phase of
software development. The testing of a newly developed program, prior to its
practical use, is a commonly followed practice. The program testing process
involves the execution of the program with many sets of input data with the
intention of finding errors. Testing is done to lower the chances of in-service
failures which are defined as an unacceptable departure from program operation.
A long period of testing results in the increased chances of detecting program



590 K. WORWA

errors and decreased chances of in-service failures, but it also results in the
increased cost of the program testing process.

It is known that testing is the most significant money consuming stage of
the program development. The cost of program testing process can account for
even more than 50% of the total cost of the program development, especially
for complex program systems (see e.g. Thayer, Lipov and Nelson, 1978, or
Kit, 1995). Considering the essential impact of the testing cost on the whole
program development cost, the testing process ought to be prudently planned
and organized. Decisions relative to the testing process organization should
be made on the basis of results of the testing efficiency analysis. In order
to make such analysis easier it may be convenient to evaluate the number of
program errors that could be encountered during the program testing process.
The knowledge of this evaluation makes it possible to assess the duration and
the cost of the program testing process, e.g. by means of formal, mathematical
expressions. Such estimations can be very useful in practice, e.g. for comparing
the effectiveness of different ways of program testing process organizations (i.e.
in order to find an optimal organization).

The number of program errors encountered during the testing process de-
pends on many factors, such as the testing process organization and technology
(that define the manner of the testing process realization), duration of the test-
ing, the testers’ qualifications and professional experience and the reliability
level of the program at the beginning of the testing process. The duration of
the program testing process can be determined by the predicted time spent on
testing activities or by the predicted cardinality of the set of input data that
should be used for the testing.

For the purpose of the rational prediction of the program testing process
duration the software reliability-growth models are recommended in this pa-
per. These models can provide a first program reliability-estimate and sup-
port project management in planning further development processes. Therefore
many software reliability-growth models have been proposed in the literature,
see e.g. Basu and Ebrahimi (2003), Chen and Mathur and Rego (1995), Csenki
(1990), Gaudoin (1999), Hayakawa and Telfar (2000), Jeske and Pham (2001),
Sawada and Sandoh (2000), Tokuno and Yamada (2000), Whittaker, Rekab and
Thomason (2000), Yamada and Fujiwara (2001), Zhang and Pham (2000), Musa
and Iannino and Okumoto (1987), Cai (2000), Chen and Yu (1994, 1996), Yang
and Chao (1995). The number of models that have actually been employed to
assist the software development projects is, however, much smaller. The rea-
son for this is that none of these models gives sufficiently accurate estimates
of reliability. This seems to be chiefly due to the fact that the authors of the
various models have paid little or no attention to the manner in which software
is tested.

Software reliability modelling has become one of the most important aspects
in software reliability engineering since models of Jelinski-Moranda (1972) and
Schooman (1972) appeared. Various methodologies have been adopted to model



A discrete-time software reliability-growth model and its application 591

software reliability behaviour. The most of existing work on software reliabil-
ity modelling is focused on continuous-time base, which assumes that software
reliability behaviour can be measured in terms of time. It may be a calendar
time, a clock time or a CPU execution time, see e.g. Basu and Ebrahimi (2003),
Chen, Mathur and Rego (1995), Csenki (1990), Gaudoin (1999), Hayakawa and
Telfar (2000), Jeske and Pham (2001), Sawada and Sandoh (2000), Tokuno and
Yamada (2000), Whittaker, Rekab and Thomason (2000), Yamada and Fuji-
wara (2001), Zhang and Pham (2000), Musa, Iannino and Okumoto (1987).
Although this assumption is appropriate for a wide scope of software systems,
there are many systems, which essentially diverge from this assumption. For
example, reliability behaviour of a reservation software system should be mea-
sured in terms of how many reservations are successful, rather than how long
the software operates without any failure. Similarly, reliability behaviour of
a bank transaction processing software system should be assessed in terms of
how many transactions are successful, etc. Obviously, for these systems, the
time base of reliability measurement is essentially discrete rather than continu-
ous. Models that are based on a discrete-time approach are called input-domain
or run-domain models, see e.g. Cai (2000), Chen and Yu (1994, 1996), Worwa
(1995a, b), Yang and Chao (1995). They usually express reliability as the prob-
ability that an execution of the software is successful. Cai (2000) has proposed
the terms ”a run” and ”run reliability” and a conceptual framework of software
run reliability modelling. A run is a minimum execution unit of software and
run reliability means the probability that software successfully perform a run.
The concrete sense of a run is subject to application context. For example, a run
can correspond to execution of a test case, of a program path, etc.

This paper attempts to describe a new discrete-time software reliability-
growth model for some scheme of program testing and to determine a formula
to evaluate the predicted number of program errors encountered during the
testing process.

2. Description of the program testing scheme

The organization of a program testing process depends on the program testing
strategy, which was selected for the testing. In particular, this strategy defines
the way of the testing process realization and the set of program input data
which is used for the testing.

It is assumed that the program testing process consists of a number of orga-
nizational units of the program testing phase that are called the testing stages.
Every stage of the program testing process consists of the two following steps
of testing:

• testing of the program under consideration with a prepared set of program
input data (tests),

• comparison of the results with the expected outputs for the data used and
removing all errors encountered during testing.



592 K. WORWA

It is noteworthy that all program faults discovered during the first step of some
testing stage are only registered and removed after this step is finished. Such or-
ganization of the testing stage means that testing and debugging are performed
in different steps (not simultaneously) and consequently some program fault
can be observed more than once in the testing stage. Yang and Chao (1995)
have underlined that the above definition of the testing scheme is used in the
majority of mathematical models of software testing.

Let S mean the program testing strategy, which is defined as follows

S = (K, (L1, L2, . . . , Lk, . . . , LK)), (1)

where:
K — the number of stages of the program testing process,
Lk — the number of program input data used in the k-th program testing stage,
Lk > 0, k = 1, K.
Execution of the program under the testing process with one input data set (test
case) will be called a run in this paper. The run can be successful, if program
execution did not lead to encountering of any program errors or not successful,
if program execution was incorrect, i.e. some errors were encountered.

Let S denote the set of all strategies that have the form (1). The strategy (1)
defines a program testing scheme. In accordance with this scheme, the process
of removing program errors which were encountered during the k-th program
testing stage can be started after the execution of the program on all Lk tests
is finished.
According to the assumed the testing scheme a situation that a number of
different tests of all Lk tests executed during the k-th stage encounter the same
error in the program under the testing is possible. So, according to the note
mentioned above, a situation that several runs will lead to encountering the
same program error is possible.

Let pnm define the probability of the event that n errors will be encountered
during a single stage of the program testing if there are m tests that have
incorrect execution in that stage. If we assume that every execution of the
program with a single test can lead to encountering at most one program error,
we will have

0 ≤ pnm ≤ 1 if n ≤ m, n ≥ 0, (2)

where in particular

p00 = p11 = 1

pnm = 0 if n > m
(3)

and
∞∑

n=0

pnm = 1, m ∈ {0, 1, 2, . . .}. (4)



A discrete-time software reliability-growth model and its application 593

Probabilities pnm, n ∈ {0, 1, 2, . . . , m}, m ∈ {0, 1, 2, . . . , }, form an infinite
matrix P = [pnm] as follows

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 . . .
0 1 p12 p13 p14 . . .
0 0 p22 p23 p24 . . .
0 0 0 p33 p34 . . .
0 0 0 0 p44 . . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦ , (5)

where values pnm are defined by (2-4).
The matrix P contains the values 0 below the main diagonal because — in
accordance with earlier assumption that every execution of the program with
a single test can lead to encountering of at most one program error — it is not
possible to encounter more different errors than the number of incorrect runs.
The values of probabilities pnm for every program testing stage depend only on
the number of tests which are used during that stage.
The values of probabilities pnm that form the matrix P depend on a logical
structure of the program. In particular, an important impact on these proba-
bilities comes from:

— number of paths that have been identified in the program,
— degree of overlapping among individual paths, that can be measured by

the number of program instructions that belong to two or more paths,
— length of individual paths, measured by the number of program instruc-

tions that are executed in case of path activation.

The matrix P will be called the characteristic matrix of the program under
testing.
The following example illustrates the construction of the characteristic matrix P .
Let the characteristic matrix of the program under testing be of the form

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 . . .
0 1 0.6 0.5 0.2 . . .
0 0 0.4 0.3 0.4 . . .
0 0 0 0.2 0.3 . . .
0 0 0 0 0.1 . . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Then, the probabilities pnm that form the matrix P have the following in-
terpretation:

for the first row of the matrix:

• p00 = 1 — if there is no test that has an incorrect execution during
the testing stage (m = 0), the probability that no program error will be
encountered (n = 0) is equal 1;



594 K. WORWA

• p01 = 0, p02 = 0, . . . — if more than one test has an incorrect execution
(m = 1, 2, . . .), the probability that no program error will be encountered
(n = 0) is equal 0 (as far as the assumption that every execution of the
program with a single test can lead to encountering of at most one program
error is concerned);

for the second row of the matrix:
• p10 = 0 — if no test has an incorrect execution during the testing stage

(m = 0), the probability that one program error will be encountered
(n = 1) is equal 0;

• p11 = 1 — if one test has an incorrect execution (m = 1), the probability
that one program error will be encountered (n = 1) is equal 1;

• p12 = 0.6 — if two tests have incorrect executions (m = 2), the probability
that one program error will be encountered (n = 1) is equal 0.6;

• p13 = 0.5 — if three tests have incorrect executions (m = 3), the proba-
bility that one program error will be encountered (n = 1) is equal 0.5;

• p14 = 0.2 — if four tests have incorrect executions (m = 4), the probability
that one program error will be encountered (n = 1) is equal 0.2;

for the third row of the matrix:
• p20 = 0, p21 = 0 — if not more than one test has an incorrect execution

during the testing stage (m = 0, 1), the probability that two program
errors will be encountered (n = 2) is equal 0;

• p22 = 0.4 — if two tests have incorrect executions (m = 2), the probability
that two program errors will be encountered (n = 2) is equal 0.4;

• p23 = 0.3 — if three tests have incorrect executions (m = 3), the proba-
bility that two program errors will be encountered (n = 2) is equal 0.3

• p24 = 0.4 — if four tests have incorrect executions (m = 4), the probability
that two program errors will be encountered (n = 2) is equal 0.4;

for the fourth row of the matrix:
• p30 = 0, p31 = 0, p32 = 0 — if not more than two tests have incorrect

executions (m = 0, 1, 2), the probability that three program errors will be
encountered (n = 3) is equal 0;

• p33 = 0.2 — if three tests have incorrect executions (m = 3), the prob-
ability that three program errors will be encountered (n = 3) is equal
0.2;

• p34 = 0.3 — if four tests have incorrect executions (m = 4), the probability
that three program errors will be encountered (n = 3) is equal 0.3;

for the fifth row of the matrix:
• p40 = 0, p41 = 0, p42 = 0, p43 = 0 — if not more than three tests have

incorrect executions (m = 0, 1, 2, 3), the probability that four program
errors will be encountered (n = 4) is equal 0;

• p44 = 0.1 — if four tests have incorrect executions (m = 4), the probability
that four program errors will be encountered (n = 4) is equal 0.1;



A discrete-time software reliability-growth model and its application 595

3. Program reliability coefficient

Let Mk(S, P ) denote the number of runs, which lead to incorrect execution of
the program under testing, i.e. to encounter program errors, during the k-th
stage of program testing process according to the testing strategy S and the
characteristic matrix P .

Let Nk(S, P ) denote the total number of errors encountered during the k-th
stage of program testing process in accordance with the testing strategy S and
the characteristic matrix P .

While planning the program testing process it is reasonable to treat the
values Mk(S, P ) and Nk(S, P ), k = 1, K, as random variables, Nk(S, P ) ≤
≤ Mk(S, P ), k = 1, K. Joint distribution of the random variables Nk(S, P ),
Mk(S, P ) can be determined as follows:

Pr{Nk(S, P ) = nk, Mk(S, P ) = mk} =

= Pr{Nk(S, P ) = nk/Mk(S, P ) = mk}Pr{Mk(S, P ) = mk}.
(6)

Probability distribution of the random variable Nk(S, P ) can be determined as
a marginal distribution in a distribution of two-dimensional random variable
(Nk(S, P ), Mk(S, P )):

Pr{Nk(S, P ) = nk} =

=
Lk∑

mk=0
Pr{Nk(S, P ) = nk/Mk(S, P ) = mk}Pr{Mk(S, P ) = mk}.

(7)

Let N(S, P ) denote the total number of errors encountered during the process
of the program testing in accordance with the testing strategy S and the char-
acteristic matrix P . The value N(S, P ) is a random variable and can be deter-
mined as follows:

N(S, P ) =
K∑

k=1

Nk(S, P ). (8)

Taking into account the assumed testing scheme the probability distribution
of the random variable N(S, P ) has the form:

Pr{N(S, P ) = n} =

=
∑

n1+n2+...+nK=n

Pr{N1(S, P ) = n1, N2(S, P ) = n2, . . . , NK(S, P ) = nK}, (9)

n = 0, 1, 2, . . .

where probabilities Pr{N1(S, P ) = n1, N2(S, P ) = n2, . . . , NK(S, P ) = nK} de-
termine the joint distribution of the K-dimensional random variable (N1(S, P ),
N2(S, P ), . . . , NK(S, P )).



596 K. WORWA

Probability distribution Pr{N1(S, P ) = n1, N2(S, P ) = n2, . . . , NK(S, P ) =
nK} can be determined as follows (see Worwa, 1995a):

Pr{N1(S, P ) = n1, N2(S, P ) = n2, . . . , NK(S, P ) = nK} =

=
K∏

k=1

Lk∑
mk=0

Pr{Nk(S, P ) = nk/Mk(S, P ) = mk}·

·Pr{Mk(S, P ) = mk/Ni(S, P ) = ni, i = 1, k − 1}

(10)

where

Pr{Mk(S, P )=mk/Ni(S, P )=ni, i=1, k − 1}= (11)
= Pr{Mk(S, P )=mk/N1(S, P )=n1, N2(S, P )=n2, . . . , Nk−1(S, P )=nk−1)}

and N0(S, P ) = 0.
According to earlier notations, we have

pnm = Pr{Nk(S, P ) = n
∣∣
Mk(S,P )=m

}, k = 1, K, (12)

and so formula (10) takes the form:

Pr{N1(S, P ) = n1, N2(S, P ) = n2, . . . , NK(S, P ) = nK} = (13)

=
K∏

k=1

Lk∑
mk=0

pnkmk
Pr{Mk(S, P ) = mk/Ni(S, P ) = ni, i = 1, k − 1}.

By the substitution of this equation into (9), we get:

Pr{N(S, P ) = n} =
∑

n1+n2+...+nK=n

Pr{N1(S, P ) = n1,

N2(S, P ) = n2, . . . , NK(S, P ) = nK} = (14)

=
∑

n1+n2+...+nK=n

K∏
k=1

Lk∑
mk=0

pnkmk
·Pr{Mk(S, P )=mk/Ni(S, P )=ni, i=1, k − 1}.

As a result of the program testing process execution, in accordance with the
assumed testing strategy S, N(S, P ) program errors will be encountered. Suc-
cessful removal of these errors will increase the level of program reliability. The
number of encountered errors N(S, P ) depends on both the assumed testing
strategy and the initial level of program reliability, i.e. reliability of the pro-
gram at the beginning of the program testing process.

It is very well known that in spite of the successful testing phase realization
the program can still contain some errors. Bearing this fact in mind it is rational
to describe a result X(S, P ) of one program execution, after finishing the testing



A discrete-time software reliability-growth model and its application 597

process according to strategy S, as follows:

X(S, P ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if an execution of the program with the characteristic
matrix P that was tested in accordance with the strategy S,
is correct;

0 otherwise.

When planning the phase of the program testing process it is rational to treat
the quantities N(S, P ) and X(S, P ) as dependent random variables, because
the result X(S, P ) of program execution for some input data set, after finishing
the testing according to strategy S, depends on the number of errors N(S, P )
encountered during this process.

Let r(S, P ) denote the probability of the correct execution of the program
with the characteristic matrix P , after finishing the testing process according
to the strategy S, i.e.

r(S, P ) = Pr{X(S, P ) = 1}. (15)

The probability r(S, P ) will be treated as a program reliability measure in the
paper.
We can write:

r(S, P ) =
L(S)∑
n=0

r(S, P )|N(S,P )=n · Pr{N(S, P ) = n}, (16)

where:
r(S, P )|N(S,P )=n — conditional probability of a correct execution of the program
with the characteristic matrix P if the testing process, according to the strategy
S, led to encountering of N(S, P ) = n program errors;
L(S) — the total number of runs that are performed during the testing of the
program according to the strategy S, i.e.

L(S) =
K∑

k=1

Lk. (17)

By substitution of expression (14) into (16), we get

r(S, P ) =
L(S)∑
n=0

r(S, P )|N(S,P )=n · (18)

·
∑

n1+n2+...+nK=n

K∏
k=1

Lk∑
mk=0

pnkmk
Pr{Mk(S, P )=mk/Ni(S, P )=ni, i=1, k−1}.

If a certain number of errors is encountered in the program and they are suc-
cessfully corrected, the program reliability level will increase. We will describe



598 K. WORWA

it as follows:

r(S, P )|N(S,P )=n = r + ∆r(P, n), (19)

where:
r — an initial value of the program reliability coefficient, i.e. the value of the
program reliability coefficient at the beginning of the program testing process,
∆r(P, n) — an increase of the reliability coefficient value of the program with
the characteristic matrix P , as a result of encountering and removing n errors.

On the basis of facts described in literature, see e.g. Musa, Iannino and
Okumoto (1987), Thayer, Lipov and Nelson (1978), Trachtenberg (1990), it is
assumed that the increase ∆r(P, n) is of the form:

∆r(P, n) = (1 − r)(1 − e−αn), (20)

where α is a parameter that characterizes both the internal structure of the
program under testing and the impact of one error‘s removal on the increase of
the program reliability.
It should be stated that evaluation of values of both parameters r and α relies
in practice on the testing history of the software.
Thus, by substituting the last equation into (19), we get:

r(S, P )|N(S,P )=n = 1 − (1 − r)e−αn. (21)

It is easy to notice that the assumed testing scheme, such that the probability
of successful performance of one run remains constant during the testing stage,
leads to the so-called Bernoulli scheme. Consequently, conditional probabilities
from (18) can be determined by means of the binominal distribution as follows:

Pr{Mk(S, P ) = mk/Ni(S, P ) = ni, i = 1, k − 1} =

=
(

LK

mk

)[
e
−α

k−1�

i=1
ni

(1 − r)
]mk

[
1 − e

−α
k−1�

i=1
ni

(1 − r)
]Lk−mk

,

mk ∈ {0, 1, 2, . . . , Lk}, k = 1, K.

(22)

By substituting (21) and (22) into (18), we get the following expression for
the program reliability coefficient r(S, P ), after finishing the testing process
according to the strategy S:

r(S, P ) = 1 − (1 − r)A(S, P ), (23)

where

A(S, P ) =

=
L1∑

n1=0

L2∑
n2=0

. . .
LK∑

nK=0
e
−α

K�

k=1
nk K∏

k=1

Lk∑
mk=0

pnkmk
Amk

(
k−1∑
i=1

ni, Lk

) (24)



A discrete-time software reliability-growth model and its application 599

and

Amk

(
k−1∑
i=1

ni, Lk

)
=

=
(

Lk

mk

)[
e
−α

k−1�

i=1
ni

(1 − r)
]mk

[
1 − e

−α
k−1�

i=1
ni

(1 − r)
]Lk−mk

,

mk ∈ {0, 1, 2, . . . , Lk}, k = 1, K.

(25)

The quantity Amk

(
k−1∑
i=1

ni, Lk

)
, mk ∈ {0, 1, 2, . . . , Lk}, ni ∈ {0, 1, 2, . . . , Lk},

k ∈ {1, 2, . . . , K}, means the probability that mk runs of all Lk runs performed
during the k-th testing stage will be incorrect, i.e. will lead to encountering of

errors on condition that in the previous k − 1 testing stages
k−1∑
i=1

ni errors were

encountered and removed.
It is easy to check that

Lk∑
mk=0

Amk

(
k−1∑
i=1

ni, Lk

)
=[1 − e

−α
k−1�

i=1
ni

(1 − r) + e
−α

k−1�

i=1
ni

(1 − r)]Lk = 1

and

Lk∑
nk=0

Lk∑
mk=0

pnkmk
Amk

(
k−1∑
i=1

ni, Lk

)
=

Lk∑
mk=0

Amk

(
k−1∑
i=1

ni, Lk

)
Lk∑

nk=0
pnkmk

=

=
Lk∑

mk=0
Amk

(
k−1∑
i=1

ni, Lk

)
= 1.

The increase of the program reliability coefficient ∆r(S, P ) = r(S, P ) − r, as
a result of testing phase realization according to the strategy S, is of the form:

∆r(S, P ) = (1 − r)(1 − A(S, P )), (26)

where the quantity A(S, P ) is determined by (24).
Let S′, S′′ ∈ S denote the following program testing strategies:

S′ = (L, (1, 1, . . . , 1)︸ ︷︷ ︸
L times

), (27)

S′′ = (1, L). (28)

It could be said that the above strategies S′ and S′′ are the extreme forms of the
testing strategy (1). In particular, if the testing strategy has the form S, then it
means that in every testing stage the program under testing process is executed
only once. Therefore, if the program execution encounters any fault it will be



600 K. WORWA

removed immediately, i.e. before the next testing stage will be started. For the
strategy S′ it becomes impossible to observe the repeated appearances of faults
in any testing stage. Thus, this strategy is very profitable from the point of
view of potential increase of program reliability, but it is rather inefficient from
the point of view of the economic aspect of the program testing process.
If the testing strategy has the form S′′, it means that the program testing phase
consists of only one testing stage containing all tests. Obviously, this strategy
is very attractive because of the low cost of the program testing process, but
probably it would not guarantee the sufficient increase of the program reliability.
If the strategies S′ or S′′ are used the formulae for the program reliability
coefficient r(S, P ) will take the simplified forms:

r(S′, P ) = r(S′) =

= 1 − (1 − r)
1∑

n1=0
e−αn1(1 − r)n1r1−n1 ·

·
1∑

n2=0
e−αn2 [e−αn1(1 − r)]n2 [1 − e−αn1(1 − r)]1−n2 . . .

. . .
1∑

nK=0
e−αnK

[
e
−α

K−1�

m=1
nm

(1 − r)
]nK

[
1 − e

−α
K−1�

m=1
nm

(1 − r)
]1−nK

(29)

and

r(S′′, P ) =
L∑

n=0

e−αn
L∑

m=0

pnm

(
L

m

)
(1 − r)mrL−m. (30)

The main advantage of using the strategy S′ consists in avoiding the possibility
of encountering the same program error by different tests during individual
testing stages. On the one hand, it makes possible to increase the effectiveness
of the testing process that could be measured, for example, by a total number
of encountered faults in relation to the total number of tests, which were used in
the testing process. On the other hand, the main disadvantage of this strategy
is connected with its economic ineffectiveness because of both high cost and
long duration of the testing process.
Practical application of the strategy S′′ can be connected with the effect of
recapturing the same program errors by different tests during individual testing
stages. Obviously, this effect can significantly decrease the effectiveness of the
testing process. In particular, if the program under the testing process has an
incorrect instruction at the beginning of its source code then it is possible that all
tests used in some testing stage will encounter the same program error, related
to this incorrect instruction. Because of mentioned reasons, every practical
testing strategy has character of some compromise between the strategies S′

and S′′.



A discrete-time software reliability-growth model and its application 601

Let P denote the set of all matrices that have the form P , i.e:

P = {P = [pnm}, n, m ∈ {0, 1, 2, . . .} : probabilities pnm meet the
constraints defined by (2)-(4),

where every individual program is characterized only by one characteristic ma-
trix P ∈ P. Let P ∗, P ∗∗ denote characteristic matrices of the program under
the testing that have form:

P ∗ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .

. . .

⎤
⎥⎥⎥⎥⎦ , P ∗∗ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 . . .
0 1 1 1 . . .
0 0 0 0 . . .
0 0 0 0 . . .

. . .

⎤
⎥⎥⎥⎥⎦ . (31)

It can be proved (see Worwa, 2000) that if P ∗, P ∗∗ ∈ P are the matrices of
the form (31) then

∆r(S, P ∗) = max
P∈P

∆r(S, P ) (32)

and

∆r(S, P ∗∗) = min
P∈P

∆r(S, P ). (33)

The expressions (32) and (33) make it possible to obtain the following evaluation
of the program reliability coefficient value for any program testing strategy
S ∈ S:

r(S, P ∗∗) ≤ r(S, P ) ≤ r(S, P ∗). (34)

The double inequality (34) is a direct conclusion from (32) and (33). This
inequality allows for a two-sided rough estimate of the program reliability coeffi-
cient value after the finishing the program testing process, according to the test-
ing strategy S. This estimate is better, i.e. more precise, than 0 ≤ r(S, P ) ≤ 1,
and may be useful in a situation when the probabilities pnm, that define the
program characteristic matrix P , can not be determined in practice.

4. Evaluating the mean value of the number of predicted
errors encountered during the program testing process

By substituting (22) into (14), we get the following expression for probability
distribution of the total number of errors encountered during the program test-
ing process, in accordance with the testing strategy S and the characteristic



602 K. WORWA

matrix P :

Pr{N(S, P ) = n} =

=
∑

n1+n2+...+nK=n
Pr{N1(S, P ) = n1, N2(S, P ) = n2, . . . , NK(S, P ) = nK} =

=
∑

n1+n2+...+nK=n

K∏
l=1

Ll∑
ml=0

pnlml
Aml

(
l−1∑
i=1

ni, Ll

)
, n = 0, L(S)

(35)

where the quantities Aml

(
l−1∑
i=1

ni, Ll

)
and L(S) are determined by (25) and

(17), respectively.
The knowledge of the probability distribution function (35) makes it possible to
obtain a formula for the mean value of the number of errors encountered during
the program testing process according to the strategy S. We have

E[N(S, P )] =
L(S)∑
n=0

nPr{N(S, P ) = n}, (36)

and then, according to (35):

E[N(S, P )] =

=
L(S)∑
n=0

n
∑

n1+n2+...+nK=n

K∏
l=1

Ll∑
ml=0

pnlml
Aml

(
l−1∑
i=1

ni, Ll

)
=

=
K∑

k=1

L1∑
n1=0

L2∑
n2=0

. . .
LK∑

nK=0
nk

K∏
l=1

nl∑
ml=0

pnlml
Aml

(
l−1∑
i=1

ni, Ll

)
.

(37)

The formula (37) will be simplified if the program characteristic matrix P is of
the form (31), i.e.:

E[N(S, P ∗] =

= (1 − r)
K∑

k=1

Lk

L1∑
n1=0

L2∑
n2=0

. . .
Lk−1∑

nk−1=0
e
−α

k−1�

i=1
ni k−1∏

l=1

A∗
nl

(
l−1∑
i=1

ni, Ll

)
,

(38)

and

E[N(S, P ∗∗] =
K∑

k=1

1∑
n1=0

A∗∗
n1

(0, L1) . . .

. . .
1∑

nk−1=0
A∗∗

nk−1

(
k−2∑
i=1

ni, Lk−1

)
A∗∗

1

(
k−1∑
i=1

ni, Lk

)
,

(39)



A discrete-time software reliability-growth model and its application 603

where

A∗
nl

(
l−1∑
i=1

ni, Ll

)
=

=
[
e
−α

l−1�

i=1
ni

(1 − r)
]nl
[
1 − e

−α
l−1�

i=1
ni

(1 − r)
]Ll−nl

(40)

and

A∗∗
nk

(
k−1∑
i=1

ni, Lk

)
=

=
{
1 −

[
1 − e

−α
k−1�

i−1
ni

(1 − r)
]Lk
}nk

{
1 − e

−α
k−1�

i−1
ni

(1 − r)
}Lk(1−nk)

.

(41)

For example, if P = P ∗ and S = (2, (1, 1)), we will have

E[N(S, P ∗)] = (1 − r)[1 + r + e−α(1 − r)].

In practice, the formula (37) for evaluating the mean value of the number
of errors encountered during the program testing process can be used if the
program characteristic matrix P is known. If the probabilities pnkmk

, nk, mk ∈
{0, 1, 2, . . .Lk}, k = 1, K, are unknown, it is possible to determine the boundary
values of this evaluation.
Let P ∗, P ∗∗ denote the characteristic matrices of the program under testing of
forms (31). Then, as proved in Worwa (2000), for both any program testing
strategy S and any characteristic matrix P there is:

E[N(S, P ∗∗)] ≤ E[N(S, P )] ≤ E[N(S, P ∗)], (42)

where the quantities E[N(S, P ∗)] and E[N(S, P ∗∗)] are determined by (38) and
(39), respectively.

5. Conclusions

The formula (37) for determining the mean value of the number of errors en-
countered during the program testing process, has been obtained under the
assumption that both the program testing scheme and the program reliability
growth model are of the forms presented in Section 2. It is noteworthy that
both the assumed program testing scheme and the program testing strategy
are very popular in software testing practice. The assumptions concerning the
program reliability-growth model, including the formula (21), have been made
according to some precepts known from literature, e.g. Csenki (1990), Musa,
Iannino and Okumoto (1987), Thayer, Lipov and Nelson (1978), Trachtenberg
(1990). The formula (21) can be obtained on the basis of software reliability
models proposed by Shooman (1972) and Jelinski and Moranda (1972).



604 K. WORWA

In order to apply the methodology proposed in this paper, software run reli-
ability data must be available. Compared to the amount of software reliability
data reported in the literature, the amount of discrete-time software reliability
data is rather limited in relation to continuous-time software reliability data,
although some authors have published their own data.

It is noteworthy that the parameters (including r, α and the probabilities
that form the characteristic matrix P ) of the program reliability-growth model
presented in the paper can be evaluated by using a process known as life test-
ing or statistical-usage testing, in which long-term behaviour of the software is
observed and values of these parameters are estimated on the basis of the ob-
servations, see e.g. Cobb and Mills (1990) or Thayer, Lipov and Nelson (1978).

Sensible estimation of the values of such parameters as r, α and pnm requires
a suitable data base of facts that contains information about similar former
programs under testing. As far as the data base of facts is concerned, it is an
important component of software engineering. The maintenance of the data
base of facts is especially useful if a software development process is stable in
a domain sense. The fundamental information that constitutes this data base
of facts concerns the backgrounds, the circumstances, the reasons and the time
of the program errors encountering. Detailed analysis of data included in the
data base of facts enables better understanding of mutual relations between the
types of software and the number of program errors encountered during the
development process. Such mathematical and statistical methods as regression
analysis, variation analysis, least squares method, maximum likelihood method
etc. are the most popular for estimating the values of parameters that are
commonly used in software reliability models. The practical usefulness of the
parameter estimation methods mentioned above can be confirmed by the results
of studies described in several papers, see e.g. Cobb and Mills (1990), Musa,
Iannino and Okumoto (1987), Thayer, Lipov and Nelson (1978).

The knowledge of the mean value of the predicted number of errors encoun-
tered during the program testing process is very useful from the practical point
of view. In particular, it makes possible to reasonably estimate both the du-
ration and the cost of the program testing process. These estimations can be
very useful for the planning of the program testing process. The mean value
of the number of errors encountered during the program testing can be treated
as a measure of the increase of the program reliability that was caused by the
testing.

References

Basu, S. and Ebrahimi, N. (2003) Bayesian software reliability models based
on martingale processes. Technometrics 2, 150–158.

Cai, K.Y. (2000) Towards a conceptual framework of software run reliability
modeling. Information Science 126, 137–163.

Chen, M., Mathur, A.P. and Rego, V. (1995) Effect of testing techniques



A discrete-time software reliability-growth model and its application 605

on software reliability estimates obtained using a time-domain model.
IEEE Transactions on Reliability 44 (1), 97–103.

Chen, T.Y. and Yu, Y.T. (1994) On the relationship between partition and
random testing. IEEE Transactions on Software Engineering 20 (12),
977–980.

Chen, T.Y. and Yu, Y.T. (1996) On the expected number of failures de-
tected by subdomain testing and random testing. IEEE Transactions on
Software Engineering 22 (2), 109–119.

Cobb, R.H. and Mills, H.D. (1990) Engineering software under statistical
quality control. IEEE Software 16, 44–54.

Csenki, A. (1990) Bayes predictive analysis of a fundamental software reliabil-
ity model. IEEE Transactions on Software Engineering 39 (2), 177–183.

Gaudoin, O. (1999) Software reliability models with two debugging rates.
International Journal of Reliability 1, 31–42.

Hayakawa, Y. and Telfar, G. (2000) Mixed poisson-type processes with
application in software reliability. Mathematical and Computer Modelling
31, 151–156.

Jelinski, Z. and Moranda, P.B. (1972) Software Reliability Research. Sta-
tistical Computer Performance Evaluation. Academic Press, New York.

Jeske, D.R. and Pham, H. (2001) On the maximum likelihood estimates for
the Goel-Okumoto software reliability model. The American Statistician
3, 219–222.

Kit, E. (1995) Software testing in the real world. ACM Press Books.
Musa, J.D., Iannino, A. and Okumoto, K. (1987) Software Reliability.

Measurement, Prediction, Application. McGraw-Hill, Inc.
Sawada, K. and Sandoh, H. (2000) Continuous model for software reliabil-

ity demonstration testing considering damage size of software failures.
Mathematical and Computer Modelling 31, 321–326.

Schick, G.J. and Wolverton, R.W. (1978) An Analysis of Competing Soft-
ware Reliability Models. IEEE Transactions on Software Engineering SE-
4 (2), 104–120.

Shooman, M.L. (1972) Probabilistic Models for Software Reliability Predic-
tion. Statistical Computer Performance Evaluation. Academic Press, New
York.

Thayer, T.A., Lipov, M. and Nelson, E.C. (1978) Software Reliability.
North-Holland Publishing Company. Amsterdam.

Tokuno, K. and Yamada, S. (2000) An imperfect debugging model with two
types of hazard rates for software reliability measurement and assessment.
Mathematical and Computer Modelling 31, 343–352.

Trachtenberg, M. (1990) A general theory of software reliability modeling.
IEEE Transactions on Software Engineering 39 (1), 92–96.

Whittaker, J.A., Rekab, K. and Thomason, M.G (2000) A Markov chain
model for predicting the reliability of multi-build software. Information
and Software Technology 42, 889–894.



606 K. WORWA

Worwa, K. (1995a) Estimation of the program testing strategy. Part 1 — The
same errors can be encountered. Cybernetics Research and Development
3-4, 155–173.

Worwa, K. (1995b) Estimation of the program testing strategy. Part 2 —
The same errors can not be encountered. Cybernetics Research and De-
velopment 3-4, 175–188.

Worwa, K. (2000) Modelling and estimation of software reliability growth dur-
ing the testing process. Publishers of Warsaw Technical University, War-
saw (in Polish).

Yamada, S. and Fujiwara, T. (2001) Testing-domain dependent software
reliability growth models and their comparisons of goodness-of-fit. In-
ternational Journal of Reliability 3, 205–218.

Yang, M.C. and Chao, A. (1995) Reliability-estimation & stopping-rules for
software testing, based on repeated appearances of bugs. IEEE Transac-
tions on Reliability 44 (2), 315–321.

Zhang, X. and Pham, H. (2000) Comparisons of nonhomogeneous Poisson
process software reliability models and its applications. International
Journal of Systems Science 9, 1115–1123.


