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Abstract: This paper concerns second order sufficient condi-
tions of optimality, involving the Riccati equation, for optimal con-
trol problems with periodic boundary conditions. The problems con-
sidered involve no pathwise constraints and are ‘regular’, in the sense
that the strengthened Legendre-Clebsch condition is assumed to be
satisfied. A well-known sufficient condition, which we refer to as the
Riccati sufficient condition, requires the existence of a global solu-
tion to the Riccati equation whose endpoint values satisfy a certain
inequality. A sharper condition, named the extended sufficient con-
dition, takes the form of an inequality involving the solutions of a
Riccati equation and two additional linear matrix equations. We
highlight the superiority of the extended Riccati sufficient condition
and develop a number of equivalent formulations of this condition.
Not only does the extended Riccati sufficient condition supply more
information about minimizers, but it is the basis of simpler numeri-
cal tests for assessing whether an extremal is a minimizer, at least
in a local sense. The Riccati and also the extended Riccati sufficient
conditions are applied to a variant of Speyer’s ‘sailboat’ problem, in-
volving parameters. It is found that the extended Riccati sufficient
condition identifies a much larger set of points on parameter space
for which a nominal control is optimal, in comparison to the Riccati
sufficient condition.
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1. Introduction

Consider the following optimal control problem with periodic boundary condi-
tions

(P )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Minimize

∫ T

0 L(t, x(t), u(t))dt+ g(x(T ))
over x ∈ W 1,1([0, T ]; Rn) and measurable functions u : [0, T ] → R

m

satisfying
ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [0, T ]
x(0) = x(T ).

The data for this problem comprise a number T > 0 and the functions
L : [0, T ] × R

n × R
m → R, f : [0, T ] × R

n × R
m → R

n and g : R
n → R. Here,

W 1,1([0, T ]; Rn) denotes the space of absolutely continuous R
n-valued functions

on [0, T ].
A control function (for (P )) is a measurable R

m-valued function on [0, T ].
Given a control function u(.), a state trajectory x(.) corresponding to u(.) is a
solution to the differential equation ẋ(t) = f(t, x(t), u(t)) on [0, T ], in the space
W 1,1([0, T ]; Rn). A couple (x, u) comprising a control function u(.) and a state
trajectory x(.) corresponding to u(.) is referred to as a process (for (P )). If x(.)
satisfies the periodic boundary conditions, the process is called admissible. An
admissible process for (P ) which achieves the infimum cost over all admissible
processes for (P ) is referred to as a minimizer for (P ). We shall also make use
of a different, narrower, concept of optimality: an admissible process (x̄(.), ū(.))
is said to be a weak local minimizer for (P ) if there exists ε > 0 such that

J(x(.), u(.)) ≥ J(x̄(.), ū(.))

for all admissible processes (x(.), u(.)) satisfying

‖x(.) − x̄(.)‖L∞ ≤ ε and ‖u(.) − ū(.)‖L∞ ≤ ε.

Let us recall the concept of ‘weak normal extremal’. This involves the Hamil-
tonian function

H(t, x, p, u) := pT f(t, x, u) + L(t, x, u) .

An admissible process (x̄(.), ū(.)) is said to be a weak normal extremal for (P)
if (x̄(.), ū(.)) satisfies the conditions of the Pontryagin Maximum Principle, in
the following special form: there exists p(.) ∈ W 1,1([0, T ]; Rn) such that,

−ṗ = fT
x (t, x̄(t), ū(t))p(t) + Lx(t, x̄(t), ū(t))

Hu(t, x̄(t), p(t), u)|u=ū(t) = 0 a.e. t ∈ [0, T ] (1)
p(T ) = p(0) + gx(x̄(T )) .

The qualifiers ‘weak’ and ‘normal’ refer to the facts that the usual Weierstrass-
type condition in the definition of the extremal is replaced by the weaker ‘vanish-
ing gradient’ condition (1) and that the cost multiplier is taken to have value 1,
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respectively. (Notice also that the boundary condition on the costate arc p(.)
is the usual transversality condition specialized to the case when the endpoint
constraint on state trajectories is ‘x(0) = x(T )’.) The above special form of the
Pontryagin Maximum Principle is elsewhere sometimes referred to as the Euler
Lagrange condition.

As is well known, the condition that an admissible process (x̄(.), ū(.)) is
a weak normal extremal (or, synonymously, satisfies the special case of the
Pontryagin Maximum Principle) is a necessary condition that (x̄(.), ū(.)) is a
minimizer under unrestrictive hypotheses. However, the condition is not in
general sufficient. The primary role of higher order optimality conditions in
Optimal Control (and second order conditions in particular) is to provide ad-
ditional tests to confirm that a given weak normal extremal is actually a weak,
local minimizer. A secondary role is to provide refined necessary conditions.

The theory of second order conditions is well developed in the case of optimal
control problems (such as those studied here) which do not involve pathwise con-
trol or state constraints. This centres on an analysis of the ‘accessory problem’,
associated with a weak normal extermal (x̄(.), ū(.)).

For each t ∈ [0, T ], define:

(A(t), B(t)) := (fx(t, x̄(t), ū(t)), fu(t, x̄(t), ū(t))) (2)

and(
Q(t) D(t)
DT (t) R(t)

)
:=
(
Hxx(t, x̄(t), p(t), ū(t)) Hxu(t, x̄(t), p(t), ū(t))
HT

xu(t, x̄(t), p(t), ū(t)) Huu(t, x̄(t), p(t), ū(t))

)
.

Define also

JA(y(.), v(.)) :=
1
2

∫ T

0

LA(t, y(t), v(t))dt +
1
2
yT (T )Gy(T )

where

G := gxx(x̄(T )) and LA(t, y, v) = yTQ(t)y + 2yTD(t)v + vTR(t)v.

The accessory problem is

(A)

⎧⎪⎪⎨⎪⎪⎩
Minimize JA(y(.), v(.))
over y ∈ W 1,1([0, T ]; Rn) and v ∈ L2([0, T ]; Rm) satisfying
ẏ = A(t)y(t) +B(t)v(t) a.e.
y(0) = y(T ).

Couples (y(.), v(.)) satisfying the dynamic and endpoint constraints of the ac-
cessory problem will be referred to as admissible processes for the accessory
problem.
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We focus on second order sufficient conditions for optimality, expressed in
terms of the Riccati equation for the accessory problem:{

Ṗ + PA+ATP +Q− (BTP +DT )TR−1(BTP +DT ) = 0
PT (.) = P (.)

(3)

and refinements. These conditions can be regarded as alternatives to conditions
requiring that the cost of the accessory problem (A) be coercive (see Section 4
below) on the set of admissible processes (A). Sufficient conditions involving
Riccati type equations have an important role in numerical optimal control. This
is because they lead to simple numerical tests of whether a process, arrived at
by applying some optimal control algorithm, is at least a weak local minimizer
(Maurer and Pickenhain, 1995). The coercivity property, on the other hand, is
not so susceptible to direct numerical verification.

A standard sufficient condition for a process (x̄(.), ū(.)) to be a weak local
minimizer (we shall refer to it as the Riccati sufficient condition) is that there
exists a solution P (.) to (3) satisfying

G+ P (0) − P (T ) > 0 .

This condition is obtained, for example, by specializing to the periodic bound-
ary conditions case Riccati-type sufficient conditions for problems with mixed
boundary conditions given in Maurer and Pickenhain (1995) or Zeidan (2001).

An improved sufficient condition, which we call the extended Riccati suffi-
cient condition, is reported in Stefani and Zezza (1997), as part of a broad in-
vestigation by Stefani and Zezza into optimality conditions for linear quadratic
control problems with general endpoint and mixed state/control pathwise con-
straints. This involves three matrix differential equations, in place of the single
equation of the Riccati sufficient condition. Stefani and Zezza describe the na-
ture of the condition (it takes the form of a ‘Riccati differential equation, a
linear equation and an integrator’) and briefly outline a proof technique, based
on reduction to the separated endpoint constraints case via state augmentation.

The purpose of this paper is to highlight the superiority of the extended
Riccati sufficient condition. In the interest of a self-contained treatment, we
include a proof of the condition. We provide also alternative versions, expressed
in terms of the transition matrix of the Hamiltonian system for the accessory
problem. We further clarify the relationship between the Riccati sufficient con-
dition and the augmented Riccati sufficient condition, by examining the special
circumstances under which they coincide. Finally we illustrate the benefits of
the extended Riccati sufficient condition by applying it to a variant of a periodic
optimal control problem previously studied by Speyer, the ‘sailboat problem’.
In this problem, the extended Riccati sufficient condition can be used to identify
a very much larger region in parameter space, for which a nominal process is a
weak local minimizer, than the earlier Riccati sufficient condition.



Periodic control 621

We make use of two different notions of controllability for the dynamics of
the accessory problems (summarized by the matrix valued functions (A(.), B(.))
on [0, T ]:

(A(.), B(.)) is said to be controllable on [0, T ] if, corresponding to any
ξ ∈ Rn, there exists a process (x(.), u(.) for (A) such that x(0) = 0 and
x(T ) = ξ.

(A(.), B(.)) is said to be controllable on [0, T ] with respect to the periodic
boundary conditions if, corresponding to any ξ ∈ Rn, there exists a process
(x(.), u(.)) for (A) such that x(0) = x(T ) + ξ.

Clearly, the latter condition is weaker.

Throughout, the Euclidean norm is denoted by |.|. For any (possibly non-
symmetric) n× n matrix F , ‘F > 0’ is taken to mean ‘zTFz > 0 for all z �= 0’.
Likewise, ‘zTFz ≥ 0’ means ‘zTFz ≥ 0 for all z’.

2. Riccati-type conditions for weak local optimality

Take (x̄(.), ū(.)) to be the weak normal extremal of interest. We shall invoke
the following hypotheses, in which f̃(., ., .) denotes the function

f̃(t, x, u) = (f(t, x, u), L(t, x, u)).

(H1) ū(.) is essentially bounded.

(H2) f̃(., x, u) is Lebesgue measurable for each (x, u), and f̃ = (t, ., .) is of class
C2 for each t ∈ [0, T ]; g is of class C2.

(H3) f̃ , f̃x, f̃u, f̃xu, f̃xx and f̃uu are bounded on bounded sets.

(H4) there exists a function θ : R
+ → R

+ such that limα↓0 θ(α)/α = 0 and∣∣∣∣f̃(t, z)−f̃(t, z̄(t))−∇f̃(t, z̄(t))(z−z̄(t))− 1
2
(z−z̄(t))T∇2f̃(t, z̄(t))(z−z̄(t))

∣∣∣∣
≤ θ

(
|(z − z̄(t))|2

)
for all t ∈ [0, T ] and z ∈ R

n × R
m, where z̄(t) = (x̄(t), x̄(t)) and ∇f̃

and ∇2f̃ denote the gradient and Hessian of f̃(t) respectively in the (x, u)
variables.

(H5) (Strengthened Legendre-Clebsch condition.) There exists ε > 0 such that

R(t) > εI for all t ∈ [0, T ] .

The following theorem makes reference to the the matrix equations:{
Ṗ + PA+ATP +Q− (BTP +DT )TR−1(BTP +DT ) = 0
P (.) = PT (.)

(4)

Ṡ + (AT − (BTP +DT )TR−1BT )S = 0 (5)
Ṁ − STBR−1BTS = 0. (6)
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(Here, we have written A(t) as A, etc.)

Theorem 2.1 (The Extended Riccati Sufficient Condition) Let (x̄(.), ū(.)) be
a weak normal extremal for (P). Assume (H1)-(H5) and that (A(.), B(.)) is
controllable on [0, T ] with respect to the periodic boundary conditions.

Suppose that there exist solutions (P (.), S(.),M(.)) to eqns. (4)–(6) on [0, T ]
such that

G+ P (0) + 2S(0) +M(0) − (P (T ) + 2S(T ) +M(T )) > 0 . (7)

Then (x̄(.), ū(.)) is a weak local minimizer.

Recall that the matrix inequality (7), involving a possibly non-symmetric
matrix is interpreted in an ‘inner product’ sense (see Section 1). The theorem
is proved in Section 6.

Comments

1. In the above sufficient condition of optimality, P (T ) is chosen to be a
symmetric matrix, but we do not require S(T ) or M(T ) to be symmetric
matrices; in fact, allowing these matrices to be non-symmetric broadens
the scope of the conditions.

2. The sufficient condition referred to earlier as the Riccati sufficient condi-
tion, namely that there exists a a solution P (.) to (4) on [0, T ], satisfying
G + P (0) − P (T ) > 0, can be interpreted as a special (and therefore
more restrictive) case of the sufficient condition of Theorem 2.1, in which
we limit our selection of (P (T ), S(T ),M(T )) to require S(T ) = 0 and
M(T ) = 0. (Notice that S(T ) = M(T ) = 0, then S(.) = M(.) ≡ 0.)

It is helpful to our understanding of the above optimality conditions at
this stage to introduce some fresh notation. Define D to be the subspace of
R

n×n ×R
n×n ×R

n×n comprising triples (P̄ , S̄, M̄) such that P̄ = P̄T and there
exists a solution (P (.), S(.),M(.)) to (4)-(6) on [0, T ] satisfying

(P (T ), S(T ),M(T )) = (P̄ , S̄, M̄) .

Define V : D → R:

V (P̄ , S̄, M̄) = min
{z | |z|=1}

{
zT [G+P (0)+2S(0)+M(0)−P (T )−2S(T )−M(T )]z

}
.

The extended Riccati sufficient condition can now be expressed

sup
{
V (P̄ , S̄, M̄) | (P̄ , S̄, M̄) ∈ D} > 0 .

This improves on the Riccati sufficient condition

sup
{
V (P̄ , S̄, M̄) | (P̄ , S̄, M̄) ∈ D̃

}
> 0 ,

in which D̃ is the subset

D̃ = {(P̄ , S̄, M̄) ∈ D | S̄ = 0 and M̄ = 0}.
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3. Alternative formulations of the sufficient conditions

The test for weak local optimality implicit in Theorem 2.1, which involves a
search over terminal values of solutions to the matrix differential equations (4)-
(6) that satisfy the condition (7) is not straightforward to apply. The question
arises then whether a set of solutions (P ∗, S∗,M∗) confirming weak local opti-
mality can more easily be identified.

In this section, we provide answers under additional hypotheses. This re-
quires consideration of Hamilton’s system of equations associated with the ac-
cessory problem:{

ẏ = Ay −BR−1(BT p+DT y)
−ṗ = AT p+Qy −DR−1(BT p+DT y) .

Let {Ψ(t, s) | 0 ≤ s, t ≤ T } be the transition matrix associated with Hamil-
ton’s system of equations (H), i.e. for each s ∈ [0, T ], Ψ(., s) satisfies:

{
d
dtΨ(t, s) = AΨ(t, s) a.e. t ∈ [0, T ]
Ψ(s, s) = I

(8)

where

A =
(

A−BR−1DT −BR−1BT

−Q+DR−1DT −AT +DR−1BT

)
.

Partition the matrix Φ(T ) := Ψ(0, T ) into n× n matrices, thus

Φ(T ) =
[

Φ11(T ) Φ12(T )
Φ21(T ) Φ22(T )

]
.

We shall impose the following hypotheses directly on the data for the accessory
problem:
(H6) A(.), Q(.) ∈ L1([0, T ];Rn×n), B(.) ∈ L2([0, T ];Rn×m), D(.) ∈ L2([0, T ];

Rm×n), R(.) ∈ L∞([0, T ];Rm×m) and there exists ε > 0 such that R(t) >
εI for all t ∈ [0, T ].

Theorem 3.1 Assume (H6). Assume, furthermore,
(a) det [Φ12(T )] �= 0.
(b) There exists a solution to (4) on [0, T ].

Under these hypotheses there exists a solution P (.) to (4) on [0, T ] satisfying
the condition

det [Φ11(T ) − Φ12(T )P (T )] �= 0 .

Define

(P ∗, S∗,M∗) = (P (T ), Φ−1
12 (T )[I − Φ11(T ) − Φ12(T )P (T )], 0) .
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Then

sup{V (P̄ , S̄, M̄) : (P̄ , S̄, M̄) ∈ D} = V (P ∗, S∗,M∗) . (9)

(i.e. the supremum value of V (.) is achieved at (P ∗, S∗,M∗)). Furthermore,

sup{V (P̄ , S̄, M̄) : (P̄ , S̄, M̄) ∈ D} = inf{z | |z|=1}z
TWz

where

W := G+ Φ21(T ) + (Φ22(T ) − I)Φ−1
12 (T )(I − Φ11(T )) . (10)

A proof of Theorem 3.1 is given in Section 6. Note that there is an im-
plicit assumption in this theorem that ‘(A(.), B(.)) is controllable on [0, T ]’; this
property follows, in fact, from condition (a). (See Lemma 6.4.)

Combining the assertions of Theorems 2.1 and 3.1, and noting (Lemma 6.4
below) that if the Riccati equation (4) has a solution on [0, T ], then it has a
solution P (.) on [0, T ] with boundary condition P (T ) = αI, for all α sufficiently
large, we arrive at the following ‘sufficiency’ test for a weak local extremal to
be weak local minimizer (under the hypotheses (H1)-(H6)):

(I) det [Φ12(T )] �= 0

(II) the Riccati equation (4) with boundary condition P (T ) = αI has a solu-
tion on [0, T ], for some α > 0

(III) W > 0
where, as before, Φ12(T ), is the upper right hand block component of the parti-
tioned matrix Φ12(T ) obtained from the transition matrix for the Hamiltonian
system, and W is the matrix defined in (10).

An important point here is that the three conditions of this test are suitable
for computations. In particular, condition (II) involves computing the maximal
solution P (.), backwards in time, with right endpoint conditionP (T ) = αI, for
increasing values of the parameter α; the condition is satisfied if, eventually, the
domain includes [0, T ].

Sufficient conditions expressed in terms of the matrix W are a special case
of sufficient conditions derived earlier by Speyer (see Speyer, 1996, and Wang
and Speyer, 1990) for free time periodic optimal control problems.

Finally we make comments on circumstances when the Riccati and the ex-
tended Riccati conditions coincide or, in the terminology of Section 2, when

sup
{
V (P̄ , S̄, M̄) | (P̄ , S̄, M̄) ∈ D} = sup

{
V (P̄ , S̄, M̄) | (P̄ , S̄, M̄) ∈ D̃

}
.

It is clear that, under the hypotheses of Theorem 3.1, this will be the case
when the Riccati equation has a symmetric solution on [0, T ] with right bound-
ary condition

P (T ) = Φ−1
12 (T )(I − Φ11(T )) . (11)
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In this case, (P ∗, S∗,M∗) given by (9) is simply (P ∗, S∗,M∗) = (P (T ), 0, 0) and
a ‘maximizing’ choice of (P (.), S(.),M(.)) for the extended Riccati sufficient
condition can be made in which the matrix functions S(.) and M(.) vanish.
Notice the choice (11) is only possible in the exceptional situation in which
Φ−1

12 (T )(I − Φ11(T )) is a symmetric matrix.

4. Coercivity of the second variation and the extended
Riccati-type optimality conditions

Insights into the strength of sufficient conditions of optimality are gained by
examining their relationship with necessary conditions. The following proposi-
tions, whose proofs appear in Section 6, are of interest in this regard.

Proposition 4.1 Let (x̄(.), ū(.)) be a minimizer for (P). Assume (H1)-(H5) and
that (A(.), B(.)) is controllable on [0, T ] with respect to the periodic boundary
conditions. Then

(i) (x̄(.), ū(.)) is a weak normal extremal, and
(ii)

JA(y, v) ≥ 0 (12)

for all admissible processes (y, v) for the accessory problem.

Proposition 4.2 Assume (H6) and that (A(.), B(.)) is controllable on [0, T ].
Then the following conditions are equivalent:

(a) the following three conditions are satisfied

(I) det[Φ12(T )] �= 0

(II) the Riccati equation (4) has a solution on [0, T ]

(III) W > 0 .

(b) there exists a number γ > 0 such that

JA(y, v) ≥ γ

(
|y(0)|2 +

∫ T

0

|v(t)|2dt
)

(13)

for all admissible processes (y, v) for the accessory problem.

We remark that, under hypothesis (H6), condition (a)(I) implies ‘(A(.), B(.)
is controllable on [0, T ]’, so the a priori controllability hypothesis in the last
proposition is required only to establish ‘(b) implies (a)’.

Conditions (12) and (13) are customarily referred to as ‘positivity’ and ‘co-
ercivity’ of the second variation, respectively. The substance of the preceding
propositions can be summarized as follows. Under the state hypotheses, coer-
civity of the second variation is equivalent to the satisfaction of the three con-
ditions that constitute the ‘sufficiency’ test of the preceding section. Coercivity
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of the second variation itself can be regarded as a more stringent version of the
‘positivity’ of the second variation condition, which is a necessary condition for
a weak normal extremal to be a minimizer.

The above relationships are by no means comprehensive. In the literature
more general relationships linking optimality of an extremal, in some sense,
coercivity/positivity of the second corresponding variation and existence of a
solution to the Riccati equation, have been established, in the absence of con-
trollability hypotheses, for a variety of possible endpoint conditions. (See Stefani
and Zezza, 1997, and references therein.)

5. Speyer’s sailboat problem

In this section we compare the Riccati sufficient and extended Riccati sufficient
conditions, by applying them to the following example⎧⎪⎪⎪⎨⎪⎪⎪⎩

Minimize
∫ 1

0
(x2

1(t) − ax2
2(t) + dx4

2(t) + bu2(t))dt
over x ∈ AC1([0, 1];R2) and u : [0, T ] → R such that
(ẋ1(t), ẋ2(t)) = (x2(t), u(t)) a.e.
(x1(0), x2(0)) = (x1(T ), x2(T )) ,

in which a, b and d are positive parameters; (x̄(.) ≡ 0, (ū(.) ≡ 0) is a weak
normal extremal. The corresponding accessory problem is⎧⎪⎪⎪⎨⎪⎪⎪⎩

Minimize JA(y(.), v(.))
over y ∈ W 1,1([0, T ]; Rn) and v ∈ L2([0, T ]; Rm) such that
ẏ = A(t)y(t) +B(t)v(t) a.e.
y(0) = y(T ).

in which

A =
(

0 1
0 0

)
, B =

(
0
1

)
, Q =

(
1 0
0 −a

)
,

D = 0 , R = b and G = 0 .

This is a fixed time version of a problem earlier studied by Speyer (1996),
as part of an investigation of a phenomenon encountered in aircraft control,
batch processing and other areas, where periodic operation has the potential
to reduce the cost over best steady state operation. We refer to Speyer (1996)
for an interpretation of the above problem, in terms of a tacking strategy for a
sailboat to maximize average speed into the wind.

It is of interest to determine the values of the parameters a and b such that
(ȳ(.) ≡ 0, v̄(.) ≡ 0) is a minimizer for the accessory problem because, in this
case, (x̄(.) ≡ 0, ū(.) ≡ 0) is a weak local minimizer for the original problem, a
situation in which we can expect steady state operation to be optimal.
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Both the Riccati sufficient condition and the extended Riccati sufficient con-
dition can be used to explore the region in (a, b) space such that (ȳ(.) ≡ 0, v̄(.) ≡
0) is a minimizer for the accessory problem. To apply the Riccati sufficient con-
dition, the positive orthant of (a, b) space was discretized, for each discrete value
of (a, b) and an ‘unconstrained optimization without derivatives’ algorithm from
the MATLAB Optimization Toolbox algorithm was used to test the condition:

sup
{
V (P̄ , S̄, M̄) | (P̄ , S̄, M̄) ∈ D̃

}
> 0 ,

in which D̃ is the subset

D̃ = {(P̄ , S̄, M̄) ∈ D | S̄ = 0 and M̄ = 0}.

(According to the Riccati sufficiency test, a positive supremum value indicates
(ȳ(.) ≡ 0, v̄(.) ≡ 0) is a minimizer for the accessory problem.)

Applying the extended Riccati sufficient condition, on the other hand, in-
volved assessing the singularity of the Φ12 block of the the transition matrix of
the Hamiltonian system, carrying out a simple line search for a solution to the
Riccati equation on [0, T ] and testing the inequality ‘W > 0’. (See Section 3.)

The region in (a, b) space above the upper line in Fig. 1 corresponds to (a, b)
values for which the Riccati sufficient condition guarantees that (ȳ(.) ≡ 0, v̄(.) ≡
0) is a minimizer for the accessory problem. We see that the extended Riccati
sufficient condition provides significantly more information, regarding situations
in which (ȳ(.) ≡ 0, v̄(.) ≡ 0) is a minimizer for the accessory problem, than does
the Riccati sufficient condition. It is noted also that the computational burden
was considerably reduced by the use of the extended Riccati sufficient condition
in place of the Riccati sufficient condition.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

a

b

Riccati sufficient condition 

 Extended Riccati sufficient condition

Figure 1. Regions for which the Riccati and the extended Riccati sufficient
conditions predict that (y(.)=0, v(.)=0) is a minimizer for the accessory problem
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The above example shows up the deficiencies of sufficient conditions, ex-
pressed simply in terms of a Riccati equation, for problems with mixed boundary
conditions. An example in Stefani and Zezza (1997) illustrates the deficiencies
of such conditions, for problems with separated boundary conditions, but with
a cost function involving both endpoints.

6. Preliminary analysis

Throughout this section, (x̄(.), ū(.)) is a given weak normal extremal. The
following lemma summarizes well-known estimates linking problem (P) and the
accessory problem. Since these estimates have a key role in the derivation of
second order optimality conditions for (P), and in the interests of a self-contained
treatment, a proof is given in the appendix (see also Zeidan, 2001).

Lemma 6.1 Assume (H1)–(H5) and that (A(.), B(.)) is controllable on [0, T ]
with respect to the periodic boundary conditions. Then

(i) Given any δ > 0, there exists ε > 0 with the following properties: given
any admissible process (x(.), u(.)) for (P ) such that

‖x− x̄‖L∞ ≤ ε, ‖u− ū‖L∞ ≤ ε,

there exists an admissible process (y, v) for the accessory problem such that

J(x, u) − J(x̄, ū) ≥ JA(y, v) − δ

[∫ T

0

|v|2dt+ |y(0)|2
]
.

(ii) Let (y, v) be an admissible process for the accessory problem. Then there
exists ᾱ > 0, a family of admissible processes {(xα, uα) | 0 ≤ α ≤ ᾱ}
for (P ) and functions ε(.), η(.) : R

+ → R
+ such that limα↓0ε(α) =

0, limα↓0η(α) = 0 and

‖xα − x̄‖L∞ ≤ ε(α), ‖uα − ū‖L∞ ≤ ε(α) (14)

|J(xα, uα) − J(x̄, ū) − JA(αy, αv)| ≤ η(α)

[∫ T

0

|αv|2dt+ |αy(0)|2
]

(15)

for all α ∈ [0, ᾱ].

Lemma 6.2 Assume (H6). Suppose that the system of equations (4)–(6) has a
solution (P (.), S(.),M(.)) on [0, T ]. Then for any process (y, v) for the accessory
problem such that y(0) = y(T ) we have

2JA(y, v) ≥ yT (0) [G+ P (0) + 2S(0) +M(0) − (P (T ) + 2S(T ) +M(T ))] y(0)
(16)
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Furthermore, the above relationship is satisfied with equality if

v(t) = −R−1[(PB +D)T y(t) +BTSy(0)] for all t ∈ [0, T ] .

Proof. Take a process (y, v) for the accessory problem satisfying y(0) = y(T ).
Define

s(t) = S(t)y(T ) and m(t) = yT (T )M(t)y(T ).

Notice that s(.) and m(.) satisfy the differential equations{
ṡ(t) + (AT − (BTP +DT )TR−1BT )s(t) = 0
s(T ) = S(T )y(T )

and {
ṁ(t) − sT (t)BR−1BT s(t) = 0
m(T ) = yT (T )M(T )y(T ) .

The cost of (y, v) can be expressed as

2JA(y, v) =
∫ T

0

yTQy + 2yTDv + vTRvdt+ yT (0)Gy(0) (17)

+
∫ T

0

d

dt
[yTPy + 2sT y +m]dt− (yTPy + 2sT y +m)|T0 .

We calculate, for each t ∈ [0, T ],

yTQy + 2yTDv + vTRv +
d

dt
[yTPy + 2sTy +m]

= yT [Ṗ + PA+ATP +Q]y + 2(ṡT + sTA)y + ṁ+ vTRv

+2(yTD + yTPB + sTB)v

≥ yT [Ṗ + PA+ATP +Q]y + 2(ṡT + sTA)y + ṁ

−[(PB +D)T y +BT s]TR−1[(PB +D)T y +BT s] (since R > 0)

= yT [Ṗ + PA+ATP +Q− (PB +D)R−1(PB +D)T ]y

+2yT [ṡ+ (AT − (PB +D)R−1BT )s] + (ṁ− sTBR−1BT s) = 0.

Furthermore, the above relations are satisfied with equality if

v(t) = −R−1[(PB +D)T y(t) +BTS(t)y(T )]. (18)

Since y(0) = y(T ), we deduce from equation (17) that

2JA(y, v) ≥ yT (0)
[
G+ P (0) + 2S(0) +M(0)

−(P (T ) + 2S(T ) +M(T ))
]
y(0)

with equality when (18) is satisfied.
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Lemma 6.3 Assume (H6). Assume furthermore that
(a) det [Φ12(T )] �= 0.

(b) There exists a solution P (.) on [0, T ] to (4) such that

det [Φ11(T ) − Φ12(T )P (T )] �= 0 .

Then, for all ξ ∈ R
n,

Min{2JA(y, v) | y(0) = y(T ) = ξ}
= ξT (G+ P (0) + 2S(0) +M(0) − (P (T ) + 2S(T ) +M(T ))) ξ
= ξT

(
G+ Φ21(T ) + (Φ22(T ) − I)Φ−1

12 (T )[I − Φ11(T )]
)
ξ .

Here, S(.),M(.)) are solutions to equations (5) and (6), with boundary condi-
tions

S(T ) = Φ−1
12 (0, T )[I − Φ11(0, T )− Φ12(T )P (T )] and M(T ) = 0 ,

and the Φij ’s are block components of the transition matrix for the Hamiltonian
system.

Proof. Fix ξ ∈ Rn. Let (y, v) be the process for the linearized system defined
by the feedback relation⎧⎨⎩

ẏ = Ay +Bv
v = −R−1[(DT +BTP )y +BTS(t)ξ]
y(0) = ξ.

(19)

Define

p(t) = P (t)y(t) + S(t)ξ.

Notice that

p(T ) = P (T )y(T ) + Φ−1
12 (0, T )[I − Φ11(0, T )− Φ−1

12 (0, T )P (T )]ξ.

and

v = −R−1[DT y +BT p] .

We have

ṗ(t) = Ṗ (t)y(t) + Ṡ(t)ξ + P (t)ẏ(t)

= −[ATP + PA+Q− (BTP +DT )TR−1(BTP +DT )]y(t)

+P [Ay−BR−1(BT (Py + Sξ))+DT y]−(AT −(BTP+DT )TR−1BT )Sξ .

Gathering and cancelling terms gives

−ṗ = AT (Py + Sξ) +Qy −DR−1BT (Py + Sξ) −DR−1DT y
= AT p+Qy −DR−1(BT p+DT y).
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Also,

ẏ = Ay −BR−1(BT (Py + Sξ) +DT y)
= Ay −BR−1(BT p+DT y).

We have shown that (y, p) satisfies Hamilton’s system of equations. Since y(0) =
ξ,

y(0) = Φ11(0, T )y(T ) + Φ12(0, T )p(T )
= Φ11(0, T )y(T )

+ Φ12(0, T )[P (T )y(T ) + Φ−1
12 (0, T )(I − Φ11(0, T ) − Φ12(T )P (T ))]y(0).

It follows that

[Φ11(T ) + Φ12(0, T )P (T )](y(T )− y(0)) = 0 .

Since, by assumption, [Φ11(T ) + Φ12(0, T )P (T )] is invertible, we conclude that

y(0) = y(1) = ξ . (20)

Noting Lemma 6.2, we deduce from (19) and (20) that

Min{2JA(y′, v′) | y′(T ) = y′(0) = ξ}
= 2JA(y, v)

= ξT [G+ P (0) + 2S(0) +M(0) − (P (T ) + 2S(T ) +M(T ))]ξ .

Note next that, for a.e. t ∈ [0, T ], we have (writing y for y(t) etc.)

yTQy + 2yTDv + vTRv +
d

dt
(pT y)

= yTQy + 2yDv + vTRv + pT (Ay +Bv)

+yT [(−Q+DR−1DT )y + (−AT +DR−1BT )p]

= −2yTDR−1[DT y +BT p] − pTBR−1[DT y +BT p]

+yTDR−1DT y + yTDR−1BT p

= 0 .

Integrating across this equation yields

2JA(y, v) = −
∫ T

0

d

dt
pT ydt+ yT (T )GyT (T )

= pT (0)y(0) − pT (T )y(T ) + yT (T )Gy(T ) .

But since y(0) = y(T ) = ξ, we have

ξ = Φ11(T )ξ + Φ12(T )p(T )
p(0) = Φ21(T )ξ + Φ22(T )p(T ) .
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Hence
p(T ) = Φ−1

12 (T )[I − Φ11(T )]ξ
p(0) = (Φ21(T ) + Φ22(T )Φ−1

12 (T )[I − Φ11(T )])ξ .

We conclude that
2JA(y, v) = ξT

(
Φ21(T ) + (Φ22(T ) − I)Φ−1

12 [I − Φ11(T ) +G]
)
ξ .

This identity completes proof of the lemma.

Lemma 6.4 Assume (H6). Suppose that det{Φ(T )} �= 0. Then (A(.)B(.)) is
controllable in [0, T ].

Proof. Take any ξ ∈ Rn. Since det{Φ12(T )} �= 0, we can choose (y, p) to be
a solution to Hamilton’s system of equations with right boundary condition
(y(T ), p(T )) = (ξ,−Φ−1

12 (T )ξ). Let v be the control v = −R−1(DT y + BT p. It
is straightforward to check that (y, v) is a process for (A) that satisfies y(0) = 0
and y(T ) = ξ. Since ξ is arbitrary, we deduce that (A(.), B(.)) is controllable.

Lemma 6.5 Assume (H6). Suppose that there exists a solution P ′(.) to the Ric-
cati equation (4) on [0, T ] with right boundary condition P ′(T ) = E′, for some
symmetric matrix E′. Then, (4) has a solution on [0, T ] with right boundary
P (T ) = E for any symmetric matrix such that E ≥ E′.

Proof. Suppose that the Riccati equation (4), with right boundary condition
P (t) = E, has a solution P (.) on some sub-interval [S, T ] ⊂ [0, T ]. A standard
argument from the theory of differential equations permits us to conclude that
this solution can be extended to all of [0, T ], provided that we can find a positive
number K, independent of S such that

|P (s)| ≤ K . (21)

(Throughout this proof, the norm on symmetric n× n matrices is the operator
norm induced by the Euclidean norm on R

n.) We now establish existence of
such a K.

Fix ξ ∈ R
n and and let y(.) be the solution to the linearized system equation

on [S, T ] with boundary condition y(S) = ξ generated by the linear feedback
control law:

v(t) = −R−1(BTP +DT )y(t) .

We have, writing 2LA(., ., .) for the cost integrand in the accessory problem,

ξTP (S)ξ = ξTP (T )ξ −
∫ T

S

d

dt
P (t)dt

=
∫ T

S

LA(t, y, v)dt+ y(T )TE(S)y(T )
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= Min (y′,v′){
∫ T

S

LA(t, y′, v′)dt+ y′(T )TE(S)y′(T ) | y′(S) = ξ}

≥ Min(y′,v′){
∫ T

S

LA(t, y′, v′)dt+ y′(T )TE′(S)y′(T ) | y′(S) = ξ}

= ξTP ′(S)ξ ≥ −K1|xi|2 .

Here, K1 is a uniform bound on |P ′(t)|, 0 ≤ t ≤ T , that does not depend on S
or ξ.

Consideration of the suboptimal process (z(.), w(.) ≡ 0) on [S, T ] with right
boundary condition z(S) = ξ establishes that

ξTP (S)ξ = Min {
∫ T

S

LA(t, y′, v′)dt+ y′(T )TE(S)y′(T ) | y′(S) = ξ}

≤
∫ T

S

LA(t, z, w)dt+ z(T )TE(S)z(T ) | z(S) = ξ}
≤ K2|ξ|2 ,

for some number K2 that does not depend on S or ξ.
The desired bound (21) follows from the above the relationships, with K =

max{K1,K2}.

7. Proofs of Theorems 2.1 and 3.1 and Propositions 4.1
and 4.2

Proof of Theorem 2.1

Suppose there exists r > 0 and (P (.), S(.),M(.)) with the stated properties.
Then, by continuous dependence properties of solutions to differential equations,
there exist α > 0 such that R(t)−αI is positive definite, for all t, and also such
that there exist solutions (P̃ (.), S̃(.), M̃(.)) to modified versions of (4)–(6), in
which R− αI replaces R respectively, and

(P̃ (T ), S̃(T ), M̃(T )) = (P (T ), S(T ),M(T )).

By reducing the size of α, if necessary, we can arrange that

ξT [G+ P̃ (0) + 2S̃(0) + M̃(0) − (P̃ (T ) + 2S̃(T ) + M̃(T ))]ξ >
r

2
|ξ|2

for all ξ ∈ R
n. Take any δ > 0. According to Lemma 6.1, we can choose ε > 0

such that, corresponding to any admissible process (x(.), u(.)) for (P ) such that

‖(x, u) − (x̄, ū)‖L∞ ≤ ε , (22)
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there exists an admissible process (y, v) for the accessory problem such that

J(x, u) − J(x̄, ū) ≥ JA(y, v) − δ

[∫ T

0

|v|2dt+ |y(0)|2
]
.

Write

J̃A(y, v) :=
1
2

∫ T

0

(
yT (t)Q(t)y(t) + 2yT (t)D(t)v(t) + vT (t)[R(t) − αI]v(t)

)
dt

+
1
2
yT (T )Gy(T ) .

Choose any such (x, u) (and corresponding (y, v)). Then

J(y, v) = J̃A(y, v) + α

∫ T

0

|v2|dt.

It follows now from Lemma 6.2, applied to the accessory problem with modified
cost J̃A, that

2J̃A(y, v) ≥ y(0)T [G+ P̃ (0) + 2S̃(0) + M̃(0) − (P̃ (T ) + 2S̃(T ) + M̃(T ))]y(0)

≥ r

2
|y(0)|2.

Now choose δ > 0 such that δ ≤ min{r/4, α/4}. Then

J(x, u) − J(x̄, ū) ≥ J̃A(y, v) + (α− δ)
∫ T

0

|v|2dt− δ|y(0)|2

≥ (
r

2
− δ)|y(0)|2 + (α− δ)

∫ T

0

|v|2dt

≥ (
r

4
)|y(0)|2 + (

α

2
)
∫ T

0

|v|2dt ≥ 0.

We have shown that (x̄, ū) is a minimizer with respect to all admissible
processes (x, u) satisfying (22).

Proof of Theorem 3.1

Suppose that the Riccati equation (4) has a solution P ′(.) on [0, T ]. Then
αI ≥ P ′(T ), for some all α sufficiently large. Choose such an α. It follows from
Lemma 6.5 that the Riccati equation (4) has a solution on [0, T ], with right
boundary value αI. Notice next that, since Φ12(T ) is assumed to be invertible,
we can write

Φ11(T ) − αΦ12(T ) = αΦ−1
12 (T )[α−1Φ−1

12 (T )Φ11(T ) − I] .

It follows from this identity that, if we adjust α also to satisfy

α ≥ |Φ−1
12 (T )||Φ11(T )| ,
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then we retain a solution P (, ) to the Riccati equation (4) on [0, T ], but now also
with the property that the matrix (Φ11(T )−Φ12(T )P (T )) is invertible. (In the
above identity the matrix norms are operator norms generated by the Euclidean
norm.) The first assertion of the theorem is proved. The remaining assertions
of the theorem follow from Lemma 6.3.

Proof of Proposition 4.1

Suppose, in contradiction, that there exists an r > 0 and an admissible process
(y, v) for the accessory problem such that

JA(y, v) < −r.

Take any ε > 0. Let {(xα, uα)|α ∈ [0,+ᾱ]}, ε(.) and η(.) be as in part (ii) of
Lemma (6.1). Then for all α ∈ (0, ᾱ]

J(xα, uα) − J(x̄, ū) ≤ JA(αy, αv) + η(α)

[∫ T

0

|αv|2dt+ |αy(0)|2
]
.

Dividing across by α2 and noting that JA(αy, αv) = α2JA(y, v) we have

α−2(J(xα, uα) − J(x̄, ū)) ≤ −r + η(α)K

where

K =
∫ {|v|2dt+ |y(0)|2} .

It follows that, if we choose α ∈ (0, α] such that ε(α) < ε and η(α) < r
K then

‖(xα, uα) − (x̄, ū)‖L∞ ≤ ε and J(xα, uα) − J(x̄, ū) < 0.

Since ε > 0 was arbitrary, we conclude that (x̄, ū) cannot be a weak local
minimizer.

Proof of Proposition 4.2

Assume (a). Then there exist r > 0 and α > 0 such that R(t) − αI is positive
definite, for all t, and also solutions (P̃ (.), S̃(.), M̃(.)) to modified versions of
(4)–(6), in which R− αI replaces R respectively, and

(P̃ (T ), S̃(T ), M̃(T )) = (P (T ), S(T ),M(T ))

and

ξTWξ >
r

2
|ξ|2
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for all ξ ∈ R
n. For any admissible process (y, v) for the accessory problem write

J̃A :=
1
2

∫ T

0

(
yT (t)Q(t)y(t) + 2yT (t)D(t)v(t) + vT (t)[R(t) − αI]v(t)

)
dt

+
1
2
yT (T )Gy(T ) .

We have

J̃A(y, v) = JA(y, v) + α

∫ T

0

|v|2dt .

From Lemma 6.2,

J̃A(y, v) ≥ yT (0)TWy(0)T ≥ r

2
|y(0)|2 .

But then

JA(y, v) ≥ γ[|y(0)|2 + α

∫ T

0

|v|2dt]

where γ = min{ r
2 , α}. (b) is confirmed.

Assume (b). We must confirm conditions (I), (II) and (III).

(I) Suppose, in contradiction, that det [Φ12(T )] = 0. Then there exists ξ �= 0
such that Φ12(T )ξ = 0. Let (y, p) be the solution to the Hamiltonian system
with boundary condition

(y(T ), p(T )) = (0, ξ)

and define the control v

v = −R−1(DT y +BT p) .

Since Φ12(T )ξ = 0, we know y(0) = 0. It follows that (y, v) satisfies the periodic
boundary conditions. Arguing as in the proof of Lemma 6.3, we show that

2JA(y, v) = pT (0)y(0) − pT (T )y(T ) + yT (T )Gy(T ) = 0 .

It follows that (y, v) is a minimizer for the accessory problem. By (b), however,
(ȳ, v̄) ≡ (0, 0) is the only minimizer. Consequently, (y, v) ≡ (0, 0). We deduce
from Hamilton’s equations that (p, v) satisfy{ −ṗ = −AT p

v = BT p

But p(T ) �= 0. It follows from the assumption that (A(.), B(.)) is controllable
on [0, T ] that v �= 0. From this contradiction, we deduce that (I) is true.
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(II) (ȳ, v̄) ≡ (0, 0) is, in particular, a minimizer for a variant of the accessory
problem in which both endpoints of state trajectories are constrained to be zero
vectors. It follows from Hestenes (1951, Thms. 13.2 and 13.3) that there exists
c > 0 such that (ȳ, v̄) ≡ (0, 0) is a minimizer for the problem without endpoint
constraints⎧⎪⎨⎪⎩

Minimize
∫ T

0
LA(t, y(t), v(t))dt + c[|y(0)|2 + |y(T )|2]

over y ∈ W 1,1 and v ∈ L2 such that
ẋ = Ax+Bu .

Here (1/2)LA is the cost integrand of the accessory problem. The Riccati equa-
tion has a solution P (.), with boundary condition P (T ) = cI on some interval
[S, T ]. It suffices to show that there exist constants α1 > 0 and α2 > 0, inde-
pendent of S, such that

−α1I ≤ P (S) ≤ α2I ,

for then the solution can be extended to all of [0, T ].
Take any ξ ∈ R

n. Let (y′(t), v′(t)), S ≤ t ≤ T, be the process for the
accessory problem on [S, T ] defined by the initial condition y′(s) = ξ and the
feedback relation

v′ = −R−1(BTP +DT )y′ .

Let (y, v) be the process such that

v(t) =
{
v′(t) if t > S
0 if t ≤ S

and y(S) = ξ. It follows from a standard ‘dynamic programming’ analysis that

ξTP (S)ξ =
∫ T

S

LA(t, y(t), v(t)) + c|y(T )|2.

It is easily shown that α1 can be chosen, independent of S and ξ, such that∣∣∣∣∣
∫ S

0

LA(t, y(t), v(t))dt + c|y(0)|2
∣∣∣∣∣ ≤ α1|ξ|2 .

But then, since (ȳ ≡ 0, v̄ ≡ 0) is a minimizer for the above problem,

0 ≤
∫ T

0

LA(t, y(t), v(t))dt + c(|y(0)|2 + |y(T )|2)

=
∫ S

0

LA(t, y(t), v(t))dt + c|y(0)|2 +
∫ T

S

LA(t, y(t), v(t))dt + c|y(T )|2

≤ α1|ξ|2 + ξTP (S)ξ .

It follows that −α1I ≤ P (S).



638 J. ALLWRIGHT, R. VINTER

For any ξ ∈ R
n choose (y, v) to be the process on [S, T ] defined by v ≡ 0

and y(S) = ξ. We can find α2 > 0, independent of S and ξ, such that

ξTP (S)ξ ≤
∫ T

S

LA(t, y(t), v(t))dt + c|y(T )|2 ≤ α2|ξ|2 .

It follows that P (S) ≤ α2I . (II) has been confirmed.

(III) We have shown that conditions (I) and (II) are satisfied. It follows from
Lemma 6.3 that, for any ξ ∈ Rn,

ξTWξ =
1
2

min{JA(y, v) | y(0) = y(T ) = ξ}.

It follows from (b) that W > 0. (III) is confirmed.
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Appendix: Proof of Lemma 6.1

(i) Fix δ > 0. Let ε be a number, satisfying 0 < ε ≤ 1, whose value will be
chosen presently. Take any process (x, u) satisfying x(0) = x(T ) and

‖(∆x,∆u)‖L∞ ≤ ε (23)
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where

∆x := (x− x̄) and ∆u := (u− ū).

Let z(.) be the solution to the linearized equation

ż(t) = A(t)z(t) +B(t)∆u

with boundary condition z(0) = ∆x(0). It can be deduced from the fact that
the control system (A(.), B(.)) is (I;−I) controllable on [0, T ] that there exists
a control v(.) and a state trajectory y(.) for (S) such that y(0) = y(T ) and

||(y, v) − (z,∆u)||L∞ ≤ K1|z(T )− z(0)| (24)

for some constant K1, which does not depend on our choice of (x, u). In view
of (H4), there exists K2, independent of (x, u), such that∫

|∆ẋ −A(t)∆x −B(t)∆u|dt =∫ T

0

|f(t, x, u) − f(t, x̄(t), ū(t)) − fx(t, x̄(t), ū(t))∆x − fu(t, x̄(t), ū(t))∆u|dt

≤ K2

∫ T

0

(|∆x|2 + |∆u|2) dt .

By Filippov’s Existence Theorem (see, e.g. Vinter, 2000), there exists K3,
independent of (x, u), such that

‖ z − ∆x ‖L∞ ≤ K3

∫ T

0

(|∆x|2 + |∆u|2) dt.
By (24) and the triangle inequality,

‖(y, v) − (∆x,∆u)‖L∞ ≤ (1 + 2K1)K3

∫ T

0

(|∆x|2 + |∆u|2) dt . (25)

But∫ T

0

(|∆x|2 + |∆u|2) dt ≤ 2
∫ T

0

(|y|2+ |v|2)dt+2
∫ T

0

(|y−∆x|2 + |v−∆u|2)dt .
(26)

By (23) and (25) and the triangle inequality

‖(y, v)−(∆x,∆u)‖L∞ ≤ 2(1+K1)K3T ε
2 and ‖(y, v)‖L∞ ≤ ε+2(1+K1)K3T ε

2 .

(27)
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From (25), then,∫ T

0

(|y − ∆x|2 + |v − ∆u|2) dt ≤ 4(1+K1)2K2
3T

2ε2
∫ T

0

(|∆x|2 + |∆u|2) dt .
It follows now from (26) that if ε is chosen to satisfy 8(1 + K1)2K2

3T
2ε2 < 1,

then ∫ T

0

[|∆x|2 + |∆u|2] dt ≤ K4

∫ T

0

(|y|2 + |v|2) dt (28)

where K4 = 2[1 − 8(1 +K1)2K2
3T

2ε2]−1.
Now consider the difference in cost between (x, u) and (x̄, ū):

∆J(x, u) :=
∫ T

0

[L(t, x(t), u(t)) − L(t, x̄(t), ū(t))]dt+ g(x(0)) − g(x̄(0)).

We can write

∆J(x, u) =
∫ T

0

(L(t, x(t), u(t)) − L(t, x̄(t), ū(t))) dt+ g(x(0)) − g(x̄(0))

−
∫ T

0

p(t) · [(ẋ− ˙̄x) − (f(t, x(t), u(t)) − f(t, x̄(t), ū(t)))] dt .

Integrating by parts, making use of the costate arc equation and transver-
sality conditions and noting that x(0) = x(T ), we deduce

−
∫ T

0

p(t) · (ẋ − ˙̄x) dt =

−∇g(x̄(0)) · (x(0) − x̄(0))

−
∫ T

0

(p(t) · fx(t, x̄(t), ū(t)) + Lx(t, x̄(t), ū(t)))∆xdt .

Since, Hu(t, x̄(t), p(t), ū(t)) = 0 a.e.,

∆J(x, u) =
∫ T

0

[H(t, x(t), p(t), ū(t)) −Hu(t, x̄(t), p(t), ū(t))

−Hx(t, x̄(t), p(t), ū(t))(x(t) − x̄(t)) −Hu(t, x̄(t), p(t), ū(t))(u(t) − ū(t))] dt
+g(x(0)) − g(x̄(0)) −∇g(x̄(0)) · (x(0) − x̄(0)).

But then

∆J(x, u) ≥ 1
2

∫ T

0

(∆x,∆u)T∇2H(t, x̄(t), p(t), ū(t))(∆x,∆u)dt

+
1
2
(x(0) − x̄(0))T∇2g(x̄(0))(x(0) − x̄(0))

−η(ε)
[∫ T

0

(|∆x|2 + |∆u|2)dt+ |∆x(0)|2
]
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for some function η : R
+ → R

+ (independent of (x, u)), such that η(ε) ↓
0 as ε ↓ 0. We deduce from (23) and (25) that there exists a constant K5

such that

∆J(x, u) ≥ 1
2

∫ T

0

(y, v)T∇2H(t, y(t), p(t), v(t))(y, v)dt

+
1
2
y(0)T∇2g(x̄(0)) y(0) − η(ε)

[∫ T

0

(|∆x|2 + |∆u|2) dt+ |∆x(0)|2
]

− K5e

where

e = ‖(y, v) − (∆x,∆u)‖L∞ . (‖(y, v)‖L∞ + ‖(∆x,∆u)‖L∞) .

But in view of (25) and (27) and since ε ≤ 1 we have

e ≤ εK6

∫ T

0

(|∆x|2 + |∆u|2) dt
for some constant K6. We also have

|∆x(0)|2 ≤ |y(0)|2 + |y(0) + ∆x(0)|.|y(0) − ∆x(0)|

≤ |y(0)|2 + εK7

∫ T

0

(|∆x|2 + |∆u|2) dt
for some constant K7. It follows that for arbitrary (x, u),

∆J(x, u) ≥ 1
2

∫ T

0

(y, v)T∇2H(t, y(t), p(t), v(t))(y, v)dt +
1
2
y(0)T∇2g(x̄(0)) y(0)

− (η(ε) + εK5K6 + η(ε)K7)

[∫ T

0

(|y|2 + |v|2)dt+ |y(0)|2
]
.

But there exists a constant c > 0 such that, for any process for the accessory
problem we have∫ T

0

|y|2dt ≤ c[
∫ T

0

|v|2dt+ |y(0)|2] .

It follows that, if we choose ε additionally to satisfy the condition

(1 + c) (η(ε) + εK5K6 + η(ε)K7ε) ≤ δ

then,

∆J(x, u) ≥ δ[
∫ T

0

|v|2dt+ |y(0)|2] .

This is the desired inequality.
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(ii) Let ξ1, . . . , ξn be linearly independent vectors in R
n. Since the linearized

system is [I,−I]-controllable, we can choose control functions v1, . . . , vn and
corresponding state trajectories y1, . . . , yn for the linearized system (S), such
that

yi(T ) − yi(0) = ξi for i = 1, . . . , n .

For each α ∈ R and λ ∈ R
n such that |α| + |λ| is sufficiently small, define

xα,λ(t) := x(t; ū+ αv +
∑

i

λivi, x̄(0) + αy(0) +
∑

i

λiyi(0))

where, for any control function u′ and initial state x0 ∈ R
n, x(.;u′, x0) is the

solution to{
ẋ(t) = f(t, x(t), u′(t))
x(0) = x0 .

Now, consider the equation

ψ(α, λ) = 0 ,

where the R
n-valued function ψ(., .) is defined on a neighbourhood of the origin

in R × R
n according to

ψ(α, λ) = xα,λ(T ) − xα,λ(0) .

By standard ‘continuous dependence’ results from the theory of differential
equations, ψ is a C2 function on some neighbourhood of (0, 0). We see that
ψ(0, 0) = 0 . Since ∇λψ(0, 0) = [ξ1, . . . , ξn]T is invertible, we deduce, further-
more, from the implicit function theorem that there exists a C2 function λ(.)
on some interval [−α′,+α′] such that

λ(0) = 0 (29)

and

ψ(α, λ(α)) = 0 for all [−α′,+α′]. (30)

Notice that

0 =
d

dα
ψ(0, λ(0)) = ∇αψ(0, 0) + ∇λψ(0, 0)

d

dα
λ(0) .

Hence
d

dα
λ(0) = −∇−1

λ ψ(0, 0)∇αψ(0, 0) = ∇−1
λ ψ(0, 0)(y(T )− y(0)) = 0 . (31)

Now define

xα = xα,λ(α) and uα = ū+ αv +
∑

λi(α)vi.
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Then, by (30),

xα(T ) = xα(0) for all α ∈ [0, α′].

A routine analysis, based on Filippov’s Existence Theorem and the use of (29)
and (31) yields a constant K > 0 such that, for all sufficiently small values of α,

‖xα − x̄− αy‖L∞ , ‖uα − ū− αv‖L∞ ≤ K|α|2 . (32)

Writing

∆J(xα, uα) = J(xα, uα) − J(x̄, ū)

yields

∆J(xα, uα) = ∆J(xα, uα)+
∫ T

0

p(t) · [ẋα − f(t, xα, uα)− ˙̄x+ f(t, x̄, ū)]dt (33)

for all α sufficiently small.
The second order expansion techniques employed in the proof of part (i) of

this Lemma, based on (32) and (33) permit us to conclude the existence of a
function η : R

+ → R
+ such that limα↓0 η(α) = 0 and (14) and (15) are satisfied

for all α ∈ [0, ᾱ].


