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Universidade de Aveiro, Portugal
e-mail: dfcs@estga.ua.pt

Abstract: This work contains examples of regular 2D problems
of the Calculus of Variations which exhibit stable Lavrentiev phe-
nomenon, under different types of boundary conditions.

Keywords: multidimensional calculus of variations, Lavrentiev
phenomenon.

1. Introduction

Given an open set Ω ⊂ R
n and a function f : Ω×R

m×R
nm −→ R, we consider

the problem of finding

inf
u∈A

[∫
Ω

f(x, u(x),∇u(x)) dx

]
. (1)

Here A ⊂ W 1,p(Ω) is a class of admissible mappings from Ω to R
m. For each

p ∈ [1, +∞], W 1,p(Ω) are the usual Sobolev spaces.
Roughly speaking, the minimization problem is said to exhibit the Lavrentiev

phenomenon when the above infimum depends on p. In 1926, Lavrentiev (1927)

proved that the infimum of the functional
∫ 1

0

e
− 2

(u−√
x)2 f(u′) dx, over the class
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of absolutely continuous functions, subject to boundary conditions u(0) = 0
and u(1) = 1, is strictly less than the infimum over the class of continuously
differentiable functions meeting the same boundary conditions, with the function
f satisfying certain conditions (see Lavrentiev, 1927, pp.23-25). More one-
dimensional examples have been constructed after the Lavrentiev’s one. The
most frequently referred to is the one of Manià from 1934 (see Dacorogna, 1989;
Manià, 1934). The integrand for Manià’s example is the polynomial f(x, u, u′) =(
u3 − x

)2
u′6 and the associated functional exhibits the W 1,1−W 1,∞ Lavrentiev

gap.

In the 1980’s Ball and Mizel (1985) constructed an example, in 1D, of a
regular functional of the Calculus of Variations which exhibits the Lavrentiev
phenomenon. We recall that the problem (1) is called regular when the inte-
grand f(x, u(x),∇u(x)) is coercive and convex with respect to gradient. There
has been an extensive study of this and Manià-type examples in 1D; among
publications we mention Loewen (1987). The later class of examples has been
extended by constructing in Sarychev (1985) regular autonomous second-order
1D functionals which possess the Lavrentiev gap.

There are several other examples of functionals exhibiting the Lavrentiev
phenomenon as well as results of Lipschitzian regularity of minimizers which,
obviously, preclude the occurrence of the Lavrentiev phenomenon. Clarke and
Vinter (1985) establish the Lipschitzian regularity for a class of autonomous
integrands. More recent results on the subject, extending the results presented
in Clarke and Vinter (1985), may be found in Torres (2003) and Ornelas (2004).

In comparison with the one-dimensional case, less is known for multidi-
mensional problems. We would like to mention a work by Foss (2003), who
constructed functionals, in 2D, whose infimum depends continuously upon the
exponent of the Sobolev space from which the competing functions are taken.
Some other examples in more than one dimension can be found in Alberti and
Majer (1994), Zhikov (1995) and Foss, Hrusa and Mizel (2003). For a survey
on this subject, see Buttazzo and Belloni (1995) and references therein.

Here we extend the example of Manià to two dimensions, thus obtaining 2D
examples where the W 1,p − W 1,∞ Lavrentiev gap occurs. Furthermore, using
the procedure of Ball and Mizel (1985) and Loewen (1987), we establish that
the phenomenon persists for certain perturbations on the integrands, i.e., the
occurrence of the phenomenon is stable. Thus we arrive at a class of functionals
whose integrands are coercive and convex with respect to gradient and which
exhibit the Lavrentiev phenomenon.

We also construct examples for the problems of the calculus of variations
with different types of boundary conditions.
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2. Main result: 2D example of the Lavrentiev
phenomenon

Throughout the paper we will only consider Ω =]0, 1[×]0, 1[ and

Ap :=
{
u ∈ W 1,p(Ω) : u(s, 0) = 0 ∧ u(s, 1) = 1, ∀s ∈ [0, 1]

}
, (2)

for each p ∈]2, +∞] .
As is well-known, for the values of p we are considering, W 1,p(Ω) ⊂ C(Ω).

Thus, given any u ∈ W 1,p(Ω), there is always one continuous representative that
extends continuously to the boundary. When dealing with pointwise properties
of such an u in this paper, we always assume that we are using its continuous
representative. In particular, in this sense the consideration of the boundary
values in (2) makes sense.

The main result of this paper is the following:

Theorem 2.1 Let the constants l, k, m, r be positive and satisfy the conditions

k < l < 2k, 2m ≥ 2k + 1
l − k

l, 2 < r <
l

(l − k)
, l, m ∈ N.

Then there exists ε0 > 0 such that, for all 0 < ε < ε0, the variational problem

Jε[u] =
∫

Ω

(
ul − tk

)2 |∇u|2m +ε |∇u|r ds dt −→ inf, u(s, 0) = 0, u(s, 1) = 1

(3)

exhibits the W 1,p − W 1,∞ Lavrentiev gap for any p ∈
(
2, 1

1− k
l

)
.

The integrand in (3) is coercive. Besides, if, in addition, l < 4
3k, r ≥ 4,

then the integrand is convex with respect to the gradient.

Example 2.1 We may choose, for example, k = 4, l = 5, m = 23 and r = 4;
the corresponding variational problem

J [u] =
∫

Ω

(
u5(s, t) − t4

)2 |∇u(s, t)|46 + ε |∇u|4 ds dt −→ inf,

u(s, 0) = 0, u(s, 1) = 1

exhibits the W 1,p −W 1,∞ Lavrentiev gap for any p ∈ (2, 5), provided that ε > 0
is sufficiently small.

3. Extension of the Manià’s example to 2D

For l, k, m as in Theorem 2.1 we start by studying the (auxiliary) variational
problem

J [u] =
∫

Ω

(
ul(s, t) − tk

)2 |∇u(s, t)|2m
ds dt −→ inf, u(s, 0) = 0, u(s, 1) = 1.

(4)
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Obviously, J [u] ≥ 0 for all u ∈ Ap, while for u0(s, t) = t
k
l , J [u0] = 0, so

that by the computation made earlier one gets

inf
u∈Ap

J [u] = 0,

for p ∈
(
2, 1

1− k
l

)
.

We show that the infimum of J is strictly positive over the class A∞. Let
u ∈ A∞ and let l > k > 0 (l, k ∈ R).

Consider the function β defined by

β(s) = inf
{
t ∈]0, 1] : u(s, t) =

1
2
t

k
l

}
, s ∈ [0, 1]. (5)

Recall that if u ∈ A∞, then u(s, 0) = 0 for s ∈ [0, 1] and u is Lipschitzian.
Thus |u(s, t)| = |u(s, t) − u(s, 0)| ≤ Lt for all s, t ∈ [0, 1] and some constant L.

Pick t ∈]0, 1] such that Lt1−
k
l < 1

4 . Since for any (s, t) ∈ [0, 1]×]0, t]

u(s, t) − 1
2
t

k
l ≤ Lt − 1

2
t

k
l ≤

(
Lt1−

k
l − 1

2

)
t

k
l ,

then

∀(s, t) ∈ [0, 1]×]0, t], u(s, t) <
1
2
t

k
l . (6)

As long as for t = 1, u(s, 1) = 1 > 1/2 and u is continuous, the definition of β
in (5) makes sense.

Let u ∈ A∞, l > k > 0 and β be the function defined by (5). Consider the
function α(s) defined by

α(s) = sup
{
t ∈ [0, β(s)[: u(s, t) = 0

}
, s ∈ [0, 1]. (7)

Finally for u ∈ A∞ and α(s), β(s) as above we define the set

A =
{
(s, t) : s ∈ [0, 1] ∧ α(s) ≤ t ≤ β(s)

}
. (8)

The set A is crucial for our construction and we call it pertinent set.
We would like to integrate over the pertinent set A and for this purpose

we have to verify its measurability. This will be accomplished in the next
subsection. Now we establish the occurrence of the Lavrentiev phenomenon for
the auxiliary problem (4).

To do this we recall the Partial Integration Lemma which can be proved by
using standard arguments of Measure and Integration Theory together with the
fact that, in our context, the classical derivatives and weak derivatives coincide
a. e. (see, for example, Evans and Gariepy, 1992, p.235).
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Lemma 3.1 (Partial Integration Lemma) If v ∈ W 1,∞(Ω), 0 ≤ a ≤ b ≤ 1 and
vt is weak partial derivative, then

∫ b

a

vt(s, t)dt = v(s, b) − v(s, a)

for almost all s ∈ [0, 1].

Proposition 3.1 Let the constants l, k, m be positive and satisfy the conditions

k < l < 2k, 2m ≥ 2k + 1
l − k

l, l, m ∈ N.

Then, the variational problem (4) exhibits the W 1,p − W 1,∞ Lavrentiev gap for
any p ∈

(
2, 1

1− k
l

)
.

Proof. The problem is to find the infimum for J over the class A∞ . Let u ∈ A∞.
Let the set A be defined by (8). For each (s, t) ∈ A, there holds 0 ≤ u(s, t) ≤
1
2 t

k
l . Hence, for (s, t) ∈ A,

(
ul(s, t) − tk

)2 ≥ (2lul(s, t) − ul(s, t)
)2

=
(
2l − 1

)2
u2l(s, t), (9)

and therefore

J [u] ≥ (
2l − 1

)2 ∫
A

u2l(s, t) |∇u(s, t)|2m
dt ds

≥ (
2l − 1

)2 ∫
A

(
u

l
m (s, t)ut(s, t)

)2m

dt ds.

Since the weak partial derivative
(
u

l
m +1

)
t

equals
l + m

m
u

l
m ut a. e. in A, by

applying Fubini’s Theorem we conclude that

∫
A

(
u

l
m (s, t)ut(s, t)

)2m

dt ds =
(

m

m + l

)2m ∫
A

((
u

l
m +1

)
t
(s, t)

)2m

dt ds

=
(

m

m + l

)2m ∫
Ω

χA

((
u

l
m +1

)
t
(s, t)

)2m

dt ds.

=
(

m

m + l

)2m ∫ 1

0

(∫ 1

0

χA

((
u

l
m +1

)
t
(s, t)

)2m

dt

)
ds

and hence

J [u] ≥ (2l − 1
)2( m

m + l

)2m ∫ 1

0

(∫ β(s)

α(s)

((
u

l
m +1

)
t
(s, t)

)2m

dt

)
ds. (10)
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For each s ∈ [0, 1], the application of Jensen’s inequality yields

∫ β(s)

α(s)

((
u

l
m +1

)
t
(s, t)

)2m

dt ≥ 1
(β(s) − α(s))2m−1

(∫ β(s)

α(s)

(
u

l
m +1

)
t
(s, t) dt

)2m

.

(11)

Using Lemma 3.1 with v = u
l

m +1 we obtain∫ β(s)

α(s)

(
u

l
m +1

)
t
(s, t) dt = u

l
m +1(s, β(s)) − u

l
m +1(s, α(s)) for a. e. s ∈ [0, 1].

Since u(s, α(s)) = 0 and u(s, β(s)) = 1
2β(s)

k
l , then

(∫ β(s)

α(s)

(
u

l
m +1

)
t
(s, t)dt

)2m

=
(

1
2

)2m( l
m +1)

β2m k
l ( l

m +1)(s) for a. e. s ∈ [0, 1].

(12)

Suppose first that 2m =
2k + 1
l − k

l. Then 2m− 1 = 2m
k

l

(
l

m
+ 1
)

and since

β(s)
β(s) − α(s)

≥ 1 there holds

β(s)2m k
l ( l

m +1)

(β(s) − α(s))2m−1 ≥ 1. (13)

If 2m >
2k + 1
l − k

l , then 2m
k

l

(
l

m
+ 1
)
− 2m + 1 < 0 1, and therefore

β(s)2m k
l ( l

m +1)

(β(s) − α(s))2m−1 ≥ β(s)2m k
l ( l

m +1)

(β(s))2m−1 = β(s)2m k
l ( l

m +1)−2m+1 > 1. (14)

Thus for 2m ≥ 2k + 1
l − k

l, from (10)-(14) one obtains

J [u] ≥
(
2l − 1

)2
22m( l

m +1)

(
m

l + m

)2m

.

This being valid for all u ∈ A∞, we finally have that

inf
u∈A∞

J [u] ≥
(
2l − 1

)2
22m( l

m +1)

(
m

l + m

)2m

> 0. (15)

1If g(x) =
k

l

�
2l

x
+ 1

�
x− x + 1, then g is strictly decreasing and g

�
2k + 1

l − k
l

�
= 0. Thus,

for x >
2k + 1

l − k
l, one gets g(x) < 0.
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Remark 3.1 We would like to draw attention to the fact that the proof allows for
the estimation of the Lavrentiev gap. So, we can assert that, for the variational
problem

J [u] =
∫

Ω

(
ul(s, t) − tk

)2 |∇u(s, t)|2m ds dt −→ inf, u(s, 0) = 0, u(s, 1) = 1,

the Lavrentiev gap inf
u∈A∞

J [u]− inf
u∈Ap

J [u] is not less than

(
2l − 1

)2
22m( l

m +1)

(
m

l + m

)2m

,

for p ∈
(
2, 1

1− k
l

)
.

Remark 3.2 In the case 2m <
2k + 1
l − k

l the functional J does not exhibit the

Lavrentiev phenomenon, since the sequence (un)n∈N ⊂ A∞ defined by

un(s, t) =

{
n(1−k

l ) t , 0 ≤ t ≤ 1
n , s ∈ [0, 1]

t
k
l , 1

n ≤ t ≤ 1, s ∈ [0, 1]

is such that lim
n→+∞J [un] = 0 .

4. Measurability of the pertinent set A

The proof is based on the following technical Lemmas.

Lemma 4.1 Let u ∈ A∞ and let l > k > 0 (l, k ∈ R). Then the function β,
defined by (5), is lower semicontinuous.

Proof. Recall the definition of t in (6). Suppose s0 ∈ [0, 1] and β(s0) = t0. Then
t0 > t and

u(s0, t0) − 1
2
t

k
l
0 = 0 ∧ u(s0, t) − 1

2
t

k
l 
= 0 for t ∈]0, t0[.

Due to (6) the last condition can be changed to

u(s0, t) − 1
2
t

k
l < 0 for t ∈]0, t0[.

Let δ > 0.
First, let us consider δ such that t0 − δ > t. Obviously u(s0, t) − 1

2 t
k
l < 0,

∀t ∈ [t, t0 − δ], and

max
t∈[t,t0−δ]

(
u(s0, t) − 1

2
t

k
l

)
= µ < 0.
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Since u is Lipschitzian,

max
t∈[t,t0−δ]

(
u(s, t)− 1

2
t

k
l

)
≤ max

t∈[t,t0−δ]
(u(s, t)−u(s0, t)) + max

t∈[t,t0−δ]

(
u(s0, t)− 1

2
t

k
l

)
< L|s − s0| + µ.

Thus, there exists ε > 0 such that

max
t∈[t,t0−δ]

(
u(s, t) − 1

2
t

k
l

)
< 0, (16)

for s verifying |s − s0| < ε.
From (6) and (16)

u(s, t) − 1
2
t

k
l < 0,

for t ∈]0, t0 − δ] and s ∈ [0, 1] such that |s− s0| < ε. Hence, for these s one gets
β(s) > t0 − δ = β(s0) − δ.
In the case when δ is such that ]0, t0 − δ] ⊂]0, t], there holds u(s, t) − 1

2 t
k
l <

0, ∀(s, t) ∈ [0, 1]×]0, t0 − δ] and, consequently, we also have β(s) > t0 − δ =
β(s0) − δ.

Hence β is lower semicontinuous in [0, 1].

Lemma 4.2 Let u ∈ A∞, l > k > 0 and β be the function defined by (5). Then
the function α, defined by (7), is measurable.

Proof. It suffices to establish the measurability of the sets

Mγ =
{
s ∈ [0, 1] : α(s) ≥ γ

}
for every γ ∈ R. It is enough to consider γ ∈]0, 1[, since for γ ≤ 0, Mγ = [0, 1]
and for γ ≥ 1, Mγ = ∅, which are clearly measurable.
From the definition of α and the continuity of u, one has the following charac-
terization:

Mγ =
{
s ∈ [0, 1] : ∃t ∈ [γ, β(s)[: u(s, t) = 0

}
.

Consider the set

Bγ =
{
(s, t) ∈ [0, 1] × [0, 1] : γ < t < β(s)

}
.

This is the intersection of the subgraph of function β with the open half-plane
t > γ. Since the function β is lower semicontinuous, using lower semicontinuity
properties (see, for example, Horst, Pardalos and Thoai, 2000, p.13) its subgraph
is open in [0, 1] × R and hence the set Bγ is also open in [0, 1]× [0, 1].
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For every n ∈ N consider

Bn =
{
(s, t) ∈ [0, 1]× [0, 1] : |u(s, t)| <

1
n

}
,

and the intersection Bn ∩ Bγ . Both sets are open in [0, 1]× [0, 1].
Consider the projection πs : (s, t) → s and the set

Mγ
n = πs(Bn ∩ Bγ).

Since the projection is an open map, the set Mγ
n is open in [0, 1] and hence

Mγ
n is measurable. By definition of Mγ

n , it follows that

Mγ
n =

{
s ∈ [0, 1] : ∃t ∈]γ, β(s)[: |u(s, t)| <

1
n

}
. (17)

The proof will be complete once we prove that

Mγ =
∞⋂

n=1

Mγ
n . (18)

This can be fulfilled as follows.
For s0 ∈ Mγ either there holds α(s0) > γ or α(s0) = γ.
If α(s0) > γ, then there exists t0 ∈]γ, β(s0)[ such that u(s0, t0) = 0. Thus,

s0 ∈ Mγ
n , ∀n ∈ N, and hence s0 ∈

∞⋂
n=1

Mγ
n .

If α(s0) = γ, then u(s0, γ) = 0 and u(s0, t) > 0, for all t ∈]γ, β(s0)[. Let

us choose n0 ∈ N such that γ +
1

n0(L + 1)
∈]γ, β(s0)[, where L is the Lipschitz

constant of u. Under these conditions,

0 < u

(
s0, γ +

1
n0(L + 1)

)
=
∣∣∣∣u
(

s0, γ +
1

n0(L + 1)

)
− u(s0, γ)

∣∣∣∣
≤ L

n0(L + 1)
<

1
n0

.

Thus, for n ≤ n0,

∃t ∈]γ, β(s0)[: |u(s0, t)| <
1
n

,

and, consequently, s0 ∈ Mγ
n .

If n > n0, then γ +
1

n(L + 1)
∈]γ, β(s0)[ and

0 < u(s0, γ +
1

n(L + 1)
) ≤ L

n(L + 1)
<

1
n

,
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and hence s0 ∈ Mγ
n . Thus s0 ∈ Mγ

n for all n ∈ N and therefore

Mγ ⊂
∞⋂

n=1

Mγ
n . (19)

Let now s0 ∈
∞⋂

n=1

Mγ
n . Hence for all n ∈ N, s0 ∈ Mγ

n and, by (17), there exists

tn ∈]γ, β(s0)[ such that |u(s0, tn)| < 1
n . Thus, there exists t0 ∈ [γ, β(s0)] and a

subsequence (tnk
)k∈N of (tn)n∈N

such that lim
k

tnk
= t0. Since u is continuous,

u(s0, t0) = 0 and, from the definition of β, t0 
= β(s0). Thus, s0 ∈ Mγ and
hence

∞⋂
n=1

Mγ
n ⊂ Mγ . (20)

It follows from (19) and (20) that Mγ =
∞⋂

n=1

Mγ
n . The proof is complete.

Lemma 4.3 The pertinent set A, defined by (8), is measurable.

Proof. By Lemma 4.1 and using lower semicontinuity properties the level set
{
s ∈

[0, 1] : β(s) ≤ c
}

is closed for every c ∈ R. Thus, the function β is measur-
able. Then from Lemma 4.2 it follows easily that the set A =

{
(s, t) : s ∈

[0, 1] ∧ α(s) ≤ t ≤ β(s)
}

is measurable.

5. Persistence of the Lavrentiev phenomenon

Proposition 5.1 Let the constants k, l, m be as in the Proposition 3.1 and

2 < r <
l

(l − k)
. Then there exists ε0 such that for all 0 < ε < ε0 the functional

Jε[u] =
∫

Ω

(
ul(s, t) − tk

)2 |∇u(s, t)|2m + ε |∇u(s, t)|r ds dt,

under the boundary conditions u(s, 0) = 0 and u(s, 1) = 1 exhibits the W 1,p −
W 1,∞ Lavrentiev gap for any p ∈

(
2, 1

1− k
l

)
.

Proof. Consider the functional

P [u] =
∫

Ω

|∇u(s, t)|r ds dt =
∫

Ω

(
u2

s + u2
t

) r
2

ds dt.

Since

P
[
t

k
l

]
=
∫

Ω

(
k

l
t

k
l −1

)r

ds dt =
(

k

l

)r 1
r
(

k
l − 1

)
+ 1

=: c,
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and Jε[u] = J [u] + εP [u], there holds

inf
u∈Ap

Jε[u] ≤ εP
[
t

k
l

]
= ε · c,

for p ∈
(
2, 1

1− k
l

)
.

Let ε > 0 be such that

ε < ε0 = c−1

(
2l − 1

)2
22m( l

m +1)

(
m

l + m

)2m

. (21)

Since inf
u∈A∞

J [u] ≥
(
2l − 1

)2
22m( l

m +1)

(
m

l + m

)2m

, for 0 < ε < ε0 there holds, for

p ∈
(
2, 1

1− k
l

)
,

inf
u∈Ap

Jε[u] < ε0 · c ≤ inf
u∈A∞

J [u],

that is

inf
u∈Ap

Jε[u] < inf
u∈A∞

J [u]. (22)

Furthermore,

inf
u∈A∞

J [u] ≤ inf
u∈A∞

(J [u] + εP [u]) = inf
u∈A∞

Jε[u]. (23)

Thus, by (22) and (23) it follows that, for p ∈
(
2, 1

1−k
l

)
,

inf
u∈Ap

Jε[u] < inf
u∈A∞ Jε[u],

and therefore the functional Jε exhibits the Lavrentiev phenomenon.

Example 5.1 For the variational problem of Example 2.1 we have persis-
tence of the Lavrentiev phenomenon as long as we keep ε between zero and(
25 − 1

)2 53

264

(
23
28

)46

.

The integrand fε(s, t, u, us, ut) =
(
ul(s, t) − tk

)2 |∇u(s, t)|2m + ε |∇u|r is co-
ercive but might not be convex with respect to ∇u = (us, ut). However, an
appropriate choice for l (k < l < 4

3k) and r (4 ≤ r < l
(l−k) ) guarantees convex-

ity of fε.

Proof of Theorem 2.1. Let l, k, r and m be constants under conditions of The-
orem 2.1. By Proposition 5.1 there exists ε0 such that for all 0 < ε < ε0
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the problem (3) exhibits the Lavrentiev phenomenon. Moreover, with the
more restrictive hypotheses k < l < 4

3k and 4 ≤ r < l
(l−k) , the integrand

fε(s, t, u, us, ut) =
(
ul(s, t) − tk

)2 |∇u(s, t)|2m + ε |∇u|r is also convex with re-
spect to gradient.

Thus we arrive at a class of functionals whose integrands are convex and
coercive with respect to gradient and which exhibit the Lavrentiev phenomenon.

6. Lavrentiev phenomenon with free boundary

The functional J defined in (4) does not exhibit the Lavrentiev phenomenon
when one of the boundary conditions, u(s, 0) = 0 or u(s, 1) = 1 is omitted.
However, starting from this functional one can construct a functional without
boundary conditions which possesses the Lavrentiev gap.

Lemma 6.1 Let t0 ∈]0, 1[, u ∈ W 1,∞(Ω) such that u(s, t) <
1
2
t

k
l , ∀(s, t) ∈

[0, 1]×]0, t0], l and k be as in Proposition 3.1 and D a closed subset of [0, 1].
Then the sets

B1 =
{
s ∈ D : ∃t ∈]t0, 1] : u(s, t) ≥ 1

2
t

k
l

}
(24)

and
B2 =

{
s ∈ D : u(s, t) <

1
2
t

k
l , ∀t ∈]0, 1]

}
, (25)

are measurable.

Proof. Due to the continuity of u, the following sets

B =
{
(s, t) ∈ D × [t0, 1] : u(s, t) >

1
2
t

k
l

}
,

Cn =
{
(s, t) ∈ D × [t0, 1] : |u(s, t) − 1

2
t

k
l | <

1
n

}
, n ∈ N

are open in D × [t0, 1].
Consider the projection πs onto the first component, and the corresponding
images

πs(B) = B′
1 =

{
s ∈ D : ∃t ∈]t0, 1] : u(s, t) − 1

2
t

k
l > 0

}
and ∞⋂

n=1

πs(Cn) = B′′
1 =

{
s ∈ D : ∃t ∈]t0, 1] : u(s, t) − 1

2
t

k
l = 0

}
.

Since

B1 = B′
1 ∪ B′′

1



Two-dimensional stable Lavrentiev phenomenon with and without boundary conditions 701

and the sets B′
1 and πs(Cn) are open in D, then the sets B′

1 and B′′
1 are measur-

able. Thus, B1 is measurable and hence B2 is measurable as far as B2 = D\B1.

Proposition 6.1 Let the constants l, k, m be as in Proposition 3.1. Then the
variational problem

J [u] =
∫

Ω

(
ul(s, t) − tk

)2 (|∇u(s, t)|2m + 1
)

ds dt −→ inf, u(s, 0) = 0 (26)

exhibits the W 1,p − W 1,∞ Lavrentiev gap for any p ∈
(
2, 1

1− k
l

)
.

Proof. Since J is nonnegative and J
[
t

k
l

]
= 0 it follows that

inf
u∈Ap

J [u] = 0,

for p ∈
(

2,
1

1 − k
l

)
.

It follows from (15) that

inf
u∈A∞

J [u] ≥ inf
u∈A∞

J [u] ≥
(
2l − 1

)2
22m( l

m +1)

(
m

l + m

)2m

> 0,

and therefore the variational problem J [u] −→ inf, u(s, 0) = 0, u(s, 1) = 1
exhibits the Lavrentiev phenomenon.

For p ∈]2, +∞] consider

Ap
0 :=

{
u ∈ W 1,p(Ω) : u(s, 0) = 0, ∀s ∈ [0, 1]

}
. (27)

Since t
k
l ∈ Ap

0 when p ∈
(
2, 1

1− k
l

)
we have

inf
u∈Ap

0

J [u] = 0,

for same p.
We wish to show that

inf
u∈A∞

0

J [u] > 0.

Suppose first that l is odd. Recall that any u ∈ A∞
0 is Lipschitzian and

u(s, 0) = 0. Then for some constant L

u(s, t) ≤ |u(s, t) − u(s, 0)| ≤ Lt

for all s, t ∈ [0, 1].
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Let t ∈]0, 1] be such that Lt1−
k
l < 1

4 . The argument used to prove Lemma 4.1
yields

∀(s, t) ∈ [0, 1]×]0, t], u(s, t) − 1
2
t

k
l < 0. (28)

Consider D = [0, 1] in (24) and (25), and t0 = t in (24) . By Lemma 6.1 both
sets B1 and B2, defined by (24)-(25), are measurable and either |B1| ≥ 1

2 or
|B2| ≥ 1

2 , where |.| is the Lebesgue’s measure.
Suppose first that |B2| ≥ 1

2 . Since l is odd, then

u(s, t) − 1
2
t

k
l < 0 ⇐⇒ ul(s, t) <

1
2l

tk =⇒ (
ul − tk

)2
>

(
1
2l

− 1
)2

t2k.

Applying Fubini’s Theorem we obtain for odd l and u∈A∞
0 such that |B2|≥ 1

2
:

J [u] =
∫

Ω

(
ul(s, t) − tk

)2 (|∇u(s, t)|2m + 1
)

ds dt ≥
∫

Ω

(
ul(s, t) − tk

)2
ds dt

≥
(

1
2l

− 1
)2 ∫

B2

(∫ 1

0

t2kdt

)
ds =

1
2

(
1
2l

− 1
)2 1

2k + 1
= c1 > 0. (29)

Now if |B2| < 1
2 , then |B1| ≥ 1

2 . Suppose s ∈ B1 and let the function β be
defined by

β(s) = inf
{
t ∈]0, 1] : u(s, t) =

1
2
t

k
l

}
. (30)

By the definition of B1 and (28) ∃t ∈]t, 1] such that u(s, t) =
1
2
t

k
l . Thus the

definition of β makes sense.
Let

α(s) = sup
{
t ∈ [0, β(s)[: u(s, t) = 0

}
. (31)

Arguments similar to those by which we proved Lemma 4.1 and 4.2 allow us
to conclude that β is lower semicontinuous and α is measurable.
Consider the set Ω2 =

{
(s, t) : s ∈ B1 ∧ α(s) ≤ t ≤ β(s)

}
. For each (s, t) ∈ Ω2,

there holds 0 ≤ u(s, t) ≤ 1
2 t

k
l . Hence, for (s, t) ∈ Ω2(

ul(s, t) − tk
)2 ≥ (2lul(s, t) − ul(s, t)

)2
=
(
2l − 1

)2
u2l(s, t)

and therefore,

J [u] =
∫

Ω

(
ul(s, t) − tk

)2 (|∇u(s, t)|2m + 1
)

ds dt

≥
∫

Ω2

(
ul(s, t) − tk

)2 (
u2m

t (s, t)
)
ds dt

≥ (
1 − 2l

)2 ∫
Ω2

u2l(s, t)u2m
t (s, t)dt ds.
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Then, as in Proposition 3.1, we conclude

J [u] ≥ 1
2

(
2l − 1

)2
22m( l

m +1)

(
m

l + m

)2m

= c2 > 0, (32)

for u ∈ A∞
0 such that |B2| <

1
2
.

Thus by (29) and (32), for odd l

inf
u∈A∞

0

J [u] ≥ c > 0. (33)

If l is even, then |u(s, t)| = |u(s, t) − u(s, 0)| ≤ Lt and hence

|u(s, t)| − 1
2
t

k
l < 0, ∀(s, t) ∈ [0, 1]×]0, t].

In this case substituting u by |u| in (24),(25),(31),(30), we are able to accomplish
the proof in the same way as in the previous case.

Therefore also for even l (33) holds.

Consider Ω1 =]0, 1[×]−1, 1[. Reflecting with respect to the axis Os the example
provided in Proposition 6.1 we can obtain (following Dani, Hrusa and Mizel,
2000) a problem without any boundary conditions which exhibits the Lavrentiev
phenomenon.

Proposition 6.2 Let the constants l, k, m be strictly positive integers as in
Proposition 3.1 and consider the variational problem

J [u] =
∫

Ω1

(
ul(s, t) − tk

)2 (|∇u(s, t)|2m + 1
)

ds dt −→ inf . (34)

If both l and k are odd, then the functional J exhibits the W 1,p−W 1,∞ Lavrentiev
gap for any p ∈

(
2, 1

1− k
l

)
. Otherwise, J does not exhibit the Lavrentiev gap.

Proof. We consider three cases:

• Assume that k is even.

Since J
[
|t| k

l

]
= 0, we have

inf
u∈W 1,p(Ω1)

J [u] = 0, for p ∈
(

2,
1

1 − k
l

)
.

Consider the sequence (un)n∈N ⊂ W 1,∞(Ω1) defined by

un(s, t) =

⎧⎪⎪⎨
⎪⎪⎩

|t| k
l , −1 ≤ t ≤ − 1

n , s ∈ [0, 1](
1
n

) k
l , − 1

n ≤ t ≤ 1
n , s ∈ [0, 1]

t
k
l , 1

n ≤ t ≤ 1, s ∈ [0, 1]

.
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By a straightforward computation we conclude that

limJ [un] = 0,

and hence

inf
u∈W 1,p(Ω1)

J [u] = inf
u∈W 1,∞(Ω1)

J [u] = 0.

• Assume now k to be odd and l even.

Observe that for all u ∈ W 1,p(Ω1) and p ∈]2,∞],

J [u] =
∫

Ω1

(
ul(s, t) − tk

)2 (|∇u(s, t)|2m + 1
)

ds dt

≥
∫

]0,1[×]−1,0[

(
ul(s, t) − tk

)2 (|∇u(s, t)|2m + 1
)

ds dt

and since(
ul(s, t) − tk

)2
= u2l + t2k − 2tkul ≥ t2k, ∀(s, t) ∈]0, 1[×]− 1, 0[,

we get

J [u] ≥ 1
2k + 1

, ∀u ∈ W 1,p(Ω1), ∀p ∈]2, +∞].

Consider now the sequence (un)n∈N ⊂ W 1,∞(Ω1) defined by

un(s, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 , −1 ≤ t ≤ − 1
n , s ∈ [0, 1]

t + 1
n , − 1

n ≤ t ≤ 0, s ∈ [0, 1]
1
n , 0 ≤ t ≤ ( 1

n

) l
k , s ∈ [0, 1]

t
k
l ,

(
1
n

) l
k ≤ t ≤ 1, s ∈ [0, 1]

.

A straightforward computation shows that

limJ [un] =
1

2k + 1
,

and hence

inf
u∈W 1,p(Ω1)

J [u] =
1

2k + 1
, ∀p ∈]2, +∞].

• Consider now k and l both odd.

Since J
[
t

k
l

]
= 0 and J is nonnegative, we conclude that

inf
u∈W 1,p(Ω1)

J [u] = 0, for p ∈
(

2,
1

1 − k
l

)
.
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Consider u ∈ W 1,∞(Ω1) and the sets

D1 =
{
s ∈ [0, 1] : u(s, 0) ≥ 0

}
and

D2 =
{
s ∈ [0, 1] : u(s, 0) ≤ 0

}
.

Both sets are closed in [0, 1] and either |D1| ≥ 1
2

or |D2| ≥ 1
2
.

Suppose that |D2| ≥ 1
2

and consider D = D2 in (24) and (25).
Then

J [u] =
∫

Ω1

(
ul(s, t) − tk

)2 (|∇u(s, t)|2m + 1
)

ds dt

≥
∫

D2×]0,1[

(
ul(s, t) − tk

)2 (|∇u(s, t)|2m + 1
)

ds dt.

As far as u is Lipschitzian, then for (s, t) ∈ D2 × [0, 1] we obtain

u(s, t) ≤ u(s, t) − u(s, 0) ≤ |u(s, t) − u(s, 0)| ≤ Lt.

Choosing t ∈]0, 1] as in the proof of the Proposition 6.1, we get

u(s, t) − 1
2
t

k
l < 0, ∀(s, t) ∈ D2×]0, t],

and the proof of this case is analogous to the proof of Proposition 6.1 in

D2×]0, 1[. Observe that since |B1|+|B2| ≥ 1
2
, then either |B1| ≥ 1

4
or |B2| ≥ 1

4
.

Now if |D2| <
1
2
, then |D1| ≥ 1

2
.

Since

J [u] =
∫

Ω1

(
(−u)l(s, t) − (−t)k

)2 (|∇(−u)(s, t)|2m + 1
)

ds dt

then by the change of variable t �→ −t, we get

J [u] =
∫

Ω1

(
(−u)l(s,−t) − tk

)2 (|∇(−u)(s,−t)|2m + 1
)

ds dt.

Since ∀s ∈ D1, −u(s,−0) ≤ 0 this case is similar to the previous one.
Thus

J [u] ≥ c0 > 0, ∀u ∈ W 1,∞(Ω1)

and therefore

inf
u∈W 1,∞(Ω1)

J [u] ≥ c0. (35)
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Proposition 6.3 Let the constants l, k, m, r be as in Proposition 5.1 and
assume that l and k are both odd. Then there exists ε0 > 0 such that for all
0 < ε < ε0 the functional

Jε[u] =
∫

Ω1

(
ul(s, t) − tk

)2 (|∇u(s, t)|2m + 1
)

+ ε|∇u|r ds dt (36)

exhibits the W 1,p − W 1,∞ Lavrentiev gap for any p ∈
(
2, 1

1− k
l

)
.

Proof. The proof is analogous to the proof of Proposition 5.1.

7. Concluding remark

As one can see, when one attempts to extend the examples of the Lavrentiev
phenomenon onto multidimensional domains, additional technical difficulties
appear. In addition to establishing the presence of the gap, one needs to verify
the regularity (e.g. measurability) of sets and functions involved into the con-
struction. In the present paper this kind of difficulties is dealt with in Section 4.
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