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1. Introduction

In this paper we address the problem of optimal synthesis governing the evolu-
tion of optimal trajectories to the Mayer problem

min {ϕ(x(T )) | x is a solution to (2), x(0) = ξ0}, (1)
x′(t) = f(x(t), u(t)), u(t) ∈ U. (2)

The major problem of optimal control is to determine a set-valued map U(t, x)
(in general discontinuous) in such way that solutions to the control system{

x′ = f(x, u), u ∈ U(t, x)
x(0) = ξ0

(3)

are optimal. This map is usually referred to as the optimal synthesis and in
order to construct it, it is natural to apply the dynamic programming principle
which in turn uses the value function.

The value function associated with Mayer’s problem is defined as follows:
for all (t0, x0) ∈ [0, T ]× Rn

V (t0, x0) = inf{ϕ(x(T )) | x is a solution to (2), x(t0) = x0}. (4)



788 H. FRANKOWSKA

When it is Lipschitz it can be used to state both the necessary and sufficient
conditions for optimality (see for instance Cannarsa and Frankowska, 1991; Sub-
botina, 1989).

When V ∈ C1 the synthesis problem was solved in Fleming and Rishel (1975)
using the Hamilton-Jacobi equation. In Frankowska (1989b) we proposed in the
case when V is merely locally Lipschitz to use the directional derivatives of V .
It was namely shown that for the set-valued map

F (t, x) :=
{
v ∈ f(x, U) | ∂V

∂(1, v)
(t, x) = 0

}

the inclusion{
x′ ∈ F (t, x)

x(0) = ξ0
(5)

characterizes optimal solutions, i.e., every solution to (5) is optimal and every
optimal solution satisfies (5).

In Berkovitz (1989) a similar approach was proposed, where the author sup-
posed in addition that F is upper semicontinuous with convex compact images.
While from the results of Cannarsa and Frankowska (1991) it follows that for
problems with data smooth enough F is upper semicontinuous, but, in general,
beside the case when the value function is C1 or convex, one should not expect
from it to have convex values.

The aim of this paper is to associate an optimal synthesis to a lower semi-
continuous value function by using its superdifferentials instead of directional
derivatives. Namely we define a set-valued map G having closed convex images
such that every solution to the differential inclusion{

x′ ∈ G(t, x)
x(0) = ξ0

(6)

is optimal. This optimal synthesis map is defined by

G(t, x) = {v ∈ f(x, U) | ∀ (pt, px) ∈ ∂+V (t, x), pt + 〈px, v〉 = 0} ,
where ∂+V (t, x) denotes the superdifferential of V at (t, x). However in general
G is not upper semicontinuous. When V is semiconcave, then the map

Ĝ(t, x) = {v ∈ f(x, U) | ∃ (pt, px) ∈ ∂+V (t, x), pt + 〈px, v〉 = 0} ,
is upper semicontinuous and in this case we obtain both necessary and sufficient
conditions for optimality in the form of the differential inclusion{

x′ ∈ Ĝ(t, x)
x(0) = ξ0.

(7)

The outline of the paper is as follows. In Section 2 we provide some preliminaries
and in Section 3 we investigate superdifferentials along optimal solutions. The
inclusion on the optimal synthesis is derived in Section 4.
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2. Preliminaries

Consider T > 0, a complete separable metric space U and a continuous mapping
f : Rn × U �→ Rn. We associate with it the control system

x′(t) = f(x(t), u(t)), u(t) ∈ U. (8)

Let an extended function ϕ : Rn �→ R∪{+∞} and ξ0 ∈ Rn be given. Consider
the minimization problem, called free end point Mayer problem:

min {ϕ(x(T )) | x is a solution to (8), x(0) = ξ0}. (9)

The value function associated with this problem is defined as: for all (t0, x0) ∈
[0, T ]× Rn

V (t0, x0) = inf{ϕ(x(T )) | x is a solution to (8), x(t0) = x0}. (10)

Under standard assumptions V is lower semicontinuous.

Theorem 2.1 Assume that ϕ is lower semicontinuous and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

i) ∀ R > 0, ∃ cR > 0 such that
∀ u ∈ U, f(·, u) is cR − Lipschitz on BR(0)

ii) ∃ k > 0 such that
∀ x ∈ Rn, supu∈U ‖f(x, u)‖ ≤ k(1 + ‖x‖)

iii) ∀ x ∈ Rn, f(x, U) is closed and convex.

(11)

Then V is lower semicontinuous and for all (t0, x0) ∈ [0, T ] × Rn the infimum
in (10) is attained.

This result is well known. Its proof can be deduced, for instance, from Ioffe
(1977), Olech (1976).

Throughout the whole paper we set

∀ t /∈ [0, T ], ∀ x ∈ Rn, V (t, x) = −∞.

Definition 2.1 Let g : IRn �→ R∪ {±∞} be an extended function, v ∈ IRn and
x0 ∈ IRn be such that g(x0) �= ±∞.

We define the contingent epiderivative of g at x0 in the direction v by

D↑g(x0)(v) = lim inf
h→0+, v′→v

g(x0 + hv′) − g(x0)
h

and the contingent hypoderivative of g at x0 in the direction v by

D↓g(x0)(v) = lim sup
h→0+, v′→v

g(x0 + hv′) − g(x0)
h

.
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Let x0 ∈ IRn be such that g(x0) �= ±∞. The superdifferential of g at x0 is the
closed convex set defined by:

∂+g(x0) =
{
p ∈ Rn | lim sup

x→x0

g(x) − g(x0) − 〈p, x− x0〉
‖x− x0‖ ≤ 0

}
.

The superdifferentials may also be characterized using contingent hypoderiva-
tives :

Proposition 2.1 (Frankowska, 1989b) Let g : Rn �→ R∪{±∞} be an extended
function. Then

∂+g(x0) = {p ∈ Rn | ∀ v ∈ Rn, D↓g(x0)(v) ≤ 〈p, v〉}.
The Hamiltonian associated to our control problem is defined by

∀ x, p ∈ Rn, H(x, p) = sup
u∈U

〈p, f(x, u)〉 .

It is well known that under adequate assumptions the value function solves the
Hamilton-Jacobi equation

−∂V
∂t

(t, x) + H

(
t, x, −∂V

∂x
(t, x)

)
= 0, V (T, ·) = ϕ(·) (12)

in the generalized (viscosity) sense. In this work we shall use discontinuous
subsolutions of this equation.

Definition 2.2 An extended function W : [0, T ]×Rn → R∪ {−∞} is called a
viscosity subsolution to (12) if for all (t, x) ∈ Dom(W ), t < T we have

∀ (pt, px) ∈ ∂+W (t, x), −pt + H(x,−px) ≤ 0.

Proposition 2.2 Assume that (11) holds true. Then the value function is a
viscosity subsolution to (12).

Proof. This result can be deduced from Frankowska (1989b). We sketch its proof
for the sake of completeness. Fix any (t, x) ∈ Dom(V ), t < T and let u ∈ U .
Consider a solution to our control system with this fixed control u starting at
(t, x). Since V is nondecreasing along solutions of the control system, we get
D↓V (t, x)(1, f(x, u)) ≥ 0. Applying Proposition 2.1 and using the fact that
u ∈ U is arbitrary we derive the desired inequality.

Definition 2.3 Let K be a closed subset of Rn. The contingent cone to K at
x ∈ K is defined by

TK(x) =
{
v ∈ Rn | lim inf

h→0+

dist(x+ hv,K)
h

= 0
}
.
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Definition 2.4 Let z : [0, T ] �→ Rn. The contingent derivative Dz(t)(1) of z
at t ∈ [0, T [ in the direction 1 is defined by

Dz(t)(1) = Limsuph→0+

z(t+ h) − z(t)
h

and Dz(t)(−1) of z at t ∈]0, T ] in the direction −1 by

Dz(t)(−1) = Limsuph→0+

z(t− h) − z(t)
h

,

where Limsup denotes the Painlevé-Kuratowski upper limit.

We shall also use in the sequel the following simple fact:

Proposition 2.3 Consider a nondecreasing lower semicontinuous function ψ :
[0, T ] �→ R and assume that for some t ∈ [0, T [, D↓ψ(t)(1) < ∞. Then ψ
is continuous at t. If in addition for some m ≥ 0 and for all t ∈ [0, T [,
lim infs→t+

ψ(s)−ψ(t)
s−t ≤ m, then ψ is m−Lipschitz.

Proof. Indeed since ψ is nondecreasing and lower semicontinuous it is left con-
tinuous. On the other hand lim supt′→t+

ψ(t′)−ψ(t)
t′−t < ∞ and therefore ψ is

continuous from the right. For all t ≥ T define ψ(t) = ψ(T ). To prove the
second statement we consider the viability problem⎧⎨

⎩
t′(s) = 1
x′(s) = m
(t(s), x(s)) ∈ K := Epigraph(ψ)

and observe that for all (t, y) ∈ K, (1,m) belongs to the contingent cone
TK(t, y). By the viability theorem from Aubin (1991) for all t0 ∈ [0, T ] and
all s ≤ T − t0 we have (t0 + s, ψ(t0) +ms ∈ K. Thus, for all 0 ≤ t0 ≤ t1 ≤ T

ψ(t0) +m(t1 − t0) ≥ ψ(t1) ≥ ψ(t0)

which completes the proof.

Proposition 2.4 Assume that ϕ is continuous, ∂+ϕ(x) �= ∅ for all x ∈ IRn,
that (11) holds true and that f is differentiable with respect to x. Consider a
solution z to the control system (8) defined on [t0, T ]. Then t �→ V (t, z(t)) is
continuous.

Proof. Set ψ(t) = V (t, z(t)). Since ψ is nondecreasing and lower semicontinuous
it is left continuous. We only check its right continuity at t0. Let (x(·), u(·)) solve
the minimization problem (10), i.e. V (t0, x0) = ϕ(x(T )) and xh be solutions to
the systems

x′ = f(x, u(t)), xh(t0 + h) = z(t0 + h).



792 H. FRANKOWSKA

If m(t0) ∈ Dz(t0)(1) then for some hi → 0+, (z(t0 + hi) − z(t0))/hi converge
to m(t0). Thus for every pT ∈ ∂+ϕ(x(T )) and the solution w to the system

w′ =
∂f

∂x
(x(t), u(t))w, w(t0) = m(t0)

we have

D↑ψ(t0)(1) ≤ lim sup
i→∞

ϕ(xhi(T )) − ϕ(x(T ))
hi

≤ 〈pT , w(T )〉 .

By Proposition 2.3, ψ is continuous from the right at t0.

Definition 2.5 Consider a convex subset K of Rn. A function g : K �→ R is
called semiconcave if there exists ω : R+ × R+ �→ R+ such that

∀ r ≤ R, ∀ s ≤ S, ω(r, s) ≤ ω(R,S) & lim
s→0+

ω(R, s) = 0 (13)

and for every R > 0, λ ∈ [0, 1] and all x, y ∈ K ∩RB

λg(x) + (1 − λ)g(y) ≤ g(λx+ (1 − λ)y) + λ(1 − λ)‖x− y‖ ω(R, ‖x− y‖).

We say that g is semiconcave at x0 if there exists a neighborhood of x0 in K
such that the restriction of g to it is semiconcave. We call the above function ω
a modulus of semiconcavity of g.

Every concave function g : K �→ R is semiconcave (with ω equal to zero). From
Cannarsa and Sinestrari (2004) we also know that every semiconcave function
is locally Lipschitz and has nonempty superdifferentials.

Theorem 2.2 Let K ⊂ Rn be a convex set, x0 ∈ K and let a function g : K �→
R be semiconcave at x0. Then for every v ∈ TK(x0)

lim inf
v′ → v, h→ 0+

x′ →K x0, x
′ + hv′ ∈ K

g(x′ + hv′) − g(x′)
h

= lim
v′ → v, h→ 0+
x0 + hv′ ∈ K

g(x0 + hv′) − g(x0)
h

.

Furthermore, setting g = −∞ outside of K,

Limsupx→Int(K)x0
∂+g(x) ⊂ ∂+g(x0).
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Proof. Since g is semiconcave, by Cannarsa and Sinestrari (2004) it is locally
Lipschitz. It is enough to consider the case ‖v‖ ≤ 1. Fix such v and let
δ > 0 be so that g is semiconcave on K ∩B2δ(x0) with semiconcavity modulus
ω(·) := ω(2δ, ·). Let x ∈ K ∩ Bδ(x0). Then for all 0 < h1 ≤ h2 ≤ δ such that
x+ h2v ∈ K we have

g(x+ h1v) − g(x) = g

(
h1

h2
(x+ h2v) +

(
1 − h1

h2

)
x

)
− g(x)

≥ h1

h2
g(x+ h2v) − h1

h2
g(x) − h1

(
1 − h1

h2

)
‖v‖ω(h2 ‖v‖).

Consequently,

g(x+ h1v) − g(x)
h1

≥ g(x+ h2v) − g(x)
h2

−
(

1 − h1

h2

)
ω(h2 ‖v‖)

and we proved that for every x ∈ K ∩Bδ(x0) and all 0 < h′ ≤ h ≤ δ,

g(x+ h′v) − g(x)
h′

≥ g(x+ hv) − g(x)
h

− ω(h ‖v‖). (14)

Thus for every 0 < h ≤ δ

lim inf
h′ → 0+
v′ → v

x+ h′v′ ∈ K

g(x+ h′v′) − g(x)
h′

≥ g(x+ hv) − g(x)
h

− ω(h ‖v‖).

Taking lim sup in the right-hand side of the above inequality when x = x0, we
deduce that

lim
h→ 0+, v′ → v
x0 + hv′ ∈ K

g(x0 + hv′) − g(x0)
h

does exist. Fix ε > 0 and 0 < λ < δ. From the Lipschitz continuity of g
it follows that there exists 0 < α < δ such that for all x ∈ K ∩ Bα(x0) and
v′ ∈ Bα(v)

g(x0 + λv) − g(x0)
λ

≤ g(x+ λv′) − g(x)
λ

+ ε

whenever x0 + λv ∈ K and x+ λv′ ∈ K. Thus, using (14), we obtain that for
all sufficiently small α > 0,

g(x0 + λv) − g(x0)
λ

≤ inf
x ∈ K ∩Bα(x0)

h ∈ ]0, λ], v′ ∈ Bα(v)
x+ hv′ ∈ K

g(x+ hv′) − g(x)
h

+ ω(λ‖v′‖) + ε.
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Letting ε, α and λ converge to zero we end the proof of the first statement.
In particular this yields that for all x0 ∈ Int(K), ∂+g(x0) is the generalized
gradient (see Cannarsa and Sinestrari, 2004) of g at x0. Thus

∂+g(x0) = co Limsupx→x0
{∇g(x)} . (15)

To prove the last statement we set g = −∞ outside of K. Consider a sequence
xm ∈ Int(K) converging to x0 and a sequence pm ∈ ∂+g(xm) converging to
some p. We have to show that p ∈ ∂+g(x0). From (15) and the Carathéodory
theorem, we deduce that there exist λmi ≥ 0 and xmi ∈ Int(K) converging to
x0 when m → ∞ such that g is differentiable at xmi , and for all i the sequence
∇g(xmi ) converges to some pi when m→ ∞, and for every m,

∑n
i=0 λ

m
i = 1,

lim
m→∞

(
n∑
i=0

λmi ∇g(xmi )

)
= p.

Taking a subsequence and keeping the same notations, we may assume that
(λm0 , ..., λ

m
n ) converge to some (λ0, ..., λn). Thus p =

∑n
i=0 λipi. Since ∂+g(x0)

is convex, the above yields that it is enough to prove the last statement only in
the case when g is differentiable at xm. Fix v ∈ TK(x0) and consider hm → 0+
such that xm + hmv ∈ K and

g(xm + hmv) − g(xm)
hm

≤ 〈∇g(xm), v〉 +
1
m
.

This and the first claim imply that

lim
v′→v, h→0+

g(x0 + hv′) − g(x0)
h

≤ 〈p, v〉 .

Hence from Proposition 2.1 we deduce that p ∈ ∂+g(x0).

We provide next a sufficient condition for semi-concavity of the value func-
tion on [0, T ]× Rn. Let us assume that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ ω : R+ × R+ �→ R+ such that (13) holds true and

∀ λ ∈ [0, 1], R > 0, x0, x1 ∈ BR(0), t ∈ [0, T ], u ∈ U
‖λf(t, x0, u) + (1 − λ)f(t, x1, u) − f(t, xλ, u)‖
≤ λ(1 − λ) ‖x1 − x0‖ω(R, ‖x1 − x0‖),
where xλ = λx0 + (1 − λ)x1

ϕ : Rn �→ R is semiconcave.

(16)

Remark 2.1 1) Assumptions (16) hold true, in particular, when ϕ is con-
tinuously differentiable and f is continuously differentiable with respect to x
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uniformly in (t, u). More precisely, if we assume that there exists a function
ω : R+ × R+ �→ R+ satisfying (13) such that∥∥∥∥∂f∂x (t, x1, u) − ∂f

∂x
(t, x2, u)

∥∥∥∥ ≤ ω(R, ‖x1 − x2‖)

for all t ∈ [0, T ], u ∈ U and x1, x2 ∈ BR(0).
2) Vice versa, Theorem 2.2 implies that, if f satisfies (16), then f is con-

tinuously differentiable with respect to x.

Theorem 2.3 Assume (11) and (16). Then the value function is semi-concave
on [0, T ]× Rn.

See Cannarsa and Frankowska (1991) for the proof.

3. Superdifferentials along optimal solutions

In this section we extend several results from Cannarsa and Frankowska (1991)
to the case of non Lipschitz value function.

Theorem 3.1 Assume (11), that ϕ is lower semicontinuous and let (t0, x0) ∈
[0, T ] × Rn. Consider a solution z : [t0, T ] �→ Rn to control system (8) with
z(t0) = x0 and let u be a corresponding control. If for every t ∈]t0, T [, there
exists p(t) ∈ Rn and

m(t) ∈ Limsuph→0+

z(t+ h) − z(t)
h

such that{
〈p(t),m(t)〉 = H(z(t), p(t))

(H(z(t), p(t)), −p(t)) ∈ ∂+V (t, z(t))
(17)

and limt→t0+ V (t, z(t)) = V (t0, x0), then z is optimal for problem (10).

Proof. The map ψ(t) = V (t, z(t)) is nondecreasing and lower semicontinuous.
Let t ∈]t0, T [ and m(t) be as above. Consider hi → 0+ such that (z(t + hi) −
z(t))/hi → m(t) Then,

0 = 〈(H(z(t), p(t)),−p(t)), (1,m(t))〉 ≥ D↓V (t, z(t))(1,m(t))

≥ lim supi→∞
V (t+hi,z(t+hi))−V (t,z(t))

hi
≥ lim infh→0+

ψ(t+h)−ψ(t)
h .

Hence

∀ t ∈]t0, T [, (1, 0) ∈ TEpi(ψ)(t, ψ(t)).

By Aubin and Frankowska (1990)

∀ t ∈]t0, T [, ∀ y ≥ ψ(t), (1, 0) ∈ TEpi(ψ)(t, y).
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Set ψ(t) = ψ(T ) for all t > T. The viability theorem from Aubin (1991) yields
that for every t1 > t0 the problem⎧⎨

⎩
s′ = 1, s(0) = t1
y′ = 0, y(0) = ψ(t1)

(s, y(s)) ∈ Epi(ψ)

has a solution defined on [t1, T ]. Thus, for all t ∈ [t1, T ], ψ(t) ≤ ψ(t1). Conse-
quently, ψ ≡ ψ(t1) on [t1, T ]. We deduce that the map t �→ V (t, z(t)) is constant
on ]t0, T ]. By our assumptions ψ is continuous at t0 and therefore ψ is constant
on [t0, T ]. So z is optimal.

Theorem 3.2 Assume (11), that ϕ is lower semicontinuous, and that f is
differentiable with respect to x. Consider an optimal trajectory/control pair
(z, u) to control system (8) with z(t0) = x0. Then for every pT ∈ ∂+ϕ(z(T ))
the solution p : [t0, T ] �→ Rn to the adjoint system

−p′(t) =
(
∂f

∂x
(z(t), u(t))

)�
p(t), p(T ) = −pT (18)

satisfies the maximum principle for all t ∈ [t0, T ] :

∀ m(t) ∈ Limsups→t

z(s) − z(t)
s− t

, 〈p(t),m(t))〉 = H(z(t), p(t)) (19)

and the generalized transversality conditions

(H(z(t), p(t)),−p(t)) ∈ ∂+V (t, z(t)) for every t ∈]t0, T [ . (20)

Remark 3.1 This result is a refinement of Pontryagin’s maximum principle
and transversality conditions of the type obtained in Cannarsa and Frankowska
(1991), Subbotina (1989). Also the the fact that any pT ∈ ∂+ϕ(z(T )) can be
taken as the final state for the adjoint variable p(·) is in the same spirit as the
maximum principle in Cannarsa, Frankowska and Sinestrari (2000), Theorem
3.1. We underline that conditions (19) and (20) hold true everywhere instead
of “for almost all t”. Such refinement is needed to study the optimal synthesis
problem.

Proof. The proof is analogous to the one given in Cannarsa, Frankowska and
Sinestrari (2000). Fix si → t and m(t) ∈ Limsups→t

z(s)−z(t)
s−t such that

z(si) − z(t)
si − t

→ m(t).

By the mean value theorem from Aubin and Cellina (1984), m(t) ∈ cof(z(t), U).
It is not restrictive to assume that si − t are either all positive or all negative.



Optimal synthesis via superdifferentials of value function 797

Case 1. si < t for all i ≥ 1. Fix any u ∈ U and consider a solution xi to the
system

x′ = f(x, u), x(si) = z(si).

Then xi(t) = z(si) + (t− si)f(z(t), u) + o(t− si). Thus

xi(t) − z(t) = (t− si)(f(z(t), u) −m(t)) + o(t− si).

Then, setting

R(t) := {x(t) | x solves (8) on [t0, T ], x(t0) = x0}

(the reachable set of (8) from (t0, x0) at time t, we deduce that f(z(t), u) −
m(t) ∈ TR(t)(z(t)). By Frankowska (1989a), 〈p(t), f(z(t), u) −m(t)〉 ≤ 0 and
(19) follows because u ∈ U is arbitrary.

Case 2. si > t for all i ≥ 1. Then, by Frankowska (1989a),

z(t) + (si − t) co f(z(t), U) ⊂ R(si) + o(si − t)B.

Thus co f(z(t), U)−m(t) is contained in the set Wz(t) of variations introduced
in Frankowska (1989a). By Frankowska (1989a), p(t) ∈Wz(t)−, implying, (19).

Fix t ∈]t0, T [, v ∈ Rn, α ∈ R. Then there exist hi → 0+, αi → α, vi → v
such that

D↓V (t, z(t))(α, v) = lim
i→∞

(V (t+ αihi, z(t) + hivi) − V (t, z(t))) /hi.

Taking a subsequence and using the same notations we may assume thatm(t) :=
limi→∞

z(t+hiαi)−z(t)
hi

∈ α Limsups→t
z(s)−z(t)
s−t . Set m(t) = m(t)/α if α �= 0 and

m(t) = 0 otherwise. Then for some yi → v

D↓V (t, z(t))(α, v) =

= limi→∞ (V (t+ αihi, z(t+ αihi) + hi(yi − αm(t))) − V (t, z(t))) /h.

Consider the solution w(·) to the linear system{
w′(s) = ∂f

∂x (z(s), u(s))w(s), s ∈ [t, T ]

w(t) = v − αm(t).

Then w(T ) = X(T )X(t)−1(v− αm(t)), where X(·) is the fundamental solution
to {

X ′(s) = ∂f
∂x (z(s), u(s))X(s), s ∈ [t, T ]

X(t) = Id.
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Let xi solve{
x′ = f(x, u(s)), s ∈ [t, T ]

x(t+ αihi) = z(t+ αihi) + hi(yi −m(t)).

By the variational equation the difference quotients (xi − z)/hi converge uni-
formly to w. Consequently,

D↓V (t, z(t))(α, v) =

= limi→∞ (V (t+ αihi, xi(t+ αihi)) − V (t, z(t))) /hi

≤ lim supi→∞ (ϕ(xi(T )) − ϕ(z(T ))) /hi ≤ 〈pT , w(T )〉
=
〈
pT , X(T )X(t)−1(v − αm(t))

〉
=
〈
(X(t)�)−1

X(T )�pT , v − αm(t)
〉

= 〈−p(t), v − αm(t)〉 = 〈−p(t), v〉 + α 〈p(t),m(t)〉
= αH(z(t), p(t)) + 〈−p(t), v〉

and (20) follows from Proposition 2.1.

By Proposition 2.2 the value function satisfies the inequality

∀ t < T, ∀ (pt, px) ∈ ∂+V (t, x), −pt +H(x,−px) ≤ 0 (21)

i.e., it is a subsolution of the Hamilton-Jacobi-Bellman equation. Actually, the
equality holds true along optimal solutions. This fact was first observed in
Frankowska (1989b) and then generalized in Cannarsa and Frankowska (1991),
but in both papers the result was given for almost all t. We provide its improve-
ment with the proof similar to that in Frankowska (1989b).

Proposition 3.1 Assume (11) and let z be an optimal solution to problem (10).
Then for every t ∈]t0, T [,

∀ (pt, px) ∈ ∂+V (t, z(t)), −pt + H(z(t),−px) = 0 (22)

and

∀ m(t) ∈ Dz(t)(−1), 〈−px,m(t)〉 = H(z(t),−px).
Proof. Observe first that z is Lipschitz. Fix t0 < t < T . Then for a sequence
hi → 0+ and some v ∈ co f(z(t), U)

lim
i→∞

z(t− hi) − z(t)
hi

= −v.

Fix (pt, px) ∈ ∂+V (t, z(t)). Then for all (pt, px) ∈ ∂+V (t, z(t))

0 ≥ lim sup
s→t−

V (s, z(s)) − V (t, z(t)) − pt(s− t) − 〈px, z(s) − z(t)〉
|s− t| + ‖z(s) − z(t)‖ .
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Since V (·, z(·)) is constant on [0, T ], the above estimate yields 0 ≥ pt + 〈px, v〉.
Thus,−pt +H(z(t),−px) ≥ −pt + 〈−px, v〉 ≥ 0. Since the opposite inequality is
satisfied, we get the result.

Proposition 3.2 Under all assumptions of Theorem 3.2, if z is an optimal
solution to problem (10) and ∂+ϕ(z(t)) �= 0, then for all t ∈]t0, T [,

∀ m(t) ∈ Dz(t)(1), D↓V (t, z(t))(1,m(t)) = 0.

Proof. Fix m(t) ∈ Dz(t)(1) and let hi → 0+ be such that (z(t+hi)−z(t))/hi →
m(t). By Theorem 3.2, for all t ∈]t0, T ]

H(z(t), p(t)) = 〈p(t),m(t)〉 .
Set ψ(t) = V (t, z(t)). By Theorem 3.2 for all t ∈ [t0, T [

0 = lim sup
i→∞

ψ(t+ hi) − ψ(t)
hi

≤ D↓V (t, z(t))(1,m(t))

≤ H(z(t), p(t)) − 〈p(t),m(t)〉 = 0.

Theorem 3.3 We impose all the assumptions of Theorem 3.2. Then z, satisfy-
ing ∂+ϕ(z(t)) �= 0 is optimal for the problem (10) if and only if for all t ∈]t0, T [

∀ m(t) ∈ Dz(t)(1), D↓V (t, z(t))(1,m(t)) = 0.

and limt→t0 V (t, z(t)) = V (t0, z(t0)).

Proof. From Proposition 3.2 we get the necessity. Assume next that a trajec-
tory z of (8) satisfies the above equality. To prove sufficiency, we deduce from
Proposition 2.3 that ψ(t) := V (t, z(t)) is continuous. Then for some hi → 0+,

D↓ψ(t)(1) = lim
i→∞

ψ(t+ hi) − ψ(t)
hi

.

It is not restrictive to assume that z(t+hi)−z(t)
hi

converge to somem(t) ∈ Dz(t)(1).
Then

D↓ψ(t)(1) ≤ D↓V (t, z(t))(1,m(t)) = 0.

Applying the viability theorem exactly in the same way as in the proof of The-
orem 3.1 we get ψ(T ) ≤ ψ(t0). Thus ψ is constant and the proof follows.

Corollary 3.1 Under all assumptions of Theorem 3.2 if z is optimal for the
problem (10) and ∂+ϕ(z(t)) �= 0, then for every t ∈]t0, T [ and all (pt, px) ∈
∂+V (t, z(t))

∀ u ∈ U, ∀ m(t) ∈ Dz(t)(1), D↓V (t, z(t))(1,m(t)) ≤ pt + 〈px, f(x, u)〉 .
Proof. We apply Theorem 3.3 and use (21).
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4. Optimal synthesis

We introduce the set-valued maps

U(t, x) = {u ∈ U | ∀ (pt, px) ∈ ∂+V (t, x), pt + 〈px, f(x, u)〉 = 0} ,
G(t, x) = f(x, U(t, x))

and consider the new control system{
x′ = f(x, u), u ∈ U(t, x)

x(t0) = x0
(23)

and the corresponding differential inclusion{
x′ ∈ G(t, x)

x(t0) = x0.
(24)

Since in general U(·, ·) is discontinuous it does not have continuous selections.
To give meaning to solutions to (23) we say that an absolutely continuous x :
[t0, T ] �→ Rn solves (23) if for almost all t ∈ [t0, T ], x′(t) ∈ f(t, U(t, x(t))), i.e.,
if x solves the differential inclusion (24).

Proposition 4.1 Assume (11). Then the set-valued map G has closed convex,
possibly empty, images.

From Proposition 3.1 and Theorem 3.2 we deduce the following results.

Theorem 4.1 Assume that ϕ is lower semicontinuous, (11) holds true and f is
differentiable with respect to x. If z is optimal for problem (10) and ∂+ϕ(z(t)) �=
0, then it solves (23) and there exists M > 0 such that

∀ t ∈]t0, T [, inf
(pt,px)∈∂+V (t,z(t))

‖px‖ ≤M. (25)

Our next aim is to show that the converse statement holds true as well.

Theorem 4.2 Assume that ϕ is lower semicontinuous and (11) holds true. If
for some M > 0 there exists a solution z to (23), (25) satisfying z(t0) = x0 and
limt→t0 V (s, z(s))) = V (t0, x0). Then z is optimal for problem (10).

Proof. Set ψ(t) = V (t, z(t)). Then ψ is nondecreasing, lower semicontinuous
and for all t ∈]t0, T [ and all m(t) ∈ Dz(t)(1), (pt, px) ∈ ∂+V (t, x) we have

D↑ψ(t)(1) ≤ D↓V (t, z(t))(1,m(t)) ≤ pt + 〈px,m(t)〉
= H(z(t),−px) + 〈px,m(t)〉 .

This and Proposition 2.3 imply that ψ is Lipschitz. From the above inequality
and definition of U(t, x) we deduce that ψ′(t) ≤ 0 almost everywhere. Thus, ψ
is also nonincreasing. Consequently, it is constant and z is optimal.
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Theorem 4.3 Assume that ϕ is continuous, ∂+ϕ(x) �= ∅ for all x ∈ IRn, that
(11) holds true and that f is differentiable with respect to x. Then every solution
z to (23) is optimal.

Proof. By Proposition 2.4, ψ(t) = V (t, z(t)) is continuous nondecreasing. By
the proof of Proposition 2.4

sup
t∈[t0,T [

D↑ψ(t)(1) <∞.

From Proposition 2.3 we deduce that ψ is Lipschitz. By the same arguments as
in the proof of Theorem 4.2 we obtain ψ′(t) ≤ 0 for almost all t. Therefore ψ is
constant.

The natural question arises whether it is possible to restrict the attention
only to (23). The answer is positive if instead of absolutely continuous solutions
to (23) we consider its contingent solutions.

Definition 4.1 We say that a continuous mapping z : [t0, T ] �→ Rn is a con-
tingent solution to (23) if

∀ t ∈]t0, T [, Dz(t)(1) ∩ f(z(t), U(t, z(t))) �= ∅.
Proposition 4.2 Assume (11). If z is a contingent solution to (23), then z is
Lipschitz.

Proof. Let γ = sup {‖f(z(t), u)‖u ∈ U}. Consider t1 > t0 and the viability
problem⎧⎨

⎩
s′ = 1, s(0) = t1
x′ ∈ γB, x(0) = z(t1)
∀ t ≥ 0, (s(t), x(t)) ∈ Graph(z).

(26)

Its solution (s(t), x(t)) is (γ + 1)−Lipschitz. Since x(s) = z(t1 + s), we deduce
that z is also (γ+1)−Lipschitz on [t1, T ]. But t1 > t0 being arbitrary, the proof
follows.

Theorem 4.4 Assume that ϕ is lower semicontinuous and that (11) holds true.
If z is a contingent solution to (23) and limt→t0+ V (t, z(t)) = V (t0, x0), then z
is optimal.

Proof. Let ψ be defined as in the proof of Theorem 4.2. Then for any t ∈]t0, T [
and m(t) ∈ Dψ(t)(1) ∩ f(z(t), U(t, z(t))),

D↑ψ(t)(1) ≤ D↓V (t, z(t))(1,m(t)) ≤ pt + 〈px,m(t)〉 = 0.

Applying the same arguments as in the proof of Theorem 4.2 we conclude.

Proposition 3.1 yields the following result.



802 H. FRANKOWSKA

Theorem 4.5 Assume that (11) holds true. If z is optimal, then for all t ∈
]t0, T [, z(t) ∈ Dom(G(t, ·)).
We do not know if every optimal trajectory z is a contingent solution to (24).
It is possible, however, to increase the feedback map G by loosing its convexity
but gaining a necessary and sufficient condition for optimality.

We introduce the set-valued maps

Û(t, x) = {u ∈ U | ∃ (pt, px) ∈ ∂+V (t, x), pt + 〈px, f(x, u)〉 = 0}
and

Ĝ(t, x) = f(x, Û(t, x)).

Consider the new control system{
x′ = f(x, u), u ∈ Û(t, x)

x(t0) = x0.
(27)

and the differential inclusion{
x′ ∈ Ĝ(t, x)

x(t0) = x0 .
(28)

Solutions to (27) are understood as absolutely continuous solutions to (28).
Theorem 3.2 and the very same proof as the one of Theorem 4.4 imply the

following necessary and sufficient condition for optimality.

Theorem 4.6 Assume (11), that ϕ is continuous, ∂+ϕ(x) �= ∅ for all x ∈ IRn

and that f is differentiable with respect to x. A trajectory z of (8) is optimal if
and only if it is a contingent solution to (28) and limt→t0+ V (t, z(t)) = V (t0, x0).

When in addition the value function V is semiconcave, then the set-valued map
Ĝ is upper semicontinuous.

Theorem 4.7 Assume that (11) and (16) hold true. Then the set-valued map
G is upper semicontinuous on [0, T ] × Rn.

Proof. By Theorem 2.3 V is semiconcave on [0, T ] × Rn. Thus it is locally
Lipschitz on [0, T ] × Rn and have nonempty superdifferentials. Fix (t0, x0) ∈
[0, T ]× Rn.

By Aubin and Frankowska (1990) it is enough to show that graph(G) is
closed. Consider (ti, xi) → (t0, x0) and ui ∈ U(ti, xi) such that f(xi, ui) →
f(x0, u). Let (pit, p

i
x) ∈ ∂+V (ti, xi) be such that pit =

〈
pix,−f(xi, ui)

〉
=

H(xi,−pix). Taking a subsequence and keeping the same notations we may
assume that (pit, p

i
x) → (pt, px). By Theorem 2.2, (pt, px) ∈ ∂+V (t0, x0). Since

the Hamiltonian is continuous, pt = 〈px,−f(x0, u)〉 = H(x0,−px).

Notice that all bounded upper semicontinuous map with closed images do
have closed graph. This property is very useful in numerical approximations of
solutions to differential inclusions.
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