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Abstract: This paper studies a Mayer type optimal control
problem with general endpoint constraints for semilinear unbounded
evolution inclusions in reflexive and separable Banach spaces. First,
we construct a sequence of discrete approximations to the original
optimal control problem for evolution inclusions and prove that op-
timal solutions to discrete approximation problems uniformly con-
verge to a given optimal solution for the original continuous-time
problem. Then, based on advanced tools of generalized differen-
tiation, we derive necessary optimality conditions for discrete-time
problems under fairly general assumptions. Combining these re-
sults with recent achievements of variational analysis in infinite-
dimensional spaces, we establish new necessary optimality conditions
for constrained continuous-time evolution inclusions by passing to
the limit from discrete approximations.
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1. Introduction

Let X be a reflexive and separable Banach space, and let F : X × [a, b] →→ X
be a set-valued mapping. The primary object of this paper is the following
Mayer-type problem (P ) for semilinear evolution inclusions with general end-
point constraints:

minimize J [x] := ϕ(x(b)) (1)
1This research was partly supported by the National Science Foundation under grant DMS-

0304989 and by the Australian Research Council under grant DP-0451168.
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over mild continuous trajectories x : [a, b] → X for the semilinear evolution
inclusion

ẋ(t) ∈ Ax(t) + F (x(t), t), x(a) = x0 ∈ X (2)

subject to the endpoint constraint

x(b) ∈ Ω ⊂ X, (3)

where A : X → X is an unbounded generator of the C0-semigroup {eAt| t ≥ 0}
and where Ω ⊂ X is a closed set. A special case of F (x, t) = f(x, U, t) with
a control set U relates (2) to semilinear control evolution equations considered
in PDE control theory for smooth data; see, e.g., the books by Fattorini (1999)
and Li and Yong (1995) with their references and comprehensive discussions.

Optimal control problems governed by differential inclusions with finite-
dimensional state spaces X = IRn (when there is no need to single out the linear
term in (2)) have been intensively studied in many publications, mostly from the
viewpoint of deriving necessary optimality conditions; see Clarke (2005), Ioffe
(1997), Loewen and Rockafellar (1996), Mordukhovich (1995), Smirnov (2002),
Vinter (2000), and the references therein.

Differential/evolution inclusions in infinite dimensions are significantly more
involved and require new tools for their analysis, even in the case when A
is a bounded operator (or A = 0) and F is a compact-valued mapping; see
Tolstonogov (2000) and Mordukhovich (2004, 2005) regarding various results for
such inclusions. However, the above boundedness/compactness assumptions are
quite restrictive for a number of important applications, especially to dynamic
systems governed by partial differential equations and inclusions.

Although semilinear models of type (2) with control representations F (x, t) =
f(x, U, t) involving smooth functions f(·, u, t) have been studied in the litera-
ture in connection with optimal control problems for partial differential equa-
tions (see the references above), the inclusion models (2) have not drawn much
attention. Let us mention the paper by Frankowska (1990), where semilin-
ear inclusions (2) were studied from the viewpoint of relaxation/convexification
results and reachable set properties. We are not familiar with any work on
necessary optimality conditions for semilinear evolution inclusions or even semi-
linear evolution equations with nonsmooth dynamics. Our previous results were
announced in Mordukhovich and Wang (2005), which is a preliminary version of
this paper with no proofs, for problem (P ) involving autonomous inclusions (2).
To this end, we emphasize the importance of considering the evolution inclu-
sion model (2), which cannot be generally parameterized by F (x, t) = f(x, U, t)
while having nevertheless its own intrinsic values and applications (even out of
control theory) similarly to its well-known counterparts for finite-dimensional
problems; see more discussions in Mordukhovich (2005).

The primary goal of this paper is to extend the method of discrete approx-
imations developed by Mordukhovich (1995, 2004, 2005) for optimal control
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systems governed by bounded/compact differential inclusions. The unbound-
edness of the operator A in (2) is a principal issue for applications to control
problems for partial differential equations and inclusions. First we establish
well-posedness/stability of discrete approximations in the sense of the uniform
convergence of their optimal solutions to the reference optimal solution for the
original problem. Based on the advanced tools of variational analysis and gener-
alized differentiation, we derive necessary optimality conditions for discrete-time
problems and then, by passing to the limit from discrete approximations, obtain
necessary conditions of the Euler-Lagrange type for the original problem (P ).

The rest of the paper is organized as follows. Section 2 is devoted to the con-
struction and justification of a well-posed discrete approximation for the original
continuous-time problem. We first establish, under fairly general assumptions,
that any mild continuous trajectory for (2) can be strongly approximated, in
the C([a, b];X)-norm, by feasible trajectories of the corresponding discrete in-
clusions that are piecewise linearly extended to the continuous-time interval
[a, b]. This allows us to justify the uniform convergence of optimal solutions
for discrete approximation problems to given optimal solution for problem (P ),
thus making a bridge between discrete-time and continuous-time dynamic opti-
mization problems.

In Section 3 we briefly review basic tools of generalized differentiation in
variational analysis needed for deriving necessary optimality conditions in dis-
crete approximation problems and then establishing, by passing to the limit,
adequate necessary conditions for optimality of the given solution to (P ).

Section 4 is devoted to necessary optimality conditions for the discrete-time
problems appeared in our discrete approximation procedure. We pay main
attention to “fuzzy” (or approximate) optimality conditions in discrete approx-
imations that are more flexible and require less assumptions for the subsequent
derivation of optimality condition for evolution inclusions by passing to the
limit.

In Section 5 we develop the limiting procedure to establish the necessary
optimality conditions for the original continuous-time problem (P ) by passing
to the limit from discrete approximations. In this way we obtain new conditions
in the extended Euler-Lagrange form involving mild solutions to a certain adjoint
evolution inclusion.

2. Discrete approximations

The main goal of this section is to construct a well-posed sequence of discrete
approximation problems to the continuous-time optimal control problem (P )
under consideration. To achieve this goal, we obtain also some other results on
discrete approximations that are certainly of independent interest.

We begin with clarifying the definition of mild solutions to the evolution
inclusion (2), where A is an unbounded generator of the C0-semigroup {eAt| t ≥
0}. A continuous trajectory/arc x : [a, b] → X is a mild solution to (2) if there
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is a Bochner integrable mapping v ∈ L1([a, b];X) such that⎧⎨
⎩ x(t) = eA(t−a)x0 +

∫ t

a

eA(t−s)v(s) ds for all t ∈ [a, b]

with v(t) ∈ F (x(t), t) a.e. t ∈ [a, b].
(4)

In contrast to strong solutions for differential inclusions, we do not require the
a.e. Fréchet differentiability of feasible arcs (which is not realistic for unbounded
operators A) and actually replace (2) by the integral inclusion (4) considered in
the space C([a, b];X).

In what follows we always assume that the Banach space X is reflexive and
separable and that A generates a compact C0-semigroup eAt on X . We also
suppose that A generates a semigroup of contractions on X , which does not
restrict the generality. Indeed, given a Banach space X with the original norm
‖ · ‖ and an arbitrary C0-semigroup {eAt| t ≥ 0} on X with ‖eAt‖ ≤ M , let us
renorm X by

‖x‖1 = sup
t≥0

‖eAtx‖

and observe that ‖x‖ ≤ ‖x‖1 ≤M‖x‖ for each x ∈ X . In addition one has

‖eAtx‖1 = sup
τ≥0

‖eAτeAtx‖ ≤ sup
t≥0

‖eAtx‖ = ‖x‖1,

which shows that {eAt| t ≥ 0} is a contraction semigroup on (X, ‖ · ‖1). It is
easy to conclude that {eAt| t ≥ 0} is a C0-semigroup on the renormed space
(X, ‖ · ‖1); see, e.g., the book by Ahmed (1991) for more details.

Fix an arbitrary mild trajectory x̄(·) for the original inclusion (2) and impose
the following basic assumptions on the set-valued mapping F :

(H1) There are an open set U ⊂ X and positive numbers �F , mF such that
x̄(t) ∈ U as t ∈ [a, b] and the sets F (x, t) are compact and convex for all
x ∈ U and almost all t ∈ [a, b]. Moreover, one has

F (x, t) ⊂ mF IB, (x, t) ∈ U × [a, b], and (5)

F (x1, t) ⊂ F (x2, t) + �F ‖x1 − x2‖IB, x1, x2 ∈ U, t ∈ [a, b], (6)

where IB stands for the closed unit ball of the space in question.

(H2) F (x, ·) is Hausdorff continuous for a.e. t ∈ [a, b] uniformly in x ∈ U .

Note that (6) signifies the local Lipschitz continuity of F (·, t) around x̄(t).
To clarify the meaning of (H2), consider the so-called averaged modulus of con-
tinuity τ(F, h) for F (x, t) in t ∈ [a, b] when x ∈ U defined by

τ(F ;h) :=
∫ b

a

σ(F ; t, h) dt, (7)
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where σ(F ; t, h) := sup{ω(F ;x, t, h)| x ∈ U}, where

ω(F ;x, t, h) := sup
{
haus(F (x, t1), F (x, t2))

∣∣ t1, t2 ∈ [t−h/2, t+h/2]∩ [a, b]
}
,

and where haus(·, ·) stands for the Hausdorff distance between compact sets.
It is proved by Dontchev and Farkhi (1989) (in finite dimensions, while their
proof works practically without change in the infinite-dimensional setting under
consideration) that if F (x, ·) is Hausdorff continuous for a.e. t ∈ [a, b] uniformly
in x ∈ U , then τ(F ;h) → 0 as h→ 0.

Observe that the convex-valuedness assumption on F (x, t) in (H1) is imposed
for simplicity; it can be replaced by the so-called relaxation stability and can be
actually dropped in some settings; see Mordukhovich (1995, 2004, 2005) with
A = 0 as well as Theorem 2.1 stated below in the general case. Note also
that, everywhere except for Theorem 2.1, we need the validity of assumptions
(H1) and (H2) around a given optimal solution x̄(·) to (P ). In fact, the global
optimality of x̄(·) can be replaced by its local strong optimality, i.e., relative to
a C([a, b];X)-neighborhood.

Our first step is to build well-posed discrete approximations of the integral
system (4), i.e., for mild solutions of the initial inclusion (2) without taking into
account the minimizing functional (1) and the endpoint constraint (3) in the
original Mayer problem (P ). For any natural number N ∈ IN := {1, 2, . . .}
consider the grid/partition

TN :=
{
tj = t0 + jhN

∣∣ j = 0, . . . , N
}

with t0 = a, tN = b,

and stepsize hN :=
b− a

N
.

The sequence of discrete inclusions approximating (4) is constructed as follows:⎧⎨
⎩ xN (tj+1) ∈ eAhNxN (tj) +

∫ hN

0

eAsF (xN (tj), tj) ds

with j = 0, . . . , N − 1 and xN (t0) = x0.

(8)

Denote by xN (t), a ≤ t ≤ b, piecewise linear extensions of discrete trajectories
xN (tj) for (8) to the continuous-time interval [a, b]. The following result en-
sures, under the standing assumptions made, the uniform approximation of an
arbitrary mild trajectory for (2) by a sequence of extended trajectories for the
discrete inclusions (8).

Theorem 2.1 (uniform approximation of mild trajectories) Let x̄(·)
be an arbitrary mild trajectory for (2), i.e., satisfying the integral inclusion (4)
under all the assumptions in (H1) and (H2) except the convex-valuedness of
F (x, t). Then there is a sequence of extended discrete trajectories xN (·) for (8)
that converges to x̄(·) in the norm of C([a, b];X).

Proof. Without loss of generality, assume in what follows that the operator A
generates a C0-semigroup {eAt| t ≥ 0} of contractions on X . Let {wN (·)}, N =
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1, 2, . . . be an arbitrary sequence of functions in [a, b] such that wN (·) are con-
stant on [tj , tj+1) for every j = 0, . . . , N − 1 and wN (t) converge to some
v(t) ∈ F (x̄(t), t) satisfying (4) as N → ∞ in the norm of L1([a, b];X). Such a
sequence always exists because of the density of step-functions in L1([a, b];X).
It is easy to see that

∫ t

a

wN (s) ds →
∫ t

a

v(s) ds as N → ∞ uniformly on [a, b].

Then by the boundedness assumption in (5) and by the triangle inequality one
gets

∫ t

a

∥∥wN (s)
∥∥ ds ≤ mF (t− a) whenever t ∈ [a, b] and N → ∞. (9)

In the arguments and estimates below we use the numerical sequence

ξN :=
∫ b

a

∥∥v(t) − wN (t)
∥∥ dt→ 0 as N → ∞. (10)

Define the sequence of discrete functions {yN(tj)| j = 0, . . . , N } by⎧⎨
⎩ yN (tj+1) = eAhN yN(tj) +

∫ hN

0

eAswN (tj) ds

with j = 0, . . . , N − 1 and yN(t0) = x0.

(11)

Note that the functions

yN(t) := eA(t−a)x0 +
∫ t

a

eA(t−s)wN (s) ds, t ∈ [a, b], (12)

are continuous extensions of (11) on the interval [a, b] satisfying

‖yN(t) − x̄(t)‖ ≤ ξN whenever t ∈ [a, b]. (13)

The latter implies that yN (t) ∈ U for all t ∈ [a, b] if N is sufficiently large. To
proceed with the estimates below, observe that the Lipschitz condition (6) is
clearly equivalent to

dist(w,F (x1, t)) ≤ dist(w,F (x2, t)) + �F‖x1 − x2‖
whenever w ∈ X, x1, x2 ∈ U, and t ∈ [a, b].

Furthermore, for any w, x ∈ X and t1, t2 ∈ [a, b] one has

dist(w,F (x, t1)) ≤ dist(w,F (x, t2)) + haus(F (x, t1), F (x, t2)).
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Now using the average modulus of continuity (7), we get

ζN : =
N−1∑
j=0

hNdist(wN (tj), F (yN (tj), tj))

=
N−1∑
j=0

∫ tj+1

tj

dist(wN (tj), F (yN (tj), tj)) dt

≤
N−1∑
j=0

∫ tj+1

tj

dist(wN (tj), F (yN (tj), t)) dt+ τ(F ;hN ).

Since wN (t) are constants on [tj , tj+1), it follows from (6), (9), (13), and the
contraction property of the C0-semigroup {eAt| t ≥ 0} that

dist(wN (tj), F (yN (tj), t)) ≤ dist(wN (t), F (yN (t), t))

+�F‖yN(tj) − eA(t−tj)yN (tj)‖ +
∫ tj+1

tj

‖wN (s)‖ ds

for all t ∈ [tj , tj+1), and that

dist(wN (t), F (yN (t), t)) ≤ dist(wN (t), F (x̄(t), t)) + �F ‖yN(t) − x̄(t)‖
≤ ‖wN(t) − v(t)‖ + �F ξN

for a.e. t ∈ [a, b]. Thus one has⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ζN ≤ γN :=
[
1 + lF (b− a)

]
ξN + lF θN + 1

2 (b − a)�FmFhN + τ(F ;hN )

with θN :=
N−1∑
j=0

∫ tj+1

tj

‖yN(tj) − eA(t−tj)yN (tj)‖ dt→ 0 as N → ∞.
(14)

Observe that the discrete functions (11) are not trajectories for (8) because
the inclusions wN (tj) ∈ F (yN (tj), tj) are not generally guaranteed for all j =
0, . . . , N − 1. Now we use wN (tj) to define trajectories for (8), which are close
to yN(tj) and have the convergence property stated in this theorem.

Let us construct the desirable trajectories {x̄N (tj)| j = 0, . . . , N } by using
the following proximal algorithm:⎧⎪⎪⎨

⎪⎪⎩
xN (t0) = x0, qN (tj) ∈ F (xN (tj), tj),
‖qN (tj) − wN (tj)‖ = dist(wN (tj), F (xN (tj), tj)),

xN (tj+1) = eAhNxN (tj) +
∫ hN

0

eAsqN (tj) ds, j = 0, . . . , N − 1.
(15)

Then the continuous extensions of xN (tj), j = 0, . . . , N , are given by

xN (t) = eA(t−a)x0 +
∫ t

a

eA(t−s)qN (s) ds, t ∈ [a, b].
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Now following the scheme of proving Theorem 3.1 in Mordukhovich (1995) and
adapting it to the case under consideration involving semilinear evolution inclu-
sions in infinite-dimensional spaces, we show that the extensions xN (t), t ∈ [a, b],
of the above discrete trajectories converge to x(t) in the norm of C([a, b];X).
This completes the proof of the theorem.

Next suppose that x̄(·) is an optimal solution to (P ) and construct a se-
quence of optimization problems (PN ) for discrete inclusions (8) in such a way
that optimal solutions to (PN ) strongly (in the norm of C([a, b];X)) converge to
x̄(·) as N → ∞. Imposing assumptions (H1) and (H2) along x̄(·) and using The-
orem 2.1, we approximate x̄(·) by discrete trajectories {x̄N (tj)| j = 0, . . . , N}
and compute the numerical sequence

ηN := γN exp
[
�F (b − a)

]
+ ξN ↓ 0 as N → ∞, (16)

where ξN and γN are defined in (10) and (14), respectively. Define a sequence
of discrete approximation problems (PN ), N ∈ IN , as follows: minimize

JN [xN ] := ϕ(xN (b)) + hN

N−1∑
j=0

‖xN (tj+1) − x̄(tj+1)‖2 (17)

subject to the discrete-time inclusions (8) and the perturbed endpoint constraints

xN (b) ∈ ΩN := Ω + ηNIB. (18)

Note that nonzero perturbations ηN in (18) of the original endpoint constraint
(3) are crucial for the validity of the next result, which makes a bridge between
the continuous-time and discrete-time optimization problems under considera-
tion.

Theorem 2.2 (uniform convergence of discrete optimal solutions)

Let x̄(·) be an optimal solution to problem (P ), and let the sequence {ηN} be
constructed in (16). In addition to the standing assumptions on A and F ,
suppose that the cost function ϕ is lower semicontinuous on U and continuous
at x̄(b). Then for each N ∈ IN the discrete-time optimization problem (PN )
admits an optimal solution. Furthermore, any sequence {x̄N (t)}, t ∈ [a, b], of
extended optimal solutions to (PN ) converges to the given optimal x̄(·) to (P )
strongly in C([a, b];X) as N → ∞.

Proof. It follows from the proof of Theorem 2.1 and the choice of ηN in (16)
and (18) that the discrete trajectories {xN (tj)| j = 0, . . . , N} constructed in
Theorem 2.1 for the given optimal solution x̄(·) to (P ) are feasible solutions to
(PN ) for all N ∈ IN sufficiently large. Then the classical Weierstrass theorem
ensures the existence of optimal solutions x̄N (·) = (x̄N (t0), x̄N (t1), . . . , x̄N (tN ))
to (PN ) with x̄N (t0) = x0 for such N under the assumptions made. Let us prove
that for any sequence of optimal solutions x̄N (·) to (PN ) we have the inequality

lim sup
N→∞

JN [x̄N ] ≤ J [x̄] . (19)
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To accomplish this, it suffices to show that

JN [xN ] = ϕ(xN (b)) + hN

N−1∑
j=0

‖xN (tj+1) − x̄(tj+1)‖2 → J [x̄] = ϕ(x̄(b))

as N → ∞ (20)

for the sequence of discrete trajectories xN (·) approximating x̄(·) due to Theo-
rem 2.1.

Since xN (b) → x̄(b), the convergence ϕ(xN (b)) → ϕ(x̄(b)) as N → ∞ follows
directly from the continuity of ϕ at x̄(b). To justify (20), it remains to show
that

hN

N−1∑
j=0

‖xN (tj+1) − x̄(tj+1)‖2 → 0 as N → ∞.

The latter follows from the estimate

‖xN (tj+1) − x̄(tj+1)‖ ≤ ηN ↓ 0 as N → ∞,

which can be distilled from the proof of Theorem 2.1; see Mordukhovich (1995).
To proceed further, observe that the continuous extensions of the optimal

solutions x̄N (·) to (PN ) admit the integral representation

x̄N (t) = eA(t−a)x0 +
∫ t

a

eA(t−s)vN (s) ds, a ≤ t ≤ b,

with some vN (t) ∈ F (x̄N (t), t) a.e. t ∈ [a, b] for all N ∈ IN . Let us prove that
x̄N (t) → x̄(t) uniformly on [a, b]. Assuming the contrary, we have without loss
of generality that

c := lim
N→∞

max
t∈[a,b]

‖x̄N (t) − x̄(t)‖ > 0.

Now, following the scheme in the proof of Theorem 2.7 from Frankowska (1990),
we find a mild solution x̃(·) to (2) such that x̄N (t) → x̃(t) uniformly on [a, b].
Since

hN

N−1∑
j=0

‖x̄N (tj+1) − x̄(tj+1)‖2 ≤
∫ b

a

c2 dt = c2(b− a)

for all N sufficiently large, we get from (17) and (19) that

J [x̃] < ϕ(x̃(b)) + c2(b− a) ≤ lim inf
N→∞

JN [x̄N ] ≤ lim sup
N→∞

JN [x̄N ] ≤ J [x̄].

The latter contradicts the optimality of x̄(·) in the original problem (P ). Hence
c = 0, which completes the proof of the theorem.
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3. Tools of generalized differentiation

This section contains some preliminary material on generalized differentiation
widely used in the variational analysis of evolution inclusions conducted in what
follows. We refer the reader to the book by Mordukhovich (2005) for more de-
tails, discussions, and the extensive bibliography; a finite-dimensional counter-
part of the generalized differential theory is available in the book by Rockafellar
and Wets (1998). Since the standing framework of the paper confines ourselves
to reflexive and separable Banach spaces, we present formulations of the main
constructions and results holding in this setting. Note, however, that all the re-
sults presented in this section hold true in the (essentially more general) frame-
work of Asplund spaces, while some of them are valid in other (even arbitrary)
Banach space settings under appropriate modifications of definitions.

Given Ω ⊂ X , define the (limiting, basic) normal cone to Ω at x̄ ∈ Ω by

N(x̄; Ω) := Lim sup
x

Ω→x̄

N̂(x; Ω), (21)

where “Lim sup” signifies the sequential Painlevé-Kuratowski upper/outer limit
of a set-valued mapping from X to X∗ in the norm topology of X and the
weak∗(=weak) topology of X∗, where x Ω→ x̄ means that x → x̄ with x ∈ Ω,
and where N̂(x; Ω) stands for the prenormal (or Fréchet normal) cone to Ω at
x ∈ Ω given by

N̂(x; Ω) :=
{
x∗ ∈ X∗

∣∣∣ lim sup
u

Ω→x

〈x∗, u− x〉
‖u− x‖ ≤ 0

}
(22)

via the classical upper limit “lim sup” for scalar functions.
Given a set-valued mapping F : X →→ Y and a point (x̄, ȳ) ∈ gphF , define

the coderivative of F at (x̄, ȳ) as a positive homogeneous mapping D∗F (x̄, ȳ) :
Y ∗ →→ X∗ with

D∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N((x̄, ȳ); gphF )

}
. (23)

If F is single-valued and C1 around x̄ (or merely strictly differentiable at this
point), then

D∗F (x̄)(y∗) =
{∇F (x̄)∗y∗

}
for any y∗ ∈ Y ∗,

i.e., the coderivative (23) is an appropriate extension of the classical adjoint
derivative operator to nonsmooth and set-valued mappings. Note that (23) can
be equivalently represented in the limiting form

D∗F (x̄, ȳ)(y∗) =
{
x∗ ∈ X∗

∣∣∣ ∃ sequences (xk, yk)
gph F→ (x̄, ȳ),

(x∗k, y
∗
k) w→ (x∗, y∗)

with x∗k ∈ D̂∗F (xk, yk)(y∗k), k ∈ IN
}
,
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where w signifies the weak convergence on X∗, IN := {1, 2, . . .}, and where

D̂∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N̂((x̄, ȳ); gphF )

}
(24)

stands for the Fréchet coderivative of F at (x̄, ȳ) ∈ gphF . Using (24), we
have the following characterization of the classical local Lipschitzian property
of compact-valued multifunctions: F is locally Lipschitzian around x̄ ∈ domF
with modulus �F if and only if there is η > 0 such that

sup
{‖x∗‖ ∣∣ x∗ ∈ D̂∗F (x, y)(y∗)

} ≤ �F‖y∗‖ (25)

whenever x ∈ x̄+ ηIB, y ∈ F (x), and y∗ ∈ Y ∗.
Given an extended-real-valued function ϕ : X → IR := (−∞,∞] at x̄ with

ϕ(x̄) <∞, the (limiting) subdifferential of ϕ at x̄ is defined by

∂ϕ(x̄) := Lim sup
x

ϕ→x̄

∂̂ϕ(x), (26)

where x
ϕ→ x̄ means that x→ x̄ with ϕ(x) → ϕ(x̄), and where ∂̂ϕ(x) stands for

the Fréchet subdifferential of ϕ at x defined by

∂̂ϕ(x) :=
{
x∗ ∈ X∗

∣∣∣ lim inf
x→x̄

ϕ(u) − ϕ(x) − 〈x∗, u− x〉
‖u− x‖ ≥ 0

}
. (27)

The subgradient set (27) is widely used in the theory of viscosity solutions to
nonlinear partial differential equations under the name of “viscosity subdiffer-
ential.” Observe that

N(x̄; Ω) = ∂δ(x̄; Ω) and N̂(x̄; Ω) = ∂̂δ(x̄; Ω),

where δ(·; Ω) stands for the indicator function of Ω defined by δ(x; Ω) = 0 for
x ∈ Ω and δ(x; Ω) = ∞ otherwise.

The above normal cones, subdifferentials, and coderivatives enjoy compre-
hensive calculus rules: in fuzzy/approximate forms for Fréchet-like constructions
(22), (24), (27), and in exact/pointwise forms for their limiting counterparts.
The driving force for these calculi is the usage of certain variational principles,
or extremal principles in the geometric framework, which are at the very heart
of variational analysis. We formulate the fuzzy rule for Fréchet subgradients of
semi-Lipschitzian sums used in what follows, where IB∗ stands for the closed
unit ball of X∗: given any ε > 0, one has the inclusion

∂̂(ϕ1 + ϕ2)(x̄) ⊂
⋃{

∂̂ϕ1(x1) + ∂̂ϕ2(x2)
∣∣∣ xi ∈ x̄+ εIB,

|ϕi(xi) − ϕi(x̄)| ≤ ε, i = 1, 2
}

+ εIB∗ (28)

provided that ϕ1 is Lipschitz continuous around x̄ while ϕ2 is finite at x̄ and
lower semicontinuous around this point.

Besides calculus rules for generalized differentiation that are equally impor-
tant in finite and infinite dimensions, major ingredients of infinite-dimensional
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variational analysis are “normal compactness” properties of sets, set-valued
mappings, and extended-real-valued functions that are automatic in finite di-
mensions while playing a crucial role in many aspects in infinite-dimensional
analysis, especially those related to passing to the limit. In this paper we em-
ploy only one of such properties needed for closed sets. This property called
sequential normal compactness (SNC) is defined as follows: Ω ⊂ X is SNC at
x̄ ∈ Ω if for any sequences of (xk, x

∗
k) ∈ X ×X∗ satisfying

xk → x̄ with xk ∈ Ω and x∗k ∈ N̂(xk; Ω) as k ∈ IN

one has the implication x∗k
w→ 0 =⇒ ‖x∗k‖ → 0 as k → ∞. When Ω is convex

with riΩ �= ∅, its SNC property is equivalent to Ω being of finite codimension;
the latter is widely used in optimal control of partial differential equations; see
Fattorini (1999) and Li and Yong (1995).

Finally, let us mention an extension of the limiting normal cone (21) to the
case of moving (parameter-dependent) sets useful in the study of nonautonomous
objects. Given a moving set Ω: T →→ X on a topological space of parameters,
define the extended normal cone to Ω(t̄) at x̄ ∈ Ω(t̄) by

Ñ(x̄; Ω(t̄)) := Lim sup
(x,t)

gph Ω→ (t̄,x̄)

N̂(x; Ω(t)).

Furthermore, Ω(·) is said to be normally semicontinuous at (x̄, t̄) if Ñ(x̄; Ω(t̄)) =
N(x̄; Ω(t̄)). The latter property holds not only for parameter-independent sets
Ω(t) ≡ Ω but in much more general settings; see, e.g., Bounkhel and Thibault
(2005) and Mordukhovich (1995, 2005).

4. Optimality conditions for discrete approximations

The primary objective of this section is to obtain necessary conditions for op-
timal solutions to the discrete approximation problems (PN ) governed by dif-
ference evolution inclusions in infinite-dimensional spaces. We reduce these
dynamic optimization problems to “non-dynamic” problems (MPN ) of mathe-
matical programming with operator and many geometric constraints. To con-
duct a variational analysis of problems (MPN ) and then of (PN ), we employ
the tools and calculus rules of generalized differentiation discussed in Section 3.
The main attention is paid to “fuzzy” results derived under minimal assump-
tions. They happen to be more convenient for furnishing limiting procedures to
establish necessary optimality conditions in the original problem (P ) developed
in Section 5.

For notational simplicity and without loss of generality for the process of
passing to the limit in Section 5, we replace the term∫ hN

0

eAsF (xN (tj), tj) ds

in (8) by hNe
AhNF (xN (tj), tj) for j = 0, . . . , N − 1.
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Fix now N ∈ IN and consider a “long” vector z ∈ X2N+1 defined by

z = (xN
0 , x

N
1 , . . . , x

N
N , y

N
0 , . . . , y

N
N−1)

:= (xN (t0), xN (t1), . . . , xN (tN ), yN (t0) . . . , yN (tN−1)),

with xN
0 = xN (t0) = x0, where the discrete “mild derivative” vectors yN

j are
given by

yN
j =

xN
j+1 − eAhNxN

j

hN
as j = 0, . . . , N − 1.

For each N ∈ IN consider the following problem of mathematical programming
(MPN ): minimize the cost function

φ0(z) := ϕ(xN
N ) + hN

N−1∑
j=0

‖eAhNxN
j + hNy

N
j − x̄(tj+1)‖2 (29)

subject to the constraints

gj(z) := xN
j+1 − eAhNxN

j − hNy
N
j = 0 for j = 0, . . . , N − 1, (30)

Λj :=
{
(xN

0 , x
N
1 , . . . , y

N
N−1)

∣∣ yN
j ∈ eAhNF (xN

j , tj)
}

for j = 0, . . . , N − 1, (31)

ΛN := {(xN
0 , x

N
1 , . . . , y

N
N−1)

∣∣ xN
N ∈ ΩN}. (32)

Note that constraints (30) are of the operator type, while constraints (31) and
(32) are geometric with their number increasing as N → ∞. It is easy to see
that each problem (MPN ) defined in (29)–(32) is equivalent to the discrete
approximation problem (PN ) given in (8), (17), and (18) as N ∈ IN . Denote

g(z) := (g0(z), g1(z), . . . , gN−1(z)) and Λ :=
N⋂

j=0

Λj .

The next fuzzy intersection rule for the sets Λj is implied by the general result
in Mordukhovich (2005, Lemma 3.1) due to the automatic fulfillment of the
“fuzzy qualification condition” therein that follows from the specific structure
of (31) and (32).

Lemma 4.1 (fuzzy intersection rule)

Let z̄N = (x0, x̄
N
1 , . . . , x̄

N
N , ȳ

N
0 , . . . , ȳ

N
N−1) be an optimal solution to problem

(MPN ). Assume that the sets gphF (·, tj) are locally closed around x̄N
j for

all j. Then for any ε > 0 and z̃ ∈ z̄N + εIB we have

N̂(z̃; Λ) ⊂ N̂(z0; Λ0) + N̂(z1; Λ1) + · · · + N̂(zN ; ΛN ) + εIB∗

with some zj ∈ Λj ∩ (z̃ + εIB) as j = 0, . . . , N .
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The following theorem gives necessary optimality conditions of a fuzzy La-
grange multiplier type for the infinite-dimensional mathematical programming
problems (MPN ) with operator and many geometric constraints.

Theorem 4.1 (fuzzy Lagrange multiplier rule)

Let z̄N = (x0, x̄
N
1 , . . . , x̄

N
N , ȳ

N
0 , · · · , ȳN

N−1) be an optimal solution to problem
(MPN ) as N ∈ IN . Assume that the cost function φ0 is locally Lipschitzian
and that the sets gphF (·, tj) are locally closed around x̄N

j . Then for any ε > 0
there are a number µ0 ≥ 0 and adjoint vectors ψ∗

j ∈ X∗ as j = 0, . . . , N −1 and
z∗j ∈ (X∗)2N+1 as j = 0, . . . , N satisfying the relationships

z∗j ∈ N̂(zj ; Λj) with some zj ∈ Λj ∩ (z̄N + εIB) as j = 0, . . . , N, (33)

−
N∑

j=0

z∗j ∈ µ0∂̂φ0(z̃0) +
N−1∑
j=0

∇gj(z̃)∗ψ∗
j + εIB∗ with some z̃0, z̃ ∈ z̄N + εIB

(34)

and the nontriviality condition

µ0 +
N−1∑
j=0

‖ψ∗
j ‖ ≥ 1. (35)

Proof. By the above construction and notation made, z̄N is an optimal solution
to the optimization problem

minimize φ0(z) subject to g(z) = 0 and z ∈ Λ,

where the index “N” is omitted for simplicity.
Assume first that z̄N is a regular point for φ0 relative to Λ, i.e., there are

α > 0 and a neighborhood U of z̄N such that

dist(z;Q) ≤ α‖φ0(z) − φ0(z̄N)‖ for all z ∈ Λ ∩ U,
where Q := {z ∈ Λ| φ0(z) = φ0(z̄N)} and where dist(·;Q) stands for the
distance function. Then by the reduction theorem from Ioffe (1979), z̄N is a
local solution to the following problem:

minimize φ0(z) + µ‖g(z)‖ subject to z ∈ Λ

for all µ > 0 sufficiently large. This easily implies that

0 ∈ ∂̂
[
φ0(·) + µ‖g(·)‖ + δ(·; Λ)

]
(z̄N ). (36)

Picking any ε > 0 and applying the fuzzy sum rule (28) to (36) and then the
intersection rule of Lemma 4.1 to the set Λ, we find (zj , z

∗
j ) satisfying (33) as

well as z̃0, z̃ ∈ z̄N + εIB, z̃∗0 ∈ ∂̂φ0(z̃0), and ψ∗
j ∈ X∗ satisfying
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0 ∈ z̃∗0 +
k−1∑
j=0

∇gj(z̃)∗ψ∗
j +

k∑
j=0

z∗j + εIB∗.

Thus we arrive at (33)–(35) with µ0 = 1 in the regular case.
Consider next the remaining case, which implies that the mapping gΛ :=

g + ∆(·; Λ) is not metrically regular around z̄N in the conventional sense; here
∆(z; Λ) stands for the indicator mapping of Λ defined by ∆(z; Λ) = 0 if z ∈ Λ and
∆(z; Λ) = ∅ otherwise. Applying the coderivative criterion of metric regularity
from Mordukhovich and Shao (1995, Theorem 5.6), for any ε > 0 we find
z̃ ∈ z̄N + εIB and ψ∗ = (ψ∗

0 , . . . , ψ
∗
N−1) ∈ (X∗)N such that

0 ∈ D̂∗gΛ(z̃)(ψ∗) with ‖ψ∗‖ > 1.

By Lemma 4.1 and elementary coderivative calculus involving a smooth mapping
g, we have

0 ∈ D̂∗gΛ(z̃)(ψ∗) = D̂∗[g(·) + ∆(·; Λ)
]
(z̃)(ψ∗) = ∇g(z̃)∗ψ∗ + N̂(z̃; Λ)

⊂
N−1∑
j=0

∇gj(z̃)∗ψ∗
j + N̂(z0; Λ0) + · · · + N̂(zN ; ΛN ) + εIB∗

with some zj ∈ Λj ∩(z̃+εIB) as j = 0, . . . , N . The latter implies (33)–(35) with
µ0 = 0 and thus completes the proof of the theorem.

Based on the above necessary optimality conditions for problems of mathe-
matical programming, we now derive the following “fuzzy” necessary optimality
conditions in the extended Euler-Lagrange form for discrete approximations of
the original problem.

Theorem 4.2 (fuzzy Euler-Lagrange conditions for discrete approx-

imations) Let x̄N (·) = (x0, x̄
N
1 , · · · , x̄N

N ) be an optimal solution to problem (PN )
with any fixed N ∈ IN . Assume that the cost function ϕ is locally Lipschitzian
and that the sets gphF (·, tj), j = 0, . . . , N − 1, are locally closed around x̄N (·).
Then, given an arbitrary ε > 0, there exist a number λN ≥ 0 and a discrete
adjoint trajectory pN(·) = (pN

1 , . . . , p
N
N ) ∈ (X∗)N satisfying the following rela-

tions:
— the fuzzy Euler-Lagrange inclusion: there are (xN

j , y
N
j ), (x̃N

j , ỹ
N
j ) ∈

(x̄N
j , ȳ

N
j ) + εIB, and a∗j ∈ IB∗ for j = 1, . . . , N − 1 such that

(eA∗hN pN
j+1 − pN

j

hN
−λNθN

j a
∗
j , p

N
j+1

)
∈ N̂((xN

j , y
N
j ); gph (eAhNF (·, tj)))+εIB∗

(37)

as j = 1, . . . , N − 1, where the numbers θN
j are defined by

θN
j := 2

∥∥∥eAhN x̃N
j + hN ỹ

N
j − x̄(tj+1)

∥∥∥, j = 1, . . . , N − 1; (38)
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—the fuzzy transversality inclusion: there are xN
N , x̃

N
N ∈ x̄N

N + εIB such that

−pN
N ∈ λN ∂̂ϕ(x̃N

N ) + N̂(xN
N ; ΩN ) + hNεIB

∗; (39)

—the nontriviality condition:

λN +
N∑

j=1

‖pN
j ‖ ≥ 1 for all N ∈ IN. (40)

Proof. Apply Theorem 4.1 to the optimal solution

z̄ := z̄N = (x0, x̄
N
1 , . . . , x̄

N
N , ȳ

N
0 , . . . , ȳ

N
N−1)

for problem (29)–(32) as N ∈ IN , where x̄N = (x0, x̄
N
1 , . . . , x̄

N
N ) is a given

optimal solution to (PN ). According to this result, there are a real number
µ0 ≥ 0 and adjoint vectors (ψ∗

0 , . . . , ψ
∗
N−1) ∈ (X∗)N and z∗j ∈ (X∗)2N+1, j =

0, . . . , N , satisfying the extended Lagrange-type relations (33)–(35). Taking into
account the structure of Λj in (31) and (32), present z∗j and the corresponding
vectors zj from (33) as

zj = (x0, x
N
1j , . . . , x

N
Nj , y

N
0j , . . . , y

N
N−1j) ∈ X2N+1

and z∗j = (x∗0j , x
∗
1j , . . . , x

∗
Nj , y

∗
0j , . . . , y

∗
N−1j).

It is easy to derive from (31)–(33) the following relationships:{
(x∗jj , y

∗
jj) ∈ N̂

(
(xN

jj , y
N
jj); gph (eAhNF (·, tj))

)
,

x∗ij = y∗ij = 0 otherwise , j = 0, . . . , N − 1;
(41)

x∗NN ∈ N̂(xN
NN ; ΩN) and x∗iN = y∗iN = 0 otherwise (42)

with some zN
j ∈ z̄N + εIB. Further, by the structure of gj in (30) we observe

that

N−1∑
j=0

∇gj(z)∗ψ∗
j =

( − eA∗hNψ∗
0 , ψ

∗
0 − eA∗hNψ∗

1 , . . . ,

ψ∗
N−2 − eA∗hNψ∗

N−1, ψ
∗
N−1,−hNψ

∗
0 ,−hNψ

∗
1 , . . . ,−hNψ

∗
N−1

)
(43)

for any z ∈ X2N+1. Then applying the extended fuzzy Lagrange multiplier rule
(34) with the notation λN := µ0 ≥ 0 and then the fuzzy sum rule (28) for the
cost function φ0 in (29) with taking into account its specific structure as well
as the above relationships (41)–(4), we arrive at the inclusions

−x∗00 ∈ −eA∗hNψ∗
0 + hNεIB

∗, (44)

−x∗jj ∈ hNλ
NθN

j IB
∗ +ψ∗

j−1−eA∗hNψ∗
j +hNεIB

∗ for j = 1, . . . , N −1, (45)
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−x∗NN ∈ λN x̃∗N + ψ∗
N−1 + hNεIB

∗, (46)

−y∗jj ∈ −hNψ
∗
j + hNεIB

∗ for j = 0, . . . , N − 1, (47)

where the numbers θN
j are defined in (38) with some (x̃N

j , ỹ
N
j ) ∈ (x̄N

j , ȳ
N
j )+ εIB

for j = 1, . . . , N − 1, and where

x̃∗N ∈ ∂̂ϕ(x̃N
N ) with some x̃N

N ∈ x̄N
N + εIB.

Finally, by changing the notation in (41), (42), and (44)–(47) to

(xN
j , y

N
j ) = (xN

jj , y
N
jj), (x∗j , y

∗
j ) := (x∗jj , y

∗
jj), j = 0, . . . , N,

and pN
j := ψ∗

j−1, j = 1, . . . , N,

we arrive at (37), (39), and (40), which ends the proof of the theorem.

The nontriviality condition (40) in Theorem 4.2 can be essentially improved
under the additional assumptions on F , which are parts of our standing hy-
potheses.

Corollary 4.1 (fuzzy Euler-Lagrange conditions with enhanced non-

triviality) In addition to the assumptions of Theorem 4.2, suppose that for
each j = 0, . . . , N − 1 the multifunction F (·, tj) is compact-valued and Lipschitz
continuous around x̄N

j . Then there is a number γ > 0 independent of N and
such that for some sequences of natural numbers N → ∞ and positive num-
bers εN ↓ 0 there are multipliers λN and adjoint trajectories pN(·) satisfying
(37)–(39) with ε = εN and the enhanced nontriviality condition

λN + ‖pN
N‖ ≥ γ as N → ∞. (48)

Proof. It follows from the proof of Theorems 4.1 and 4.2 that either λN = 1 or
λN = 0 for all N ∈ IN . It remains to show that if λN = 0, then ‖pN

N‖ ≥ γ for
some number γ > 0 and all N sufficiently large. To proceed, we first estimate
‖pN

j ‖ via ‖pN
N‖ when λN = 0. Indeed, in the latter case the Euler-Lagrange

inclusion (37) can be written in terms of the coderivative (24) as

eA∗hNpN
j+1 − pN

j

hN
− εb∗j ∈ D̂∗(eAhNF (·, tj))(xN

j , y
N
j )

( − pN
j+1 + εc∗j

)
(49)

for all j = 0, . . . , N−1, where b∗j , c
∗
j ∈ IB∗. Since {eAt| t ≥ 0} is a C0-semigroup

of contractions, we have ‖eA∗hN‖ ≤ 1. Involving the coderivative characteriza-
tion (25) of the local Lipschitzian property for compact-valued multifunctions,
we derive from (49) that

‖pN
j ‖ ≤ ‖eA∗hN pN

j+1 − pN
j − hNεb

∗
j‖ + ‖eA∗hN pN

j+1 − hNεb
∗
j‖

≤ (1 + hN �F )‖pN
j+1‖ + hN (1 + �F )ε

≤ · · · · · · · · ·
< exp

[
�F (b− a)

][‖pN
N‖ + (b− a)(1 + �F )ε

]
.

(50)
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Suppose that the nontriviality condition (48) does not hold along with (37) and
(39) in the case of λN = 0 under consideration. Take a sequence γk ↓ 0 as
k → ∞ and choose numbers Nk and εk such that

Nk :=
[
1/γk], εk ≤ γ2

k, and ‖pN(tN )‖ ≤ γ2
k

for k ∈ IN , where [·] stands for the greatest integer less than or equal to the
given real number. By the adjoint trajectory estimate (50) we have

Nk∑
j=1

‖pNk(tj)‖ ≤ Nkγk exp
[
�F (b− a)

]
+ εkNk(b − a)(1 + �F )

≤ γk exp
[
�F (b− a)

]
+ γk(b− a)(1 + �F ) ↓ 0 as k ∈ IN,

which contradicts (40) with λN = 0. This completes the proof of the corollary.

5. Optimality conditions for semilinear evolution
inclusions

In this section we derive necessary optimality conditions for the original prob-
lem (P ) governed by infinite-dimensional evolution inclusions by passing to the
limit from those for the discrete-time problems (PN ) established in Section 4.
Our limiting procedure is based on the stability/convergence results for discrete
approximations obtained in Section 2 and the robust tools of generalized differ-
entiation reviewed in Section 3. A crucial component of the variational analysis
developed in this section is justifying an appropriate convergence of adjoint arcs
in the limiting procedure from discrete approximations. This is mainly based on
the above coderivative criterion for the local Lipschitzian property of set-valued
mappings. To furnish the limiting process, we keep in this section all the stand-
ing assumptions imposed in Section 2 with adding the following requirements
on the cost function and target/constraint set in (1) and (3) around the optimal
endpoint under consideration:

(H3) The cost function ϕ is Lipschitz continuous around x̄(b) and the target
set Ω is SNC at this point.

Note that the Lipschitzian requirement on ϕ can be weakened to the lower semi-
continuity (with some change in the transversality condition; see Mordukhovich
(1995, 2005), while the SNC requirement is very essential in infinite dimen-
sions. It has been well recognized that necessary optimality conditions of the
Pontryagin maximum principle type do not hold even in simple control prob-
lems for the heat equation with a singleton target set, which is never SNC in
infinite-dimensional spaces; see Fattorini (1999) and Li and Yong (1995). As
mentioned in Section 3, for convex sets Ω with riΩ �= ∅ the SNC property of Ω
is equivalent to its finite codimension, i.e., it always holds for convex sets with
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nonempty interiors. Another setting in which Ω is automatically SNC (even not
being convex) is that when Ω is given by finitely many equalities and inequal-
ities described by Lipschitzian real-valued functions; see Mordukhovich (2005)
for more details and discussions.

To formulate the main result, consider the Hamiltonian function

H(x, p, t) := sup
{〈
p, v

〉∣∣ v ∈ F (x, t)
}
, p ∈ X∗,

and form the argmaximum sets defined by

M(x, p, t) :=
{
v ∈ F (x, t)

∣∣ 〈p, v〉 = H(x, p, t)
}
.

In what follows we use the (limiting) normal/coderivative/subdifferential
constructions of Section 3 with respect to all the variables but t.

Theorem 5.1 (extended Euler-Lagrange conditions for semilinear

evolution inclusions) Let x̄(·) be an optimal solution to the continuous-time
problem (P ) under the standing assumptions made. Then there exist a number
λ ≥ 0 and a weakly continuous arc p : [a, b] → X∗, not both zero, satisfying:

—the extended Euler-Lagrange inclusion⎧⎪⎨
⎪⎩
p(t) ∈ eA∗(b−t)p(b)+

∫ t

b

eA∗(s−t)
{
u ∈ X∗

∣∣∣ (u, p(s)) ∈ Ñ((x̄(s), v); gphF (·, s)),
v ∈M(x̄, p, s)

}
ds for all t ∈ [a, b],

(51)

which is equivalent to

p(t) ∈ eA∗(b−t)p(b) +
∫ t

b

eA∗(s−t)D∗F (x̄(s), v)(−p(s))
∣∣∣ v ∈M(x̄, p, s)

}
ds

(52)

if gphF (·, t) is normally semicontinuous at (x̄(t), v) for all v ∈ M(x̄(t), p(t), t)
and a.e. t ∈ [a, b], in particular, if F is autonomous;

—the Weierstrass-Pontryagin maximum condition〈
p(t), ˙̄x(t)

〉
= H(x̄(t), p(t), t) a.e. t ∈ [a, b]; (53)

—the transversality condition

−p(b) ∈ λ∂ϕ(x̄(b)) +N(x̄(b); Ω). (54)

Proof. Assume without loss of generality that the operator A generates a C0-
semigroup {eAt| t ≥ 0} of contractions on X and build a sequence of discrete
approximations (PN ) for (P ), which approximates x̄(·) in the sense of The-
orem 2.2. By employing the necessary conditions of Corollary 4.1 for opti-
mal solutions x̄N (·) = (x0, x̄

N
1 , . . . , x̄

N
N ) to (PN ), we find sequences of numbers
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λN ≥ 0 and adjoint discrete trajectories pN (·) = (pN
1 , . . . , p

N
N ) satisfying con-

ditions (37)–(39) and (48) with some εN ↓ 0 as N → ∞. Observe that the
nontriviality condition (48) can be equivalently written as

λN + ‖pN (b)‖ = 1 for all N ∈ IN, (55)

since the number γ > 0 therein is independent of N . We may always assume
that λN converge to some λ ≥ 0 as N → ∞.

As usual, the notations xN (t) and pN (t) stand for the piecewise linear ex-
tensions of the corresponding discrete functions on [a, b]. From the proof of
Theorem 4.2 and Corollary 4.1 we observe that the adjoint trajectories pN (t)
are uniformly bounded on [a, b]. Furthermore, it follows from (37) that the
functions

pN(t) = eA∗(b−t)pN (b) −
∫ b

t

eA∗(s−t)gN (s) ds (56)

are the piecewise linear extensions of pN = (pN
1 , . . . , p

N
N ) on [a, b], where

gN (t)∈
{
u∈X∗

∣∣∣ (u, pN(tj+1))∈N̂
(
(xN (tj), yN

j ); gph (eAhNF (·, tj))
)

+ εNIB
∗
}

+λNθN
j IB

∗ for t ∈ [tj , tj+1), j = 0, . . . , N − 1. (57)

It follows from (57) and the coderivative criterion (25) that the functions gN (·)
are uniformly bounded in L2([a, b];X), and hence they weakly converge to some
g(·) ∈ L2([a, b];X). By Theorem 2.2 we have that xN (t) → x̄(t) uniformly on
[a, b], and hence θN

j → 0 for all j = 1, . . . , N − 1 as N → ∞. Observe also that⎧⎪⎨
⎪⎩

lim
N→∞

eA∗(b−t)pN (b) = eA∗(b−t)p(b) and

lim
N→∞

∫ b

t

eA∗(s−t)gN(s) ds =
∫ b

t

eA∗(s−t)g(s) ds,
(58)

since the C0-semigroup {eAt| t ≥ 0} is compact, which implies the compactness
of the one {eA∗t| t ≥ 0}. By (58) and the weak continuity of the Bochner integral
as a linear operator from L2([a, b];X∗) to X∗, we get from (56) by passing to the
limit as N → ∞ that the adjoint arcs pN (t) weakly converge for each t ∈ [a, b]
to some function p(t) ∈ X∗, which is weakly continuous on [a, b]. Furthermore,
(57) and the convexity of the sets F (xN (tj), tj) whenever j = 0, . . . , N−1 imply
that

gN(t) ∈
{
w ∈ X∗

∣∣∣(w, eA∗hN (pN (tj+1) − εNb
∗
N)

) ∈ N̂((xN (tj), v); gphF (·, tj)),

v ∈M
(
xN (tj), eA∗hN (pN (tj+1) − εNb

∗
N), tj

)}
+ λNθN

j IB
∗,

(59)
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where w := u − εNa
∗
N with some a∗N , b

∗
N ∈ IB∗. Passing to the limit in (59) as

N → ∞ and using the classical Mazur weak closure theorem, we arrive at

g(t) ∈ co
{

u ∈ X∗
∣∣∣ (u, p(t)) ∈ Ñ((x̄(t), v); gphF (·, t)),

v ∈M(x̄(t), p(t), t)
}

a.e. t ∈ [a, b],
(60)

where the closure operation for the convex hull in (60) can be omitted due to
the reflexivity of the space X . Then, passing to the limit in (56) as N → ∞,
account being taken of (58) and (60), we obtain the inclusion⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p(t)∈eA∗(b−t)p(b)+

∫ t

b

eA∗(s−t)co
{
u∈X∗

∣∣∣ (u, p(s))∈Ñ ((x̄(s), v); gphF (·, s)),
v ∈M(x̄(s), p(s), s)

}
ds

for all t ∈ [a, b],

where the convexity operation under the integral can be omitted due to the
fundamental Lyapunov-Aumann integration theorem in reflexive and separable
Banach spaces (see, e.g., Diestel and Uhl, 1997, and Tolstonogov, 2000) by the
above compactness arguments involving the compact semigroup {eA∗t| t ≥ 0}.
Thus we have the extended Euler-Lagrange inclusion (51), which automatically
implies the maximum condition (53) as well as the coderivative form (52) under
the normal semicontinuity. The transversality condition (54) follows from (39)
by passing to the limit as N → ∞ and taking into account the structure (18) of
the set ΩN with ηN ↓ 0.

It remains to justify the nontriviality condition (p(·), λ) �= 0 under the SNC
assumption imposed on the set Ω at x̄(b). Supposing the contrary, we have that
pN (b) w→ 0 as N → ∞. Due to the fuzzy transversality condition (39) with
pN

N = pN (b) and the convergence λN → 0 and xN
N → x̄(b), the latter implies

that ‖pN(b)‖ → 0 as N → ∞ by the SNC property of Ω and the structure of
ΩN . This contradicts the discrete nontriviality condition (55) for large N ∈ IN
and completes the proof of the theorem.
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