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1. Introduction

The extension of the classical inverse mapping theorem to correspondences (or
relations, or multifunctions or multimappings) has been the subject of numer-
ous works (see references from Aubin, Frankowska, 1987 to Borwein, 1986;
Frankowska, 1987; Fabian, 1979; Gautier, 1990; Gautier, Isac, Penot, 1983;
Grande, 1994; Khanh, 1986; Klatte, Kummer, 2001, 2002; Kummer, 1991a,b;
Ledyaev, Zhu, 1999; Lemaréchal, Zowe, 1991; Levy, 2001b; Martelli, Vignoli,
1974; Penot, 1985, 1995; Robinson, 1976, 1991; Sach, 1998; Serovaiskij, 1995;
Silin, 1997; Szilágyi, 1989; Yen, 1987; Zhang, Treiman, 1995, ...). The variety
of concepts and methods involved corresponds to the multiplicity of purposes.
Here our method relies on a fixed point theorem, as in the classical case of
mappings, and not on the Ekeland variational principle, as in many works using
nonsmooth analysis methods; in fact, it is known that there exists a link between
these two tools. For that purpose, we introduce some notions of differentiability
for correspondences which are rather stringent, but close to the familiar one for
mappings. They slightly differ in order to capture different situations created
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by multivaluedness: the simplest notion is seldom satisfied in practice, as shown
by the examples we present. A modification involving a neighborhood of the
image point makes the concept more usable; it corresponds to the change from
Lipschitz multimappings to pseudo-Lipschitz multimappings, so that we call it
pseudo-differentiability. We consider this notion central. However, in our re-
sults, such a modification is not always satisfied and we have to further weaken
the condition to what we call quasi-differentiability. For single-valued maps,
these three concepts collapse to ordinary Fréchet differentiability. We also use
strengthenings of these concepts which correspond to what is called strong or
strict or differentiability; here we speak of peridifferentiability in order to avoid
confusions when strict inequalities are present.

We briefly compare these concepts to some other existing notions, without
claim of completeness, as such notions abound in the literature and have various
purposes. Among these aims are existence results for equations Khanh (1986),
Pták (1982), Sengupta (1997), optimality conditions for constrained optimiza-
tion Halkin (1974, 1976), Penot (1982) sensitivity analysis Klatte, Kummer
(2002), Levy (2001a), Penot (1984), Robinson (1976). Here, as an applica-
tion, we extend the approach of Choquet (1960), Penot (1970), Robbin (1968)
to existence results for ordinary differential equations to existence results for
differential inclusions as in Filippov (1967), Hermes (1970), Himmelberg, Van
Vleck (1973), Zhu (1991)... Such a study reinforces the links between gener-
alized differential calculus, differential inclusions and optimization (see Brown,
Bartholomew-Biggs, 1989a, b for some other links between these last two sub-
jects). Other tracks deal with generalized equations and applications of in-
verse mapping theorems to stability and optimal control (see references from
Dontchev, 1996 to Dontchev, Rockafellar, 1997; Halkin, 1974; Klatte, Kummer,
2002; Ledyaev, Zhu, 1999; Robinson, 1976, 1991, ...).

2. Preliminaries

In this section we recall from Azé, Penot (2005) a fixed point theorem for cor-
respondences and a perturbation result. For such an aim, we need to fix some
notation and conventions. The open ball with center x and radius r in a met-
ric space (X, d) is denoted by B(x, r); if X is a normed vector space (n.v.s.)
the closed unit ball is denoted by BX . We endow the product Z := X × Y
of two metric spaces (resp. two normed vector spaces (n.v.s.)) with a product
distance(resp. product norm), i.e. a distance (resp. norm) on Z for which the
canonical projections and the insertions x �→ (x, b), y �−→ (a, y) are nonexpan-
sive for any a ∈ X, b ∈ Y. Given a metric space (X, d) and given subsets C,
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D ⊂ X we take

d(x, D) = inf
y∈D

d(x, y) with the convention inf
∅

= +∞,

e(C, D) = sup
x∈C

d(x, D) if D �= ∅, e(C, ∅) = +∞ if C �= ∅, e(∅, D) = 0

d(C, D) = max(e(C, D), e(D, C)).

The following definition captures the notion of Lipschitzian behavior for set-
valued maps, which encompasses the notion of pseudo-Lipschitzian behavior (or
Aubin property) but is more versatile since one can take for V a member of a
family of bounded subsets or even an arbitrary subset.

Definition 2.1 A multimapping F : X ⇒ Y between two metric spaces is said
to be quasi-Lipschitzian on a subset U of X with respect to (w.r.t.) a subset V
of Y if there exist κ, δ > 0 such that for any x, x′ ∈ U satisfying d(x, x′) < δ one
has e(F (x) ∩ V, F (x′)) ≤ κd(x, x′). If the restriction d(x, x′) < δ is removed, F
is said pseudo-Lipschitzian on U w.r.t. V. When κ ∈ [0, 1), X = Y, V = U, F
is said to be pseudo-κ-contractive w.r.t. U.

Given F : X ⇒ Y and (x0, y0) ∈ Gr(F ), we say that F is quasi-Lipschitzian
(resp. pseudo-Lipschitzian) around (x0, y0) if there are neighborhoods U, V of x0

and y0 respectively such that F is quasi-Lipschitzian (resp. pseudo-Lipschitzian)
on U w.r.t. V. Then, since U can be shrunk to a smaller neighborhood of x0,
both concepts coincide. This is not the case in general for quasi-Lipschitzness
for an arbitrary set U when U may be large. Clearly, if F is quasi-Lipschitzian
around (x0, y0), then it is lower semicontinuous at (x0, y0) in the sense that
d(y0, F (x)) → 0 as x → x0. Observe that F is lower semicontinuous at (x0, y0)
if, and only if, there exists a selection f of F on some neighborhood of x0 such
that f(x0) = y0 and f is continuous at x0 (take f(x) ∈ F (x) ∩B(y0, r(x)) with
r(x) > d(y0, F (x)) for x ∈ X\{x0}, for instance r(x) := d(y0, F (x)) + d(x0, x)).
Recall that F is said lower semicontinuous at x0 if F is lower semicontinuous at
(x0, y0) for every y0 ∈ F (x0).

The existence of fixed points for pseudo-contractive multifunctions is well
known (see Dontchev, Hager, 1993, 1996; Ioffe, Tihomirov, 1979, Lemma 1,
p. 31; Penot, 1982, Prop. 2.5 ). Let us recall that result for the sake of clarity.

Proposition 2.1 (Nadler, 1969; Ioffe, Tihomirov, 1979; Penot, 1982; Azé,
Penot, 2005) Let (X, d) be a complete metric space and let G : X ⇒ X be
a multifunction with closed, nonempty values. Suppose that G is pseudo-κ-
contractive with respect to some open ball B(x0, r0) for some κ ∈ [0, 1) and r :=
(1 − κ)−1d(x0, G(x0)) < r0. Then the fixed point set ΦG := {x ∈ X : x ∈ G(x)}
of G is nonempty and

d(x0, ΦG ∩ B(x0, r0)) ≤ r. (1)

Thus, for any r′ > r the set ΦG ∩ B(x0, r
′) is nonempty.
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In Azé, Penot (2005) it is just asserted that the set ΦG ∩ B(x0, r0) is non-
empty and the looser estimate d(x0, ΦG) ≤ r0 is given. However, replacing
r0 by r′0 ∈ (r, r0) the estimate d(x0, ΦG) ≤ r′0 for any r′0 ∈ (r, r0) shows that
d(x0, ΦG) ≤ r; whence for any r′ ∈ (r, r0) the set ΦG ∩ B(x0, r

′) is nonempty
and contained in B(x0, r0), so that d(x0, ΦG ∩ B(x0, r0)) = d(x0, ΦG) ≤ r : (1)
holds.

We also need a sensitivity result about the fixed point set ΦG when G varies
in the set of multifunctions from X to X. In order to do so, identifying a multi-
function with its graph, one could endow the power set 2X×X (the hyperspace
of subsets of X × X) with some topology or convergence. We avoid doing that
and focus our attention on metric estimates. The result we give here is a variant
of Prop. 2.3 from Azé, Penot (2005); it has a stronger assumption, akin to the
one in Lemma 1 in Lim (1985), a stronger conclusion and a simpler proof. It
suffices for our needs.

Proposition 2.2 Let (X, d) be a complete metric space. Let G : X ⇒ X be
a multifunction with closed nonempty values which is assumed to be pseudo-κ-
contractive with respect to B(x0, r0) for some r0 > 0, and some κ ∈ [0, 1). Then
for any r ∈ (0, r0) and for any multifunction H : X ⇒ X satisfying

e(H(x) ∩ B(x0, r), G(x)) < (1 − κ)(r0 − r) ∀x ∈ B(x0, r)

one has

e(ΦH ∩ B(x0, r), ΦG ∩ B(x0, r0)) ≤ (1−κ)−1 sup
x∈B(x0,r)

e(H(x) ∩ B(x0, r), G(x))

≤ r0 − r.

Proof. Let x ∈ ΦH∩B(x0, r) (if there is no such x, there is nothing to prove since
we adopted the convention d(∅, D) = 0 for any subset D) and let t > e(H(x)∩
B(x0, r), G(x)) be such that t < (1 − κ)(r0 − r). Since x ∈ H(x) ∩ B(x0, r), we
have

d(x, G(x)) < t < (1 − κ)(r0 − r).

Since G is pseudo-κ-contractive with respect to B(x, r0 − r) ⊂ B(x0, r0), it
follows from (1), from the preceding estimate and from Proposition 2.1 in which
x0 and r0 are replaced with x and r0 − r, respectively, that

d(x, ΦG∩B(x0, r0)) ≤ d(x, ΦG∩B(x, r0−r)) ≤ (1−κ)−1d(x, G(x)) ≤ (1−κ)−1t,

Since t is arbitrarily close to e(H(x) ∩ B(x0, r), G(x)), the result follows by
taking the infimum over t and then the supremum over x ∈ ΦH ∩ B(x0, r).

Corollary 2.1 Let (X, d), (Y, dY ) be metric spaces, X being complete, and let
x0 ∈ X, r0 > 0. Let (Gy)y∈Y be a family of multifunctions from B(x0, r0) to X
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which are pseudo-κ-contractive with respect to B(x0, r0), with closed nonempty
values. Suppose that for some r ∈ (0, r0), λ > 0 and any y, y′ ∈ Y one has

e(Gy′(x) ∩ B(x0, r), Gy(x)) ≤ λdY (y, y′) ∀x ∈ B(x0, r),

Then the multimapping F : y �→ ΦGy is quasi-Lipschitz on Y w.r.t. V :=
B(x0, r), with Lipschitz rate λ(1 − κ)−1.

Proof. Let δ := λ−1(1 − κ)(r0 − r). Given y, y′ ∈ Y such that dY (y, y′) < δ, let
us set G := Gy and H := Gy′ , so that

e(H(x) ∩ V, G(x)) ≤ λdY (y, y′) < (1 − κ)(r0 − r) ∀x ∈ B(x0, r).

Then, by Proposition 2.2,

e(ΦGy′ ∩ V, ΦGy) ≤ (1 − κ)−1 sup
x∈B(x0,r)

e(H(x) ∩ B(x0, r), G(x))

≤ (1 − κ)−1λdY (y, y′).

3. Differentiability of multifunctions

From now on, unless otherwise specified, X, Y and Z are n.v.s. and L(X, Y )
denotes the set of continuous linear maps from X to Y. As mentioned above,
in the multivalued case, a number of notions of differentiability can be given.
The one which seems to be the most closely related to the notion of Fréchet
differentiability is as follows. We incorporate to it a continuity condition, since
such a requirement is satisfied in the single-valued case and since dropping it
would lead to cases in which the estimate would be trivial. Here we say that a
function o : X → R is a remainder if limx→0,x �=0 ‖x‖−1

o(x) = 0. Equivalently,
o is a remainder if there exists a modulus µ : R+ → R+ ∪ {+∞} (i.e. a
function µ : R+ → R+ ∪ {+∞} continuous at 0 with µ(0) = 0) such that
‖o(x)‖ ≤ µ(‖x‖) ‖x‖; without loss of generality, one may assume that µ is
nondecreasing. This concept has been adopted by a number of authors. On
the other hand the following notions seem to be new (albeit related to the
concept of conical differentiability of Mignot, 1976). Note that they are outer
notions in the sense that they impose a certain control of the expansion of
the multimapping F around x0, but do not require such a precise control for its
shrinking. Since the terminology of the paper is rather heavy, we do not mention
the word “outer” in these definitions. Replacing the excess by the Hausdorff
distance would give more stringent notions which will be considered later on, in
a still more strengthened form. We consider that the first notion we introduce
is a crude, restrictive concept. The second one is more realistic.

Definition 3.1 Let X, Y be n.v.s. and let X0 be an open subset of X. A
multifunction F : X0 ⇒ Y with domain X0 is said to be differentiable at x0 ∈ X0
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if it is lower semicontinuous at x0 and if there exists some A ∈ L(X, Y ) such
that the function o given by

o(x) := e(F (x0 + x), F (x0) + A(x)). (2)

is a remainder, or, equivalently, for some modulus µ,

F (x0 + x) ⊂ F (x0) + A(x) + µ(‖x‖) ‖x‖BY .

Then A is called a derivative of F at x0. The set of derivatives of F at x0 is
denoted by DF (x0).

It is said to be pseudo-differentiable at (x0, y0) ∈ Gr(F ) if it is lower semi-
continuous at (x0, y0) and if there exist some neighborhood V of y0 and a con-
tinuous linear map A : X → Y called a derivative of F at (x0, y0) such that the
function oV defined as follows is a remainder

oV (x) := e(F (x0 + x) ∩ V, F (x0) + A(x)). (3)

Equivalently, F is pseudo-differentiable at (x0, y0) ∈ Gr(F ) if it is lower
semicontinuous at (x0, y0) and if there exist some neighborhood V of y0, a
continuous linear map A : X → Y and a modulus µ such that for x ∈ X one
has

F (x0 + x) ∩ V ⊂ F (x0) + A(x) + µ(‖x‖) ‖x‖BY .

Clearly, a multifunction F , which is differentiable at x0, is pseudo-differen-
tiable at (x0, y0) for any y0 ∈ F (x0); moreover, it is upper Lipschitz at x0,
therefore upper semicontinuous at x0 in the Hausdorff sense, hence in the usual
sense when F (x0) is compact. Conversely, when F (x0) is compact, when F is
upper semicontinuous at x0, and when F is pseudo-differentiable at (x0, y0) for
any y0 ∈ F (x0) with derivative A, then F is differentiable at x0. Let us also
observe that when F (x0) = {y0}, x0 being in the interior of the domain of F and
when o defined in (2) is a remainder, then F is lower semicontinuous at x0 and
differentiable at x0. Such an observation shows that when F is single-valued, the
preceding notions reduce to the classical concept of (Fréchet) differentiability.

Of course, in spite of their simplicities, these notions are not adapted to all
situations which can be considered as smooth enough, although the presence of
the set V increases applicability. In particular, a weaker notion may prevail.

Definition 3.2 Let X, Y be n.v.s. and let X0 be an open subset of X. A
multifunction F : X0 ⇒ Y is said to be quasi-differentiable at (x0, y0) ∈ Gr(F ),
with derivative A ∈ L(X, Y ), if it is lower semicontinuous at (x0, y0) and if for
any ε > 0 there exist some β(ε) > 0, δ(ε) > 0 such that for x ∈ δ(ε)BX one has

F (x0 + x) ∩ B(y0, β(ε)) ⊂ F (x0) + A(x) + ε ‖x‖BY . (4)
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The preceding definition is coherent with the usual definition of differentia-
bility when F is a single-valued map, as easily seen.

Example 3.1 Let F : R ⇒ R be given by F (x) = [a−x2, b+x2] for each x ∈ R,
with a ≤ b in R. Then F is differentiable at 0 and pseudo-differentiable at
(x0, y0) for every (x0, y0) ∈ Gr(F ); for x0 �= 0, it is not differentiable at x0.

Example 3.2 More generally, let g : X → Y, r : X → R be differentiable at
x0 and such that r takes positive values. Then the multimapping F : X ⇒ Y
given by F (x) := g(x) + r(x)BY is differentiable at x0 if Dr(x0) = 0 and is
pseudo-differentiable at (x0, y0) when ‖y0 − g(x0)‖ < r(x0), but it is not pseudo-
differentiable at (x0, y0) when Dr(x0) �= 0 and ‖y0 − g(x0)‖ = r(x0). On the
other hand, for any y0 ∈ F (x0), F is quasi-differentiable at (x0, y0) : given ε > 0,
picking b0 ∈ BY such that y0 = g(x0) + r(x0)b0, setting c := ‖Dr(x0)‖ , taking
β(ε) ∈ (0, εr(x0)/9c) one can find δ(ε) > 0 such that for any x ∈ δ(ε)BX one
has ‖g(x0 + x) − g(x0)‖ < β(ε), |r(x0 + x) − r(x0)| ≤ β(ε) and

g(x0 + x) − g(x0) − Dg(x0)x ∈ (ε/3) ‖x‖BY ,

|r(x0 + x) − r(x0) − Dr(x0)x| ≤ (ε/3) ‖x‖ ,

so that, for any y ∈ F (x0 + x) ∩ B(y0, β(ε)) one can write y := g(x0 + x) +
r(x0 + x)b for some b ∈ BY with ‖b − b0‖ < ε/3c since

‖r(x0)b − r(x0)b0‖ ≤ ‖r(x0)b−r(x0 + x)b‖ + ‖r(x0 + x)b−r(x0)b0‖
≤ |r(x0 + x)−r(x0)| + ‖y−y0‖ + ‖g(x0 + x) − g(x0)‖
< 3β(ε),

hence ‖b − b0‖ < 3β(ε)/r(x0) < ε/3c and, since ‖Dr(x0)xb − Dr(x0)xb0‖ ≤
c ‖x‖ ‖b − b0‖ ≤ (ε/3) ‖x‖ ,

y − y0 ∈ Dg(x0)x + Dr(x0)xb0 + ε ‖x‖BY

and F is quasi-differentiable at (x0, y0) with derivative A given by A(x) =
Dg(x0)x + Dr(x0)xb0.

Example 3.3 Let g : X → Y be a mapping between two n.v.s., which is
differentiable at x0. Then for any subset C of Y the multimapping F : X ⇒ Y
given by F (x) := g(x) + C is differentiable at x0. Note that the inverse of F
is of interest, especially when C is a closed convex cone, as the feasible set of a
mathematical programming problem depending on a parameter is of that type.
Such a case motivates our study.

The following lemma sheds some light over the preceding notions when F (x0)
is a singleton.
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Lemma 3.1 Let F : X0 ⇒ Y be a multifunction such that F (x0) = {y0} and let
A : X → Y be a continuous linear map. Then among the following assertions
one has the equivalences (a)⇔(b), (a’)⇔(b’):

(a) F is differentiable at x0 with derivative A;
(a’) F is quasi-differentiable at (x0, y0) with derivative A;
(b) any selection f of F is differentiable at x0 with derivative A;
(b’) F is lower semicontinuous at (x0, y0) ∈ Gr(F ) and any selection f of F

continuous at x0 is differentiable at x0 with derivative A.

Proof. The implication (a’)⇒(b’) is obvious. Let us show by contraposition that
(b’)⇒(a’). Suppose F is not quasi-differentiable at (x0, y0) with derivative A.
Then there exist α > 0, a sequence (xn) with limit 0 and a sequence (yn) such
that yn ∈ F (x0 +xn)∩B(y0, 2−n) and yn /∈ (

y0 + A(xn) + α ‖xn‖BY

)
for each

n ≥ 1. Since F is lower semicontinuous at (x0, y0), it has a selection g, which
is continuous at x0. Let us set f(x) := yn for x = x0 + xn, f(x) := g(x) for
x ∈ X\{x0 + xn : n ≥ 1}. Then f is a selection of F which is continuous at x0

and f is not differentiable at x0 with derivative A. The equivalence (a)⇔(b) is
similar and simpler.

Corollary 3.1 When F (x0) is a singleton {y0} and F is quasi-differentiable
at (x0, y0), the mapping A appearing in (4) is unique.

Proof. This is a consequence of the uniqueness of the derivative of a mapping and
of the fact that F has a selection which is continuous at x0, hence is differentiable
at x0 by the preceding lemma.

When F (x0) is not a singleton, uniqueness may fail.

Example 3.4 Let F : R ⇒ R be given by F (x) = [−1, 1] for each x ∈ R. Then
F is differentiable at x0 for every x0 ∈ R; for y0 ∈ (−1, 1) any A ∈ L(R, R) can
be taken in the definition of pseudo-differentiability at (x0, y0).

Example 3.5 Let X, Y be n.v.s. and let Y0 be a linear subspace of Y, not
reduced to {0}. The constant multimapping F : X ⇒ Y with value Y0 is dif-
ferentiable at each point and any continuous linear map from X into Y0 can be
taken as a derivative. Since F can be considered as very smooth, one sees that
multivaluedness has new effects, even for the strongest notion among those we
introduced.

A pleasant feature of the preceding concepts lies in the fact that they have
simple calculus rules. We state them without proofs, since the proofs are similar
to the ones for mappings and to the ones presented below for a stronger notion
of differentiability. We use the notion of uniformly differentiable map: a map
g : Y → Z between two n.v.s. is said to be uniformly differentiable on Y0 ⊂ Y
if it is differentiable at each y0 ∈ Y0 and if for any ε > 0 there exists δ > 0 such
that

‖g(y) − g(y0) − Dg(y0)(y − y0)‖ ≤ ε ‖y − y0‖ ∀y0 ∈ Y0, ∀y ∈ B(y0, δ).
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When Y0 is finite, obviously this condition is a consequence of the differentia-
bility of g at each point of Y0.

Proposition 3.1 (a) Let F : X ⇒ Y, G : X ⇒ Z be differentiable at x0 ∈ X,
with derivatives A and B, respectively. Then H := (F, G) : X ⇒ Y ×Z is differ-
entiable at x0 with derivative (A, B). If F and G are pseudo-differentiable (resp.
quasi-differentiable) at (x0, y0) ∈ Gr(F ) and (x0, z0) ∈ Gr(G) respectively, then
H := (F, G) is pseudo-differentiable (resp. quasi-differentiable) at (x0, (y0, z0)).

(b) Let F : X ⇒ Y, G : Y ⇒ Z be (pseudo-, resp. quasi-) differentiable at
x0 ∈ X and y0 ∈ Y respectively (resp. at (x0, y0) ∈ Gr(F ) and (y0, z0) ∈ Gr(G)
respectively). Suppose F (x0) = {y0}. Then H := G◦F is (pseudo-, resp. quasi-)
differentiable at x0 (resp. (x0, z0)).

(c) Let F : X ⇒ Y be differentiable at x0 ∈ X and let g : Y → Z be a
uniformly differentiable map on F (x0) with constant derivative. Then g ◦ F is
differentiable at x0.

(d) Let F : X ⇒ Y be pseudo-differentiable at (x0, y0) ∈ Gr(F ) and let
g : Y → Z be differentiable at y0. Suppose g is open at y0 and is injective.
Then g ◦ F is pseudo-differentiable at (x0, g(x0)).

(e) Let F : X ⇒ Y, G : X ⇒ Y be differentiable at x0. Then F + G is
differentiable at x0.

(f) Let F : X ⇒ Y be pseudo (resp. quasi)-differentiable at (x0, y0) ∈ Gr(F )
and let g : X → Y be differentiable at x0. Then H := F + g is pseudo (resp.
quasi)-differentiable at (x0, y0 + g(x0)).

A mean value theorem is available with the differentiability concept we de-
fined.

Proposition 3.2 Let F : X ⇒ Y be nonempty-valued and differentiable on an
open convex subset X0 of X. If there exists c ∈ R+ such that inf{‖A‖ : A ∈
DF (x)} ≤ c for each x ∈ X0, then F is Lipschitzian with rate c on X0 : for
every x0, x1 ∈ X0 one has

d(F (x1), F (x0)) ≤ c ‖x1 − x0‖ .

Proof. Given x0, x1 ∈ X0 it suffices to prove that e(F (x1), F (x0)) ≤ c′ ‖x1 − x0‖
for every c′ > c. Let G : R ⇒ Y be given by G(r) = F ((1− r)x0 + rx1); then G
is differentiable on [0, 1]. For r ∈ [0, 1) and s ∈ (0, 1 − r) we have

e(G(r + s), G(0)) ≤ e(G(r + s), G(r)) + e(G(r), G(0)),

so that, setting xr := (1 − r)x0 + rx1, g(r) := e(G(r), G(0)) and picking some
A ∈ DF (xr) such that ‖A‖ < c′, we get

g(r + s) − g(r) ≤ e(G(r + s), G(r))
≤ e(G(r) + sA(x1 − x0), G(r)) + o(s)
≤ s ‖A(x1 − x0)‖ + o(s).
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It follows that the right upper Dini derivative of g is bounded above by
c′ ‖x1 − x0‖ on [0, 1). Therefore g(1)− g(0) ≤ c′ ‖x1 − x0‖ and as g(0) = 0, the
required inequality is proved.

The following consequence can be derived in applying the statement to F (·)−
A(·).
Corollary 3.2 Let F : X ⇒ Y be nonempty-valued and differentiable on
an open convex subset X0 of X. Let ε ∈ R+ and A ∈ L(X, Y ) be such that
d(A,DF (x)) < ε for each x ∈ X0. Then, for every x0, x1 ∈ X0 one has

F (x1) ⊂ F (x0) + A(x1 − x0) + ε ‖x1 − x0‖BY .

The following result bearing on inverse multimappings is similar to a classical
result but some care about neighborhoods is needed. Recall that F : X ⇒ Y
is open at (x0, y0) ∈ Gr(F ) if, for any neighborhood U of x0, the set F (U) is a
neighborhood of y0.

Proposition 3.3 Let F : X0 ⇒ Y be such that F (x0) = {y0}. Suppose F
is open at (x0, y0) and is quasi-differentiable (resp. pseudo-differentiable) at
(x0, y0) with derivative A, an isomorphism from X onto Y. Then F−1 is quasi-
differentiable (resp. pseudo-differentiable) at (y0, x0) with derivative A−1.

Proof. Without loss of generality, using translations and replacing F by F ◦A−1

if necessary, we may assume that x0 = 0, y0 = 0 and that X = Y, A = I. Since
F is open at (x0, y0), F−1 is lower semicontinuous at (y0, x0). When F is quasi-
differentiable at (x0, y0), given ε ∈ (0, 1) we can find β(ε) > 0 and η(ε) > 0 such
that

F (x) ∩ β(ε)BY ⊂ x +
ε

2
‖x‖BY ∀x ∈ η(ε)BX . (5)

Let δ(ε) := min(β(ε), η(ε)/2). For any y ∈ δ(ε)BY , x ∈ F−1(y) ∩ B(0, η(ε)) we
have y ∈ F (x) ∩ β(ε)BY ⊂ x + 1

2 ‖x‖BY , hence ‖x − y‖ ≤ 1
2 ‖x‖ . Thus

‖x‖ ≤ ‖x − y‖ + ‖y‖ ≤ 1
2
‖x‖ + ‖y‖

and ‖x‖ ≤ 2 ‖y‖ . Since x ∈ η(ε)BX and y ∈ F (x) ∩ β(ε)BY it follows from (5)
that

‖x − y‖ ≤ ε

2
‖x‖ ≤ ε ‖y‖ . (6)

We have proved that

F−1(y) ∩ B(0, η(ε)) ⊂ y + ε ‖y‖BX ∀y ∈ δ(ε)BY ,

so that F−1 is quasi-differentiable at (y0, x0) with derivative A−1.
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When F is pseudo-differentiable at (x0, y0) we may suppose that β is con-
stant. Let us set γ := η(1), δ(ε) := min(β, η(ε)/2) and U := B(0, γ). For
any y ∈ δ(ε)BY , x ∈ F−1(y) ∩ B(0, γ) we have again ‖x‖ ≤ 2 ‖y‖ , hence
‖x‖ ≤ 2δ(ε) ≤ η(ε). Then (5) holds and (6) follows. We have proved that

F−1(y) ∩ U ⊂ y + ε ‖y‖BX ∀y ∈ δ(ε)BY ,

so that F−1 is pseudo-differentiable at (y0, x0) with derivative A−1.

It is known that mere differentiability is not enough to get an inverse map-
ping theorem (but for the finite dimensional case, as in Halkin, 1974, and
Thm 4.1 in Penot, 1982). The following notion is a multivalued version of the
concept of strict differentiability (henceforth called peridifferentiability) which,
in the single-valued case, is effective for such an aim. As in the case of the defini-
tion of pseudo-differentiability and in the case of the pseudo-Lipschitz property,
it is localized in the range space in order to increase its applicability, since
it is known that the use of the Pompeiu-Hausdorff distance or excess is very
restrictive.

Definition 3.3 Let X, Y be n.v.s., let X0 be an open subset of X and let V be
a subset of Y . A multifunction F : X0 ⇒ Y with nonempty values is said to
be pseudo-peridifferentiable at x0 ∈ X0 w.r.t. V if there exists some continuous
linear map A : X → Y such that for any ε > 0 there exists δ > 0 for which

F (x)∩ V −A(x) ⊂ F (x′)−A(x′) + ε ‖x − x′‖BY ∀x, x′ ∈ B(x0, δ). (7)

The multifunction F is said to be pseudo-peridifferentiable at (x0, y0) ∈ Gr(F ) if
there exists some neighborhood V of y0 such that F is pseudo-peridifferentiable
at x0 ∈ X w.r.t. V .

The multifunction F is said to be peridifferentiable at x0 ∈ X0 if F is pseudo-
peridifferentiable at x0 w.r.t. Y .

Thus, F is pseudo-peridifferentiable at (x0, y0) ∈ Gr(F ) iff there exist some
β > 0, some continuous linear map A from X to Y and some modulus µ such
that for r > 0 small enough to have B(x0, r) ⊂ X0 and for any x, x′ ∈ B(x0, r)
one has

e(F (x) ∩ B(y0, β), F (x′) + A(x − x′)) ≤ µ(r) ‖x − x′‖ .

The following consequence of Corollary 3.2 is reminiscent of the well known fact
that a continuously differentiable (single-valued) map is peridifferentiable.

Proposition 3.4 Let F : X ⇒ Y be nonempty-valued and differentiable on
an open neighborhood U of some x ∈ X. Suppose that lim infu→x DF (u) is
nonempty. Then F is peridifferentiable at x.
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Proof. Let us show that any A ∈ lim infu→x DF (u) is a periderivative of F at
x in the sense that for every ε > 0 there exists some δ > 0 such that relation
(7) is satisfied with V = Y. By definition of a limit inferior, given ε > 0 we
can find δ > 0 such that B(x, δ) ⊂ U and for every u ∈ B(x, δ) there exists
some Au ∈ DF (u) such that ‖Au − A‖ ≤ ε. Then, by Corollary 3.2, for every
x0, x1 ∈ B(x, δ) one has

F (x1) ⊂ F (x0) + A(x1 − x0) + ε ‖x1 − x0‖BY .

We will need a weakening of Definition 3.3 in which the neighborhood V
depends on the accuracy of the required approximation.

Definition 3.4 Let X, Y be n.v.s., let X0 be an open subset of X. A multi-
function F : X0 ⇒ Y is said to be quasi-peridifferentiable at (x0, y0) ∈ Gr(F )
if there exists some continuous linear map A : X → Y such that for any ε > 0
there exist β, δ > 0 for which

e(F (x) ∩ B(y0, β) − A(x), F (x′) − A(x′)) ≤ ε ‖x − x′‖ (8)

whenever x, x′ ∈ B(x0, δ).

When F is single-valued, Definitions 3.3 and 3.4 coincide with the usual
notion of peridifferentiability, often called strict differentiability or strong dif-
ferentiability. When F is multivalued, it is no more the case that both definitions
coincide.

Example 3.6 Let F be given as in Example 3.3. If g and r are peridifferen-
tiable at x0, following the line of Example 3.3, one can show that F is quasi-
peridifferentiable at (x0, y0) for any y0 ∈ F (x0). However, if Dr(x0) �= 0, and
‖y0 − g(x0)‖ = r(x0), F is not pseudo-differentiable at (x0, y0), hence is not
peridifferentiable at (x0, y0).

The following lemma discloses a simple but useful observation; a similar
result holds in the quasi-peridifferentiable case (with W depending on ε).

Lemma 3.2 The multifunction F : X0 ⇒ Y is pseudo-peridifferentiable at
(x0, y0) ∈ Gr(F ) iff there exist some continuous linear map A : X → Y and
some neighborhood W of z0 := y0−A(x0) such that, setting R(·) := F (·)−A(·),
for any η > 0 there exists ρ > 0 for which

e(R(x) ∩ W, R(x′)) ≤ η ‖x − x′‖ (9)

whenever x, x′ ∈ B(x0, ρ).

Proof. Suppose F is pseudo-peridifferentiable at (x0, y0) and let η > 0 be given.
Let us take ε = η and pick β > 0 and δ > 0 such that relation (7) holds for
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x, x′ ∈ B(x0, δ), with V = B(y0, β). Taking W := B(z0, γ) with γ ∈ (0, β) and
ρ ∈ (0, δ) such that ρ ‖A‖ + γ ≤ β, for any x, x′ ∈ B(x0, ρ), we have

R(x) ∩ B(z0, γ) ⊂ F (x) ∩ B(y0, β) − A(x)

⊂ F (x′) − A(x′) + η ‖x − x′‖BY

and (9) holds when x, x′ ∈ B(x0, ρ).
Conversely, suppose the condition of the lemma holds and let ε > 0 be

given. We may suppose W := B(z0, γ) for some γ > 0. For any η ∈ (0, ε) let
ρ > 0 be such that (9) holds when x, x′ ∈ B(x0, ρ). Then, taking V := B(y0, β)
with β ∈ (0, γ), δ ∈ (0, ρ) such that δ ‖A‖ + β ≤ γ, relation (7) holds for
x, x′ ∈ B(x0, δ).

Let us point out some elementary properties. The first one is an ana-
logue of the continuity of differentiable mappings. It implies that F is quasi
(resp. pseudo)-differentiable at (x0, y0) whenever it is quasi (resp. pseudo)-
peridifferentiable at (x0, y0).

Lemma 3.3 Let X, Y be n.v.s. and F : X ⇒ Y be quasi-peridifferentiable at
(x0, y0) ∈ Gr(F ). Then F is lower semicontinuous at (x0, y0).

Proof. Taking A as in Definition 3.4, and ε = 1, we can find β, δ > 0 such
that (8) holds for any x, x′ ∈ B(x0, δ). Thus, since y0 ∈ F (x0) ∩ B(y0, β), for
x ∈ B(x0, δ), we have

d(y0, F (x)) ≤ e(F (x0) ∩ B(y0, β), F (x) + A(x0) − A(x)) + ‖A(x0) − A(x)‖
≤ (‖A‖ + 1) ‖x − x0‖ .

Therefore, d(y0, F (x)) → 0 as x → x0 and F is lower semicontinuous at (x0, y0).

Proposition 3.5 (a) Let X, Y, Z be n.v.s. and let F : X ⇒ Y, G : X ⇒ Z
be pseudo (resp. quasi)-peridifferentiable at (x0, y0) ∈ Gr(F ) and (x0, z0) ∈
Gr(G) respectively. Then H := (F, G) : X ⇒ Y × Z is pseudo (resp. quasi)-
peridifferentiable at (x0, (y0, z0)).

(b) Let X, Y be n.v.s., let F : X ⇒ Y be pseudo (resp. quasi)-peridifferen-
tiable at (x0, y0) ∈ Gr(F ) and let g : X → Y be peridifferentiable at x0. Then
H := F + g is pseudo (resp. quasi)-peridifferentiable at (x0, (y0 + g(x0))).

Proof. Assertion (a) is obvious. Let us prove (b) in the case F is pseudo-
peridifferentiable at (x0, y0). Let α > 0 and let A : X → Y be a linear continuous
map such that for any ε > 0 there exists δ > 0 such that

F (x)∩B(y0, α) ⊂ F (x′) + A(x− x′) + ε ‖x − x′‖BY ∀x, x′ ∈ B(x0, δ).
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Let η > 0 be given. We pick ε ∈ (0, η) and we choose β, γ > 0 such that β +γ ≤
α. We may suppose that δ is small enough to guarantee that g(x)−g(x′) ∈ γBY

for x, x′ ∈ B(x0, δ) and

g(x) − g(x′) − B(x − x′) ∈ (η − ε) ‖x − x′‖BY

for B := Dg(x0). Then, for any x, x′ ∈ B(x0, δ) and for any z ∈ H(x)∩B(z0, β)
we have y := z − g(x) ∈ F (x) ∩ B(y0, α), so that there exists y′ ∈ F (x′) such
that y − y′ − A(x − x′) ∈ ε ‖x − x′‖BY . Then we have

z = y + g(x) ∈ y′ + g(x′) + (A + B)(x − x′) + η ‖x − x′‖BY

hence H(x) ∩ B(y0, α) ⊂ H(x′) + (A + B)(x − x′) + η ‖x − x′‖BY for any
x, x′ ∈ B(x0, δ).

Example 3.7 Let X, Y be n.v.s., r > 0 and let g : X → Y be peridifferentiable
at x0 ∈ X. Let F : X ⇒ Y be given by F (x) := g(x) + rBY . Then, for any
y0 ∈ F (x0), F is pseudo-peridifferentiable at (x0, y0).

Example 3.8 As in Example 3.6, let g : X → Y be peridifferentiable at x0, let
r : X → R be peridifferentiable at x0 with r(x0) > 0. Then the multimapping
F : X ⇒ Y given by F (x) := g(x) + r(x)BY is quasi-peridifferentiable at
(x0, y0) for any y0 ∈ F (x0). In fact, one can check that both summands are
quasi-peridifferentiable at x0, what simplifies the analysis of Example 3.6.

Now let us give chain rules. The first one is as follows.

Proposition 3.6 Let X, Y, Z be n.v.s. and let f : X → Y, G : Y ⇒ Z, H =
G ◦ f. Suppose f is peridifferentiable at x0 ∈ X, G is pseudo-peridifferentiable
at y0 = f(x0) w.r.t. V ⊂ Z. Then H is pseudo-peridifferentiable at x0 ∈
X w.r.t. V.

A similar result holds for quasi-peridifferentiability.

Proof. By the assumptions, there exist a neighborhood V of y0 and two conti-
nuous linear mappings A : X → Y , B : Y → Z and two moduli α(·), β(·) such
that, for r, s ∈ R+,

‖f(x) − f(x′) − A(x − x′)‖ ≤ α(r) ‖x − x′‖ ∀x, x′ ∈ B(x0, r),
G(y) ∩ V ⊂ G(y′) + B(y − y′) + β(s) ‖y − y′‖BZ ∀y, y′ ∈ B(y0, s).

Let ρ > 0 be such that α(r) ≤ 1 for r ≤ ρ and let c := ‖A‖ + 1. Then, for r ∈
[0, ρ], x, x′ ∈ B(x0, r) one has ‖f(x) − f(x′)‖ ≤ ‖A(x − x′)‖ + α(r) ‖x − x′‖ ≤
c ‖x − x′‖ , in particular f(x), f(x′) ∈ B(y0, cr), hence

G(f(x)) ∩ V ⊂ G(f(x′)) + B(A(x − x′))
+ ‖B‖α(r) ‖x − x′‖BZ + β(cr) ‖f(x) − f(x′)‖BZ

⊂ G(f(x′)) + (B ◦ A) (x − x′)
+ (‖B‖α(r) + cβ(cr)) ‖x − x′‖BZ .
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Therefore H is pseudo-peridifferentiable at x0 w.r.t. V with derivative B ◦ A.

The assumptions of the following two statements are rather restrictive, but
they are satisfied when g is a linear isomorphism.

Proposition 3.7 Let X, Y, Z be n.v.s. and let F : X ⇒ Y, g : Y → Z. Suppose
F is pseudo-peridifferentiable at x0 ∈ X w.r.t. V := g−1(W ) for some subset
W of Z and g is a uniformly differentiable map on V with constant derivative
B. Then H := g ◦ F is pseudo-peridifferentiable at x0 w.r.t. W, with derivative
B ◦ A, A being the derivative of F at x0.

Proof. Let A : X → Y, B : Y → Z be continuous linear maps and let α(·), β(·)
be moduli such that, for any r, s ∈ R+,

F (x) ∩ V ⊂ F (x′) + A(x − x′) + α(r) ‖x − x′‖BY ∀x, x′ ∈ B(x0, r),

g(y) ∈ g(y′) + B(y − y′) + β(s) ‖y − y′‖BZ ∀y ∈ V, y′ ∈ B(y, s).

Let ρ > 0 be such that α(r) ≤ 1 for r ≤ ρ and let c := ‖A‖+1. Then, for r ∈ [0, ρ]
and for any x, x′ ∈ B(x0, r) and any y ∈ F (x) ∩ V we can find y′ ∈ F (x′) such
that

y′′ := y − y′ − A(x − x′) ∈ α(r) ‖x − x′‖BY

and thus ‖y − y′‖ ≤ c ‖x − x′‖ ≤ 2cr. Then, we have

g(y) ∈ g(y′) + B(A(x − x′)) + B(y′′) + β(2cr)c ‖x − x′‖BZ

⊂ g(F (x′)) + B(A(x − x′)) + [‖B‖α(r) + cβ(2cr)] ‖x − x′‖BZ .

Since any z ∈ H(x) ∩ W is obtained as z = g(y) for some y ∈ F (x) ∩ V, we
obtain that H := g ◦ F is pseudo-peridifferentiable at x0 ∈ X w.r.t. W.

Proposition 3.8 Let X, Y, Z be n.v.s. and let F : X ⇒ Y, g : Y → Z. Suppose
F is pseudo-peridifferentiable at (x0, y0) ∈ Gr(F ) and g is injective, open at
y0 and peridifferentiable at y0. Then H := g ◦ F is pseudo-peridifferentiable at
(x0, g(y0)).

Proof. The proof of this statement is similar to the proof of the preceding one.
This time, we can take for V some ball B(y0, σ) and set W := g(V ), a neigh-
borhood of g(y0). We assume that

g(y) ∈ g(y′) + B(y − y′) + β(s) ‖y − y′‖BZ ∀y, y′ ∈ B(y0, s).

Since g is injective, for any x, x′ ∈ B(x0, r) and z ∈ H(x)∩W we have z = g(y)
for some y ∈ F (x) ∩ V and the same estimates hold.
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4. An inversion theorem

The following statement is our central result:

Theorem 4.1 Let X and Y be Banach spaces and let F : X0 ⇒ Y be a mul-
tifunction defined on some open subset X0 of X with closed nonempty values.
Suppose F is quasi-peridifferentiable at (x0, y0) ∈ Gr(F ) and such that some
derivative A of F at (x0, y0) is invertible. Then F is open at (x0, y0) in the
sense that for any neighborhood U of x0 there exists a neighborhood V of y0

such that V ⊂ F (U). Moreover, upon taking U and V small enough, F−1 is
quasi-Lipschitz on V w.r.t. U and is quasi-peridifferentiable at (y0, x0).

Proof. Without loss of generality, using translations and taking the composition
with DF (x0, y0)−1 if necessary, thanks to Propositions 3.6, 3.8, we may assume
that x0 = 0, y0 = 0 and that X = Y, DF (x0, y0) = I, the identity mapping.
Let us set R(x) := F (x)−x for x ∈ X0. Given κ ∈ (0, 1), in view of Lemma 3.2,
we can find some σ > 0, ρ ∈ (0, σ) such that B(0, ρ) ⊂ X0 and

R(x) ∩ σBY ⊂ R(x′) + κ ‖x − x′‖BY ∀x, x′ ∈ ρBX . (10)

Without loss of generality, we may assume that U is a ball B(0, r) with r ∈ (0, ρ).
Let s := min(σ−r, (1−κ)r), V := B(0, s). Let us observe that for (x, y) ∈ U×V,
we have

y ∈ F (x) ⇔ x ∈ Gy(x) := y − R(x).

Now, for any y ∈ V, the multifunction Gy is pseudo-κ-contractive w.r.t. U : for
x, x′ ∈ U we have

Gy(x) ∩ U ⊂ Gy(x′) + κ ‖x − x′‖BY (11)

since for any u ∈ Gy(x) ∩ U we have y − u ∈ R(x) and ‖y − u‖ ≤ ‖u‖ + ‖y‖ <
r+s ≤ σ, so that there exists some z′ ∈ R(x′) with ‖(y − u) − z′‖ ≤ κ ‖x − x′‖ ,
hence u′ := y−z′ ∈ Gy(x′) and ‖u′ − u‖ ≤ κ ‖x − x′‖ . Moreover, since 0 ∈ R(0),

d(0, Gy(0)) ≤ ‖y‖ < s ≤ (1 − κ)r.

The assumptions of Proposition 2.1 being satisfied, Gy has a fixed point x ∈
B(0, r) and y ∈ F (x) ⊂ F (U).

To prove that F−1 is quasi-Lipschitz on V , we will apply Proposition 2.2 or
Corollary 2.1, observing that, for y, y′ ∈ V, satisfying ‖y − y′‖ < (1− κ)(ρ− r),
we have

e(Gy′(x) ∩ B(0, r), Gy(x)) ≤ ‖y − y′‖ < (1 − κ)(ρ − r) ∀x ∈ B(0, r),

so that, by Proposition 2.2, with G := Gy, H := Gy′ , we get

e(ΦH ∩ B(0, r), ΦG) ≤ (1 − κ)−1 sup
x∈B(0,r)

e(H(x) ∩ B(0, r), G(x))

≤ (1 − κ)−1 ‖y − y′‖ .
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or, since ΦG = F−1(y) and ΦH = F−1(y′),

e(F−1(y′) ∩ B(0, r), F−1(y)) ≤ (1 − κ)−1 ‖y − y′‖ . (12)

Finally, let us show that F−1 is quasi-peridifferentiable at (y0, x0). Given
ε ∈ (0, κ), there exist some sε ∈ (0, s), rε ∈ (0, r) ∩ (0, sε) such that

R(x) ∩ B(0, sε) ⊂ R(x′) + ε(1 − ε) ‖x − x′‖BY ∀x, x′ ∈ B(0, rε). (13)

Setting Vε := B(0, rε/4), S(y) := F−1(y) − y, let us show that

e(S(y) ∩ Vε, S(y′)) ≤ ε ‖y − y′‖ ∀y, y′ ∈ Vε. (14)

Let y, y′ ∈ Vε and let u ∈ S(y) ∩ Vε. By definition, there exists x ∈ F−1(y)
such that u = x − y. Thus y ∈ F (x) = x + R(x) and −u ∈ R(x). Let us set
w := x + y′ − y = y′ + u ∈ B(0, rε/2), so that ‖w − x‖ = ‖y′ − y‖ . Since
−u ∈ R(x) ∩ Vε ⊂ R(x) ∩ B(0, sε) and x, w ∈ B(0, rε/2), relation (13) yields
some z ∈ R(w) such that ‖z − (−u)‖ ≤ ε(1 − ε) ‖w − x‖ . Thus

d(w, Gy′(w)) ≤ ‖w − (y′ − z)‖ = ‖(y′ + u) − (y′ − z)‖ = ‖z + u‖
≤ ε(1 − ε) ‖w − x‖ ,

and d(w, Gy′ (w)) ≤ tε := ε(1− ε) ‖y′ − y‖ ≤ ε(1− ε)rε/2. Since, by (13), Gy′ is
an ε-contraction w.r.t. B(w, rε/2) ⊂ B(0, rε), using Proposition 2.1, we can find
some x′ ∈ B(w, (1 − ε)−1tε) such that x′ ∈ Gy′(x′). Then, setting u′ := x′ − y′,
we have u′ ∈ S(y′) since x′ ∈ y′ − R(x′) or x′ ∈ F−1(y′) = y′ + S(y′), and

‖u − u′‖ = ‖(x − y) − (x′ − y′)‖ = ‖w − x′‖ ≤ (1 − ε)−1tε = ε ‖y′ − y‖ .

so that relation (14) is satisfied.

Corollary 4.1 Suppose F : X0 ⇒ Y is as in Theorem 4.1 and is pseudo-
differentiable at (x0, y0) with F (x0) = {y0}. Then F−1 is pseudo-differentiable
at (y0, x0) with derivative A−1, where A is the derivative of F at x0.

Proof. This is a consequence of Proposition 3.3, since by Theorem 4.1 F is open
at (x0, y0).

A refinement of the preceding result can be given.

Proposition 4.1 Suppose F : X0 ⇒ Y is as in Theorem 4.1 and is pseudo-
peridifferentiable at (x0, y0) with F−1(y0) ∩ B(x0, r0) = {x0} for some r0 > 0.
Then F−1 is pseudo-peridifferentiable at (y0, x0) with derivative A−1, where A
is the derivative of F at x0.

Proof. We may suppose that relation (10) is satisfied with κ = 1/2 and ρ ∈
(0, r0]. Let r := ρ/2. By assumption, there exists some s > 0 such that, given
ε ∈ (0, 1/2) we can find some rε ∈ (0, r) ∩ (0, s) for which

R(x) ∩ U ⊂ R(x′) + ε(1 − ε) ‖x − x′‖BY ∀x, x′ ∈ B(0, rε) (15)
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for U := B(0, s). Since F−1 is quasi-Lipschitz, relation (12) shows that for
y ∈ B(0, ρ/4) we have

e(F−1(y) ∩ B(0, r), F−1(0)) ≤ 2 ‖y‖ .

Thus, for any y ∈ B(0, ρ/4), x ∈ F−1(y)∩B(0, r) we can find x′ ∈ F−1(0) such
that ‖x − x′‖ < ρ/2, hence ‖x′‖ < r + ρ/2 ≤ r0 and x′ = 0, ‖x‖ ≤ 2 ‖y‖ .

Let us show that for y, y′ ∈ Vε := B(0, rε/4) satisfying ‖y − y′‖ ≤ rε/4 we
have, with S(y) := F−1(y) − y,

e(S(y) ∩ U, S(y′)) ≤ ε ‖y − y′‖ . (16)

We proceed as in the proof of Theorem 4.1. Let y, y′ ∈ Vε satisfy ‖y − y′‖ ≤
rε/4 and let u ∈ S(y) ∩ U. By definition, there exists x ∈ F−1(y) such that
u = x− y. Thus y ∈ F (x) = x+R(x) and −u ∈ R(x). We have just proved that
‖x‖ ≤ 2 ‖y‖ < rε/2. Let us set w := y′ + u = x + y′ − y ∈ B(0, 3rε/4). Since
−u ∈ R(x) ∩ U and x, w ∈ B(0, rε), relation (15) yields some z ∈ R(w) such
that ‖z − (−u)‖ ≤ t := ε(1 − ε) ‖w − x‖ . Thus

d(w, Gy′(w)) ≤ ‖w − (y′ − z)‖ = ‖(y′ + u) − (y′ − z)‖ = ‖u + z‖
≤ ε(1 − ε) ‖w − x‖ ≤ ε(1 − ε)rε/4

since ‖w − x‖ = ‖y′ − y‖ ≤ rε/4. Since, by (15), Gy′ is an ε-contraction w.r.t.
B(w, rε/4) ⊂ B(0, rε), using Proposition 2.1, we can find some x′ ∈ B(w, (1 −
ε)−1t) such that x′ ∈ Gy′(x′). Then, setting u′ := x′ − y′, we have u′ ∈ S(y′)
since x′ ∈ y′ − R(x′) or x′ ∈ F−1(y′) = y′ + S(y′), and

‖u − u′‖ = ‖(x − y) − (x′ − y′)‖ = ‖w − x′‖ ≤ (1 − ε)−1t = ε ‖y′ − y‖ ,

so that relation (16) is satisfied.

It would be interesting to find other conditions ensuring that F−1 is pseudo-
differentiable at (y0, x0) without assuming that F (x0) or F−1(y0) is a singleton.
In the following example we make use of the order of R to reach that conclusion.

Example 4.1 Let F : R ⇒ R be given by F (x) = [a(x), b(x)] for x ∈ R where
a, b : R → R are peridifferentiable at x0 ∈ R with a(x0) < b(x0) and we can find
an open interval U containing x0 such that a(x) < b(x) for each x ∈ U. Then
F is pseudo-peridifferentiable at (x0, y0) for any y0 ∈ F (x0), with derivative
A = a′(x0) if y0 < b(x0) and A = b′(x0) if y0 > a(x0) (and any A if y0 satisfies
both conditions). If moreover, a and b have non null derivatives at x0, we
may suppose that a and b are invertible on U. Then, for any y ∈ Y one has
F−1(y) ∩ U = [b−1(y), a−1(y)], where a−1 stands for (a | U)−1 and b−1 stands
for (b | U)−1. Then F and F−1 are pseudo-differentiable at (x0, y0) and (y0, x0)
respectively. When a′(x0) = b′(x0), F is peridifferentiable at x0. If, moreover, a
and b are increasing, F−1 is also peridifferentiable at any y0 ∈ F (x0); it is not
so if a and b are not globally increasing.
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5. A parametric inversion theorem

In order to deal with a parametric version of Theorem 4.1 and with an implicit
mapping theorem, let us introduce a notion of partial peridifferentiability.

Definition 5.1 Let X, Y be n.v.s., Z be a topological space and let Ω be an
open subset of X × Z. A multifunction F : Ω ⇒ Y is said to be partially
quasi-peridifferentiable at ((x0, z0) , y0) ∈ Gr(F ) ⊂ Ω × Y w.r.t. X, if:

(a) the multifunction z �→ F (x0, z) is lower semicontinuous at (z0, y0);
(b) there exist a continuous linear map A : X → Y such that for any ε > 0

there are δε > 0 and neighborhoods Vε, Wε of y0 and z0, respectively, for which

e(F (x, z) ∩ Vε − A(x), F (x′, z) − A(x′)) ≤ ε ‖x − x′‖ (17)

whenever x, x′ ∈ B(x0, δε) and z ∈ Wε. The mapping A will be denoted by
D1F (x0, z0).

If in condition (b) Vε can be chosen independently of ε (resp. Vε = Y ), we
say that F is partially pseudo-peridifferentiable at ((x0, z0) , y0) (resp. partially
peridifferentiable at ((x0, z0) , y0)).

When F is single-valued, these notions coincide with the concept of circa (or
strict) partial differentiability. Moreover, we have the following observation:

Lemma 5.1 If F : Ω ⇒ Y is partially quasi-peridifferentiable at ((x0, z0) , y0),
then F is jointly lower semicontinuous at ((x0, z0), y0).

Proof. Given α > 0, let us find some β > 0 and some neighborhood U of z0

such that d(y0, F (x, z)) ≤ α for any (x, z) ∈ B(x0, β)×U. Let V1 and W1 be the
neighborhoods of y0 and z0, respectively, associated with ε = 1 in the preceding
definition. Since F (x0, ·) is lower semicontinuous at (z0, y0), we can find some
neighborhood U of z0 contained in W1 such that for each z ∈ U there exists
some y ∈ F (x0, z) satisfying ‖y − y0‖ < min(α/2, ρ), where ρ > 0 is such that
B(y0, ρ) ⊂ V1. Let us set β := min(δ1, α/2(‖A‖+1)). Given x ∈ B(x0, β), z ∈ U,
taking y ∈ F (x0, z) satisfying ‖y − y0‖ < min(α/2, ρ), we have

d(y, F (x, z)) ≤ e(F (x0, z) ∩ V1, F (x, z) + A(x0 − x)) + ‖A(x − x0)‖
≤ ‖x − x0‖ + ‖A(x0 − x)‖ < α/2,

hence d(y0, F (x, z)) < α.

Theorem 5.1 (Parametric inversion theorem) Let X, Y be Banach spaces, let
Z be a topological space and let F : Ω ⇒ Y be a multifunction with closed
nonempty values defined on some open subset Ω of X×Z. Suppose F is partially
quasi-peridifferentiable at ((x0, z0), y0) ∈ (Ω × Y ) ∩ Gr(F ) w.r.t. X, with an
invertible partial derivative A. Then for any neighborhood U of x0 one can
find a neighborhood V of y0 and a neighborhood W of z0 such that V ×W ⊂
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Ψ(U×W ), where Ψ(x, z) := F (x, z)×{z} . Moreover, one can ensure that for each
z ∈ W the multimapping F (·, z)−1 is quasi-Lipschitzian. Furthermore, the first
component H of the inverse multimapping (y, z) �→ Ψ−1(y, z) := H(y, z) × {z}
of Ψ is partially quasi-peridifferentiable at ((y0, z0), x0) w.r.t. Y.

Proof. Let us adapt the proof of Theorem 4.1. As in that proof, we may suppose
x0 = 0, y0 = 0, X = Y and A = I. Let us set R(x, z) = x − F (x, z) , Gy,z(x) =
y − R(x, z). Given κ ∈ (0, 1), we can find some σ > 0, ρ ∈ (0, σ) and some
neighborhood W of z0 in Z such that

R(x, z) ∩ σBY ⊂ R(x′, z) + κ ‖x − x′‖BY ∀x, x′ ∈ ρBX , z ∈ W. (18)

Let U be a neighborhood of x0. Shrinking it, if necessary, we may suppose
U := B(0, r) for some r ∈ (0, ρ). Let s < s′ := min(σ−r, (1−κ)r), V := B(0, s).
Since z �→ F (0, z) is lower semicontinuous at (z0, 0), shrinking W , if necessary,
we may assume that d(0, F (0, z)) < s′ − s for z ∈ W. Let us observe that for
(x, y, z) ∈ U × V × W, we have

y ∈ F (x, z) ⇔ x ∈ Gy,z(x) := y − R(x, z).

Again, for any (y, z) ∈ V × W, the multifunction Gy,z is pseudo-κ-contractive
w.r.t. U : for x, x′ ∈ U we have

Gy,z(x) ∩ U ⊂ Gy,z(x′) + κ ‖x − x′‖BY . (19)

Moreover, since 0 ∈ F (0, z0) = −R(0, z0),

d(0, Gy,z(0)) = d(0, y−F (0, z)) ≤ ‖y‖+d(0, F (0, z)) < s+(s′ − s) ≤ (1−κ)r.

The assumptions of Proposition 2.1 being satisfied, Gy,z has a fixed point x ∈
B(0, r) = U and y ∈ F (x, z) ⊂ F (U × {z}). Thus V × W ⊂ Ψ(U × W ) where
Ψ(x, z) := F (x, z) × {z} .

The second assertion is obtained as in the proof of Theorem 4.1: replacing
Gy by Gy,z for (y, z) ∈ V ×W, we obtain that for each z ∈ W the multimapping
F−1

z := F (·, z)−1 is quasi-Lipschitzian with rate (1− κ)−1 on V. More precisely,
for any y, y′ ∈ V satisfying ‖y − y′‖ < (1 − κ)(ρ − r) and any z ∈ W, we have

e(F−1
z (y′) ∩ B(0, r), F−1

z (y)) ≤ (1 − κ)−1 ‖y − y′‖ .

We deduce from this fact that z �→ H(y0, z) is l.s.c. at (z0, x0), i.e. that
z �→ F−1

z (y0) is l.s.c. at (z0, x0) : using the lower semicontinuity of F (0, ·), for
z near z0 we pick some yz ∈ F (0, z) such that yz → 0 as z → z0 and we note
that 0 ∈ F−1

z (yz), hence

d(0, F−1
z (0)) ≤ e(F−1

z (yz)∩B(0, r), F−1
z (0)) ≤ (1−κ)−1 ‖yz‖ → 0 as z → z0.
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Finally, let us show that H is partially quasi-peridifferentiable at ((y0, z0), x0)
w.r.t. Y. Given ε ∈ (0, κ), there exist some sε ∈ (0, s), rε ∈ (0, r) ∩ (0, sε) and
some neighborhood Wε of z0 such that

R(x, z)∩B(0, sε) ⊂ R(x′, z)+ε(1−ε) ‖x − x′‖BY ∀x, x′ ∈ B(0, rε), z ∈ Wε.

(20)

Setting Uε := B(0, rε/4), Vε := B(0, rε/4), S(y, z) := F−1
z (y) − y, we can show

as in the proof of Theorem 4.1 that

e(S(y, z) ∩ Uε, S(y′, z)) ≤ ε ‖y − y′‖ ∀y, y′ ∈ Vε, z ∈ Wε.

Thus H , is partially quasi-peridifferentiable at ((y0, z0), x0) w.r.t. Y.

One can deduce from the preceding result an implicit multimapping theorem.

Theorem 5.2 Let X, Y be Banach spaces, let Z be a topological space and
let F : Ω ⇒ Y be a multifunction with closed nonempty values defined on
some open subset Ω of X ×Z. Suppose F is partially quasi-peridifferentiable at
((x0, z0), y0) ∈ Gr(F ) w.r.t. X, with an invertible partial derivative. Then there
exist a neighborhood W of z0 such that the implicit multimapping M : W ⇒ X
given by

M(z) := {x ∈ X : (x, z) ∈ Ω, y0 ∈ F (x, z)}

has nonempty values for z ∈ W. Moreover M is lower semicontinuous at (z0, x0).

Proof. Clearly, M(z) = H(y0, z). The lower semicontinuity of M has been shown
during the proof of the preceding theorem; it is also a consequence of Lemma
5.1, H being partially quasi-peridifferentiable at ((y0, z0), x0) w.r.t. Y.

Corollary 5.1 Let X, Y, Z be n.v.s., X, Y being complete, and let F : Ω ⇒ Y
be a multifunction with closed nonempty values defined on some open subset Ω
of X × Z. Let (x0, z0, y0) ∈ Ω × Y be such that F (x0, z0) = {y0}. Suppose
F is pseudo-(resp. quasi-)differentiable at ((x0, z0), y0) and is partially quasi-
peridifferentiable at ((x0, z0), y0) w.r.t. X, with an invertible partial derivative
A. Then, the implicit multifunction M of the preceding statement is pseudo
(resp. quasi)-differentiable at (z0, x0).

Proof. Let Ψ : X ×Z ⇒ Y ×Z be given by Ψ(x, z) := F (x, z)×{z} . Its inverse
Ψ−1 is given by Ψ−1(y, z) := H(y, z) × {z}, hence is lower semicontinuous
at ((y0, z0), (x0, z0)). Therefore Ψ is open at ((x0, z0), (y0, z0)). Moreover, the
derivative of Ψ at ((x0, z0), (y0, z0)) is obviously given by

DΨ((x0, z0), (y0, z0))(u, v) = (Au + Bv, v).
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for some continuous linear mapping B : Z → Y. Thus, it is invertible and Propo-
sition 3.3 applies. Hence H is pseudo (resp. quasi)-differentiable at ((y0, z0), x0)
and M has the same differentiability property at (z0, x0).

6. Comparisons with other notions

Many notions of differentiability of multimappings exist (see references from
Aubin, 1981 to Azé, Corvellec, 2004; Banks, Jacobs, 1970; Dien, Yen, 1991;
Gautier, 1989, 1990; Hukuhara, 1967; Klatte, Kummer, 2001 to Lemaréchal,
Zowe, 1991; Martelli, Vignoli, 1974; Penot, 1984; Polovinkin, Smirnov, 1986;
Sach, 1998 to Silin, 1997, ...). It is the purpose of this section to present a
short comparison. In this section F : X ⇒ Y is a multimapping between two
normed vector spaces with domain an open subset X0 of X and (x0, y0) is a
point in Gr(F ). The notion of differentiability we have adopted ensures a strong
approximation property of the graph.

Proposition 6.1 Suppose F is quasi-differentiable at z0 := (x0, y0) with deriv-
ative A and F (x0) = {y0}. Let Z0 := {x0} × F (x0). Then Gr(A) + Z0 is an
approximation of Gr(F ) at z0 in the sense of Maurer, Zowe (1979): there exists
a mapping h : Gr(F ) → Gr(A) + Z0 such that h(z) − z = o(‖z − z0‖).

If, moreover, F is quasi-peridifferentiable at (x0, y0) then Gr(F ) is an ap-
proximation of Gr(A) + Z0 at z0.

Proof. The first assertion follows from the equivalence proved in Agadi, Penot
(2005) taking z0 as a base point in X × Y, and setting er(C, D) := e(C ∩
B(z0, r), D) for r > 0, C, D ⊂ X × Y, the existence of h is equivalent to the
relation

lim
r→0+

1
r
er(Gr(F ), Gr(A) + Z0) = 0.

Such a relation is satisfied since

er(Gr(F ), Gr(A)+Z0) ≤ sup
x∈B(x0,r)

e(F (x)∩B(y0, r), F (x0)+A(x−x0)) ≤ o(r).

If F is quasi-peridifferentiable at (x0, y0) we also have, for c := ‖A‖ + 1

er(Gr(A)+Z0, Gr(F ))≤ sup
x∈B(x0,r)

e((F (x0)+A(x−x0))∩B(y0, cr), F (x))≤o(r).

A comparison with the notion of contingent derivative used in Aubin (1981)
follows easily.

Corollary 6.1 If F is quasi-differentiable at z0 := (x0, y0) with derivative A
and if F (x0) = {y0}, then the graph of the contingent derivative of F at (x0, y0)
is contained in Gr(A). If, moreover, F is pseudo-peridifferentiable at (x0, y0)
then the graph of the contingent derivative of F at (x0, y0) coincides with Gr(A).
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Proof. The graph of the contingent derivative of F at (x0, y0) being the tangent
cone to Gr(F ) at z0, the result follows from the fact (obtained by using the
mapping h of the preceding proposition) that when a subset S′ of Z is an
approximation of a subset S of Z at some z0 ∈ S ∩S′, the tangent cone to S at
z0 is contained in the tangent cone to S′ at z0 . A direct proof is also easy.

Now, let us turn to a comparison with a notion which gave rise to an inverse
multimapping theorem.

Definition 6.1 (Azé, Chou, 1995) A multifunction F : X ⇒ Y between two
n.v.s. is said to be strictly lower pseudo-differentiable at (x0, y0) ∈ Gr(F ) if
there exists a multifunction L : X ⇒ Y whose graph Gr(L) is a closed cone
such that

lim
((x,y),(u,v))

Gr(F )×Gr(L)→ ((x0,y0),(0,0))

‖(u, v)‖−1
d((x+u, y + v), Gr(F )) = 0. (21)

Proposition 6.2 Let X, Y be n.v.s. If a multifunction F : X ⇒ Y is quasi-
peridifferentiable at (x0, y0) ∈ Gr(F ) then F is strictly lower pseudo-differen-
tiable at (x0, y0).

Proof. Let A be as in Definition 3.4. Define L : X ⇒ Y by L(x) = {A(x)} for
x ∈ X, so that Gr(L) = Gr(A) which is a closed subset of X × Y. Let us show
that condition (21) is satisfied. We know that for any ε > 0 there exists δ > 0
and a neighborhood V of y0 for which

e(F (x) ∩ V − A(x), F (x′) − A(x′)) ≤ ε ‖x − x′‖

whenever x, x′ ∈ B(x0, δ). Thus for x ∈ B(x0, δ/2) and u ∈ B(0, δ/2) we have

e(F (x) ∩ V − A(x), F (x + u) − A(x + u)) ≤ ε ‖u‖

so that, for any y ∈ F (x) ∩ V there exists y′ ∈ F (x + u) such that

d(y − A(x), y′ − A(x + u)) ≤ ε ‖u‖ .

Then, z := (x + u, y′) ∈ Gr(F ) satisfies

d((x + u, y + A(u)), z) = ‖y + A(u) − y′‖ ≤ ε ‖u‖

which proves that for any (x, y) ∈ (B(x0, δ/2)× V ) ∩Gr(F ), u ∈ B(0, δ/2) and
v := A(u) one has

d((x + u, y + v), Gr(F )) ≤ ε ‖(u, v)‖ ,

so that F is strictly lower pseudo-differentiable at (x0, y0).
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Similarly, it can be shown that peridifferentiability of F at x0 implies strict
differentiability of F at x0 in the sense of Azé (1988) and that any periderivative
is a (continuous linear) selection of the periderivative of Aubin, Frankowska
(1987) defined as the multimapping whose graph is the Clarke’s tangent cone
to the graph of F.

It follows from that comparison that the openness result of Theorem 3.3 is a
consequence of the main result of Azé, Chou (1995). We have been informed by
D. Azé (in personal communication) that a part of the inversion theorem of the
present paper can also be deduced from the notion of (strong) slope; see Azé,
Corvellec (2004) and Azé, Corvellec, Lucchetti (2002) for recent accounts about
this notion and its links with metric regularity, a topic treated in many works, for
instance Borwein (1986), Borwein, Dontchev (2003), Jourani, Thibault (1995),
Klatte, Kummer (2002), Penot (1982, 1989). However, Theorem 3.3 brings
some information about the inverse mapping and is closer to the classical inverse
mapping theorem.

When F (x0) is convex, the multimapping A(·) + F (x0) is affine in the sense
of Gautier (1989), hence is eclipsing in the sense of Lemaréchal, Zowe (1991)
and Gautier (1990). Note yet that we do not make here a convexity assumption
on F (x0).

We will not make a comparison with other notions. Let us note, however,
that the notions we introduce do not suffer from the deficiency of the concepts in
Banks, Jacobs (1970), Hukuhara (1967), Martelli, Vignoli (1974) which impose
that the values of F at points x near x0 be larger than F (x0).

7. Application to differential inclusions

Let us illustrate our results by an application to the well-known Filippov exis-
tence theorem for differential inclusions. It is well known that fixed point theo-
rems yield existence results for ordinary differential equations or inclusions (see
Arino, Gautier, Penot, 1984, Azé, Penot, 2004, for instance). Here we give a
perturbation result which may be useful for the study of reachable sets (see
Frankowska, Olech, 1982, Olech, 1975, 1983 ...).

Let E be a separable Banach space, ξ ∈ E and T := [0, θ], with θ > 0. Let us
consider the question of the existence of solutions to the differential inclusion:

(D.I.)
.
w(t) ∈ Φ(t, w(t))
w(0) = ξ

where Φ : T × E ⇒ E is a multifunction. A solution w(·) of the differential
inclusion (D.I.) is an element of the space X := W 1,1(T, E) of continuous func-
tions w : T → E such that there exists u ∈ L1(T, E) (the space of Bochner
integrable functions from T into E) satisfying u(t) ∈ Φ(t, w(t)) a.e. t ∈ T and

w(t) = w(0) +
∫ t

0

u(s)ds ∀t ∈ T.
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Then w is differentiable a.e. on T and
.
w = u. Let us assume that the mul-

tifunction Φ satisfies the following assumptions in which w0 ∈ X , r > 0,
k ∈ L1(T, R+) :

(H1) for each (t, e) ∈ T × B(w0(t), r), the set Φ(t, e) is closed, nonempty
and Φ(·, e) is mesurable;

(H2) for a.e. t ∈ T, the multifunction Φ(t, ·) is k(t)−Lipschitzian on
B(w0(t), r);

(H3) ρ(·) := d(
.

w0(·), Φ(·, w0(·))) is in L1(T, R).
Such assumptions are classical since the work of Filippov (1967) in which the
following result has been given; see also Aubin, Frankowska (1987), Azé, Penot
(2005), Deimling (1992), Papageorgiou (1988), Polovinkin, Smirnov (1986), Tol-
stonogov (2000), Zhu (1991).

Theorem 7.1 Under assumptions (H1), (H2) and (H3), for each ξ ∈ E close
enough to w0(0), the differential inclusion (D.I.) has a solution on some interval
[0, τ ] with τ ∈ (0, θ).

Proof. Changing Φ into Φ̂ given by Φ̂(t, e) := Φ(t, e + w0(t)) − .
w0(t), we may

suppose w0(t) = 0 for t ∈ T. Setting X = Y = W 1,1(T, E) endowed with the
norm given by ‖x‖X = ‖x(0)‖+

∫ θ

0

∥∥ .
x(s)

∥∥ ds, Z = [0, 1]×E and X0 = {x ∈ X :
∀t ∈ T, x(t) ∈ B(w0(t), r)}, let us define the multifunction F : X0 × Z ⇒ X as
follows:

y ∈ F (x, z) ⇐⇒ ∃u ∈ L1(T, E) such that u(t) ∈ Φ(ζt, x(t))

a.e. t ∈ T, y(t) = x(t) − ξ −
∫ t

0

ζu(s)ds.

As in Lemma 3.3 of Azé, Penot (2005) one can check that F has closed
nonempty values. Moreover for x0 := 0, z0 := (0, 0), one has F (x0, z0) = {y0}
with y0 := 0. Let us show that F is partially-peridifferentiable at (x0, z0) w.r.t.
x.

Let us first check that the multifunction z �→ F (x0, z) is lower semicon-
tinuous at (z0, y0). For every z := (ζ, ξ) ∈ Z, by Thm 14.60 in Rockafellar,
Wets (2000) we can interchange integration and minimization over the set of
selections of s �→ Φ(ζs, x0(s)) and get, using (H3),

d(0, F (x0, z)) := inf{‖y‖ : y ∈ F (x0, z)}

= inf{‖ξ‖ +
∫ θ

0

ζ ‖u(s)‖ ds : u(·) ∈ Φ(ζ·, x0(·))}

= ‖ξ‖ +
∫ θ

0

ζd(0, Φ(ζs, x0(s)))ds ≤ ‖ξ‖ +
∫ θ

0

ζρ(ζs)ds ≤ ‖ξ‖ +
∫ ζθ

0

ρ(t)dt

so that d(0, F (x0, z)) → 0 as z → 0.
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Let us show that F is partially peridifferentiable at ((x0, z0), y0) with respect
to x and D1F (x0, z0) = I. Given ε > 0, let us take ξ ∈ E and ζ ∈ [0, 1] so small
that m(ζθ) ≤ ε, where m(t) :=

∫ t

0
k(s)ds, let us prove that for z = (ζ, ξ) and

x1, x2 ∈ B(x0, r), we have

e(F (x1, z) − x1, F (x2, z) − x2) ≤ ε ‖x1 − x2‖X . (22)

Let yi ∈ F (xi, z) for i = 1, 2, so that yi(t) = xi(t) − ξ − ∫ t

0
ζui(s)ds with

ui(t) ∈ Φ(ζt, xi(t)) for a.e. t ∈ T ; then (y1(0) − x1(0)) − (y2(0) − x2(0)) = 0
and

d(y1 − x1, y2 − x2) ≤
∫ θ

0

|ζ| ‖u1(s) − u2(s)‖ ds.

Thus, using again Theorem 14.60 of Rockafellar, Wets (2000) and assumption
(H2), we get

d(y1 − x1, F (x2, z) − x2) ≤
∫ θ

0

ζe(Φ(ζs, x1(s)), Φ(ζs, x2(s)))ds

≤
∫ θ

0

ζk(ζs) ‖x1(s) − x2(s)‖ ds ≤ m(ζθ) ‖x1 − x2‖∞ ≤ ε ‖x1 − x2‖X .

Thus the multifunction F satisfies the assumptions of Theorem 5.1 and there
exist neighborhoods U, V, W of x0, 0 and z0 respectively with U ×W ⊂ X0 ×Z
and some mapping h : V × W → U such that y ∈ F (h(y, z), z) for any (y, z) ∈
V × W. In particular, for all z ∈ W there exists h(0, z) in U for which 0 ∈
F (h(0, z), z); thus there exists u ∈ L1(T, E) such that u(t) ∈ Φ(ζt, h(0, z)(t))
for a.e. t ∈ T and h(0, z)(t) = ξ +

∫ t

0
ζu(s)ds. We may suppose that W is some

product [0, ζ]×WE , where ζ > 0 is small enough, and WE is a neighborhood of
0 in E. Then, for ξ ∈ WE , setting z := (ζ, ξ), w(t) := h(0, z)(t/ζ), v(t) = u(t/ζ)
for t ∈ [0, ζθ] , we have v(·) ∈ L1([0, ζθ] , E), v(t) ∈ Φ(t, x(t)) a.e. t ∈ [0, ζθ] and

w(t) = ξ +
∫ t

0

v(s)ds.

Thus, for τ := ζθ, and for every ξ ∈ WE , the differential inclusion (D.I.) has a
solution on [0, τ ].

Since the set S(ξ) of solutions of (D.I.) is obtained by a change of para-
metrization from the value M(ζ, ξ) of the implicit multimapping M defined by
the inclusion 0 ∈ F (x, z), under additional assumptions, we can deduce from
Corollary 5.1 a differentiability result about S(·). Similarly, a differentiability
result can be obtained when Φ depends on parameters.
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