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Abstract: The paper presents a new method applicable in deter-
mining the settings of PI and PID controllers for models of controlled
systems given by the following transfer functions

G12(s) =
b1s + b0

s2 + a1s + a0

and

G23(s) =
b2s

2 + b1s + b0

s3 + a2s2 + a1s + a0

.

Using the capabilities of computer operations with symbolic vari-
ables, the closed system transfer function is expanded into a chain-
type fraction, type V (Bultheel, 1978; Khovanskii, 1956; Halawa and
Trzmielak-Stanis lawska, 1986; Wall, 1973) and the second order con-
vergent method is used as a simplified model. Denominator of this
convergent M(s), is the following polynomial

M(s) = s2 + 2ns + ω2
0 = s2 + 2ξω0s + ω2

0

with coefficients being the functions of controlled system parame-
ters and unknown controller settings. Diagrams of step responses
for systems given by second-order transfer functions are well known.
Assuming the values of ω2

0 and n = ξω0, we get a set of non-linear
equations used to determine controller settings. The set of equa-
tions has been determined and resolved by means of Mathematica
language which allows calculations with symbolic variables.

Keywords: system dynamics, selection of controller settings,
convergent method.
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1. Introduction

The convergent method used to determine PI and PID controller settings will
be discussed for two mathematical models of controlled systems, namely

G12(s) =
b1s + b0

s2 + a1s + a0

(1)

and

G23(s) =
b2s

2 + b1s + b0

s3 + a2s2 + a1s + a0

. (2)

In general, responses of these models approximate the higher-order controlled
system under identification with the accuracy sufficient for engineering appli-
cations. Coefficients of transfer functions (1) and (2) can be found from the
controlled system identification procedure using, for instance, the momentum
method (Halawa, 1989) or neural networks (Narendra and Pathasarathy, 1990;
Phama and Singh, 1993). The method under consideration can be also used for
integrating type controlled systems given, for example, by the transfer function

G02(s) =
k

s(Ts + 1)

or the transfer function in series with a delay unit given by the transfer function
e−st0 . Instead of the transfer function e−st0 we take then the approximation
given by its expansion into Padé series (Baker and Graves-Morris, 1981). The
introduced method is a novel one. It serves to determine controller settings for
the supposed simplified model of controlled system. The method can be used to
run computer-aided simulation studies and to determine dynamics of closed-loop
control systems. Block diagram of the controlled system under consideration is
shown in Fig. 1.

y(s)
0G  (s)

zy  (s)
G  (s)r

Figure 1. Block diagram of control system
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The G0(s) transfer function depicts the controlled system model. The trans-
fer function of PID controller is the following function

Gr(s) = kp

(

1 +
1

Tis
+ Tds

)

. (3)

The transfer function of closed control system with the controlled system (1)
and controller (3) is given by the formula

Gz2(s) =
y2(s)

yz(s)

=

b1kpTds
3 + (b1kp + b0kpTd)s2 +

(

b1kp

Ti

+ b0kp

)

s +
b0kp

Ti

(b1kpTd + 1)s3 + (b1kp + b0kpTd + a1)s2 +

(

b1kp

Ti

+ b0kp + a0

)

s +
b0kp

Ti

.

(4)

For the model described by the transfer function (2), the transfer function for
the closed control system is the rational function

Gz3(s) =
yz3

x(s)
=

Lz3(s)

Mz3(s)
(5)

where

Lz3(s) =b2kpTds
4 + (b2kp + b1kpTd)s3 +

(

b2kp

Ti

+ b1kp + b0kpTd

)

s2+

+

(

b1kp

Ti

+ b0kp

)

s +
b0kp

Ti

and

Mz3(s) = (b2kpTw + 1)s4 + (b1kpTw + b2kp + a2)s3+

+

(

a1 +
b2kp

Ti

+ b1kp + b0kpTw

)

s2 +

(

a0 +
b1kp

Ti

+ b0kp

)

s +
b0kp

Ti

.

The transfer function of the closed system with models (1) and (2) is then the
rational function of s given as

Gz(s) =
c0 + c1s + c2s

2 + c3s
3 + c4s

4

d0 + d1s + d2s2 + d3s3 + d4s4
. (6)

The coefficients of this transfer function are, due to (4) and (5), the functions of
coefficients from the controlled system model selected and the controller. The
parameters of the controlled system model are given; they are obtained as a
result of identification. The settings of the controller shall be selected so as the
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response of closed control system approximate the selected waveform of response
for the second-order system. We shall search for such controller setting which
gives step response without overshoot and which stabilizes within a short time.
We assume the transfer function describing the second-order model of the form

G2(s) =
y(s)

x(s)
=

kω2
0

s2 + 2ns + ω2
0

=
kω2

0

s2 + 2ξω0s + ω2
0

. (7)

Fig. 2 illustrates step responses for the system described by the transfer function

G2(s) =
1

s2 + 2ξ s + 1
(8)

for k = 1, ξ = 1 and several values of ω0, namely ω0 = 0.5, 1, 2, 4, 10.
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Figure 2. Step responses for the model described by transfer function (8) for
k = 1, ξ = 1 and several values of ω0

2. Simplified second-order model

As a result of expanding the transfer function of the closed system (the initial
transfer function) into a chain fraction and replacing it with the convergent part
of this expansion, we are given the simplified system transfer function, whose
response waveform is close to the response of the initial closed system to the same
forcing function x(t). We assume the convergent G12(s) as a simplified model
resulting from expanding the rational function (6) into chain fraction, type V ,
T or C (Bultheel, 1978; Khovanskii, 1956; Halawa and Trzmielak-Stanis lawska,
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1986; Wall, 1973), given by the formula

G12(s) =
B1s + B0

s2 + A1s + A0

(9)

where

A0 =
a41c0d0

a51

,

A1 =
a2
31a41 + a51c0d0 + a2

41d0

a31a51

,

B0 =
c0

d0

A0, B1 =
a51c

2
0 + a2

41c0

a31a51

u = c0d3 − c3d0 ,

v = c0d2 − c2d0 ,

a31 = c0d1 − c1d0 ,

a41 = a31c1 − c0v ,

a51 = a41v − a31(a31c2 − uc0) . (10)

The settings of the PI controller can be calculated by comparing the calculated
coefficients, A0 and A1, with the prescribed coefficients ω2

0 and ξω0. As a result,
a set of equations is given which is used to calculate the settings kp and Ti. The
settings of the PID controller are derived from the relationships

kp = f1(Td)

Ti = f2(Td).

The value of Td setting is assumed, while the corresponding positive values of
kp and Ti settings are calculated. Then, the vector of kp, Ti, Td settings is
selected which, according to computer simulation, gives the most interesting
step response waveform for the closed control system.

In order to explain how the simplified model is determined with the chain
fraction method (convergent method), we outline here the expansion of rational
functions (and the transfer function is a rational function) to the V-type chain
fraction.

Expansion into V-type chain fraction

The method of chain (continuous) fractions or the method of convergents is
used to determine simplified transfer functions. It consists in replacing the
transfer function describing the initial mathematical model (an initial transfer
function) with the one of convergents of its expansion into a chain fraction (a
simplified transfer function). Many functions may be calculated by expanding
them into chain fractions, including such functions, whose expansion into power
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series is slowly-convergent or even divergent (Danilow, Iwanowa and Isakowa,
1970). Expansions into chain fractions are fast-convergent. They are used
in approximate computer calculations. A symbolic notation of chain fraction
proposed by Pringsheim will be used in this paper (Danilow, Iwanowa and
Isakowa, 1970). In this notation, the chain fraction

G (s) =
1

h1 +
1

h2

s
+

1

h3 +
1

h4

s

. . .

=
1

h1 +
s

h2 +
s

h3 +
s

h4

. . .

.

is written as

G (s) =
1|

|h1

+
1|

∣

∣

∣

∣

h2

s

+
1|

|h3

+
1|

∣

∣

∣

∣

h4

s

+ ... =
1|

|h1

+
s|

|h2

+
s|

|h 3

+
s|

|h 4

. . .

Viskovatov’s Algorithm (Khovanskii, 1956)

With this algorithm, the transfer function (a rational function)

G (s) =
a21 + a22s + a23s

2 + ... + a2nsn−1

a11 + a12s + a13s2 + ... + a1nsn−1
(11)

is expanded into a chain fraction of the form (the V-type fraction)

G (s) =
a21

a11

+

2n
∑

k=2

ak+1,1s|

|ak,1

. (12)

The algorithm is executed as outlined below. A table is created like Table 1,
wherein the first row is filled with successive coefficients of the transfer function’s
(11) denominator. The first column includes the free term and the next columns
– successive terms of the denominator. The second row of Table 1 is, likewise,
filled with coefficients of the numerator of the transfer function considered. The
elements ajk of this table are calculated from the formula:

ajk = aj−1,1 aj−2,k+1 − aj−2,1 aj−1,k+1 = −

∣

∣

∣

∣

aj−2,1 aj−2,k+1

aj−1,1 aj−1,k+1

∣

∣

∣

∣

, (13)

where j = 3, 4, ..., 2n, k = 1, 2, ..., 2n.

Elements of the first column in Table 1 are elements of chain fraction (12)
without the argument of function G(s). In order to get a simplified (convergent)
transfer function, whose numerator is of lower order than the denominator, and
the denominator is of the second order, it is sufficient to calculate the elements
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Table 1. Determination of elements of chain fraction (12)

j k 1 2 3 4 5

1 a11 a12 a13 a14 ...

2 a21 a22 a23 a24 ...

3 a31 a32 a33 a34 ...

4 a41 a42 a43 a44 ...
...

...
...

...
...

...

from the first column of Table 1 till the element a51 inclusive. When the first
and second rows of Table 1 are filled with coefficients of transfer function (6)
and upon expanding it into V-type chain fraction, we get the relation (10). The
simplified transfer function with coefficients (9) is used to determine the settings
of controllers. If the term aj1=0, where j ≥ 3, then the calculation procedure
for coefficients ajk will change. The procedure to be used in such a case is
outlined in Khovanskii (1956). The paper deals with simplified models, hence
the author permits to introduce a small change of coefficient in the numerator
of the transfer function if the case of dividing by zero exists. The problem will
be explained by the example of expanding the transfer function (31), which
describes a closed system of unknown controller settings, into a chain fraction.

Example 2.1

An example of expanding a rational function into a chain fraction will now
be analyzed.

Let us expand into a chain fraction the transfer function of numerical coef-
ficients as follows

G(s) =
y(s)

x(s)
=

1

(s + 1)4
=

1

s4 + 4s3 + 6s2 + 4s + 1
. (14)

When the transfer function (14) is expanded into a V-type chain fraction (Bul-
theel, 1978; Khovanskii, 1956; Halawa and Trzmielak-Stanis lawska, 1986; Wall,
1973), we obtain

G01(s) =
y01(s)

x(s)
=

0.25

s + 0.25
. (15)

The second- and third-order convergents are the functions

G12(s) =
y12(s)

x(s)
=

−0.2s + 0.3

s2 + s + 0.3
, (16)

G23(s) =
y23(s)

x(s)
=

0.05s2 − 0.2s + 0.5

s3 + 2.25s2 + 1.8s + 0.5
. (17)



1082 J. HALAWA

The chain fractions are fast-convergent (Danilow, Iwanowa and Isakowa,
1970). Fig. 3 illustrates step responses of models described with initial transfer
function (14) and simplified transfer functions (16) and (17). The curves of y(s)
and y23(s) responses overlap.
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Figure 3. Step responses for models described with transfer functions (14), (16)
and (17)

In the case of a PI controller, upon comparing the calculated coefficients
A0 and A1 with prescribed coefficients ω2

0 and ξω0, we get a set of equations
wherefrom the settings kp and Ti are calculated. The settings for PID controller
are calculated from the relations

kp = f1(Td)

Ti = f2(Td).

The value of Td is assumed and relevant positive values of kp and Ti settings
are calculated. Assuming several values of Td and using computer simulation,
selection is made of such vector of kp, Ti, Td settings, which provides the better
step response for closed control system. Computer simulation is used to get
these step response curves.
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3. Determination of settings for PI and PID controllers

for second-order model of controlled system

As the results from (4) and (6), we have in this case the following:

c0 =
b0kp

Ti

,

c1 =
b1kp

Ti

+ b0kp,

c2 = b1kp + b0kpTd,

c3 = b1kpTd, (18)

d0 = c0,

d1 =
b1kp

Ti

+ b0kp + a0,

d2 = b1kp + b0kpTd + a1,

d3 = b1kpTd + 1.

Upon comparing the settings (9) with the prescribed values ω2
0 and 2ξω0 = 2n,

and while making allowance of (18), we get the following set of equations

ω2
0 =

b0kp[−a1b0 + a0(b1 + b0Ti)]

Ti[−a2
1
b0 + a0(b0 + a1b1 + a1b0Ti) − a2

0Ti(b1 + b0Td)]
, (19)

2n = 2ξω0 =
L2

M2

, (20)

where

L2 = − a0b1(b1kp + a0Ti) + b0(a1 − a0Ti)(b1kp + a0Ti)+

+ b2
0kp[−1 + a1Ti + a0Ti(Td − Ti)] ,

and

M2 = Ti[a
2
1b0 − a0(b0 + a1b1 + a1b0Ti) + a2

0Ti(b1 + b0Td)] .

When PI controller is considered, we assume the constant Td in formulae (18-20)
to be equal to 0.

As aforementioned, the settings of PID controller are derived by resolving
the set of equations for the assumed value of Td .

Example 3.1

Consider the closed control system with the controlled system given by the
transfer function

G0(s) =
y0(s)

x(s)
=

−0.5s + 1

s2 + 1.2s + 1
(21)
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and a PI controller. The step response for the model described by the transfer
function (21) is shown in Fig. 4. The roots of denominator of the transfer
function (21) are complex numbers. The model (21) is of the differential type.
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0

Figure 4. Step response of system given by transfer function (21)

If we want to obtain step response without overshoot, the value of ξ should
be sufficiently large (over 1). Assume

ω0 = 10 and n = 120 (22)

so that ξ = 12. For the model (21) and the assumed values (22), we get the
following set of equations

170T 2
i + (−104 − kp)Ti + 1.7kp = 0 ,

(407 − kp)T 2
i + (−247.9 + 1.7kp)Ti − 1.85kp = 0 . (23)

The non-zero real solution is

kp = 0.1749 ,

Ti = 0.6099 . (24)

There are also two complex solutions for the set of equations (23), namely

Kp1 = 592.4130− 0.37774i,

Ti1 = 2.0480 + 1.3137i,

Kp2 = 592.4130 + 0.37774i,

Ti2 = 2.0480 − 1.3137i.
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Obviously, these solutions are not considered here. Fig. 5 illustrates the step
response for the closed control system with the controlled system given by the
transfer function (21) and PI controller with the setting given by (24), i.e. for
ω0 = 10 and ξ = 12 (curve 1). The step response for ω0 = 10 and ξ =6 (curve 2)
is also shown. Then, the controller settings are

kp = 0.2663 and Ti = 0.6090 . (25)
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t
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z2

Figure 5. Step responses of the closed control system for PI controller settings
given by (24) and (25)

Let us compare also the step responses of the closed system with the ones
of the controlled system given by transfer function (18) and PI controllers with
settings derived for ω0 = 5 and ω0 = 10, and ξ = 12. For ω0 = 5 and ξ = 12 we
get the solution

kp1 = 0.1032 ,

Ti1 = 0.6074 . (26)

Fig. 6 shows step responses for controller settings given by (24) and (26).
Curve 1 corresponds to the settings (24) while curve 2 – to settings (26). The
steady state is attained in a shorter time for greater kp.

The settings of PID controller are determined as the following functions

kp = f1(Td), Ti = f2(Td).

For ω0 = 10, ξ = 12 and Td = 0.4 we get PID controller settings:

kp = 0.2419, Td = 0.4 and Ti = 0.7979 . (27)

Fig. 7 shows step responses for controller settings given by (24) and (27).
Curve 1 corresponds to the settings 24), while cutve 2 – to settings 27).
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Figure 6. Step responses of the closed control system for PI controller settings
given by (24) and (26)
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Figure 7. Step responses for the closed control system with PI controller settings
equal to (24) and PID controller settings given by (27)
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4. Determination of PI and PID controller settings for the

third-order model of controlled system

In the case of third-order controlled system (2) with PID controller, according
to (5) and (6) we have

c0 =
b0kp

Ti

,

c1 =
b1kp

Ti

+ b0kp,

c2 = b1kp +
b2kp

Ti

+ b0kpTd,

c3 = b2kp + b1kpTd,

c4 = b2kpTd, (28)

d0 = c0,

d1 = a0 + b0kp +
b1kp

Ti

,

d2 = a1 + b1kp +
b2kp

Ti

+ b0kpTd,

d3 = a2 + b2kp + b1kpTd,

d4 = 1 + b2kpTd.

Equations to be used for determining the controller settings are

ω2
0 =

Lw3

Mw3

, (29)

where

Lw3 = b0kp[−a1b0 + a0(b1 + b0Ti)],

Mw3 = Ti

{

−a2
1b0 + a0a1(b1 + b0Ti) − a0[−a2b0 + a0(b2 + b1Ti + b0TiTd)]

}

,

and

2n =
Ln3

Mn3

,

where

Ln3 = a2b
2
0kp − a1b0[b1kp + (a0 + b0kp)Ti] + a0[b2

1kp + b1(a0 + b0kp)Ti+

+b0 {−b2kp + Ti[a0Ti + b0kp(Ti − Td)]} ,

Mn3 = Ti

{

−a2
1b0 + a0a1(b1 + b0Ti) − a0[−a2b0 + a0(b2 + b1Ti + b0TiTd)]

}

.

(30)

When we want to find PI controller setting, the constant Td is prescribed as
Td = 0.
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Example 4.1

Consider selection of PID controller setting for the controlled system given
by the transfer function

G0(s) =
y3(s)

x(s)
=

1

s3 + 3s2 + 3s + 1
. (31)

The step response of the model given by the transfer function (31) is presented
in Fig. 8.
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Figure 8. Step response for the model given by transfer function (31)

We are searching for the controller settings, which ensure that the closed
system reaches possibly fast the steady state value without any overshoot. For
the controlled system model (31) and assumed values ξ =12 i ω0 =10 we obtain
the controller settings as follows

kp = 1.022, Ti = 2.726 and Td = 0.800. (32)

The step response of the closed control system for controller settings given by
(32) is illustrated in Fig. 9.

When Mathematica program is available, we need not calculate the set of
equations (29-30).

The program to calculate controller setting by means of Mathematica is quite
simple. For the pair of controller setting resulting from calculations, the step
response of the closed system shall be verified by means of computer simulation.
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Figure 9. Step response of the closed system with controlled system model (31)
and PI controller with settings given by (32)

If the step response for these controller settings is not satisfactory, as – for
instance – due to excessive overshoot, then a new vector of controller settings
shall be calculated for assumed ω0 and higher ζ. For the response to reach the
steady state earlier, an increased ω0 shall be used for the assumed ζ.

5. Notes on specific form of transfer function describing

the closed system

Sometimes the transfer function of the closed system of the form (6) includes
equal coefficients, namely

c0 = d0 and c1 = d1. (33)

Such is the case e.g. for the closed control system with the controlled system
given by the transfer function

G0(s) =
b1s + b0

(s2 + a1s + a0)s

and with PI controller. The transfer function for the closed system is of the
form

Gz(s) =
b1kps

2 +
(

b1kp

Ti
+ b0kp

)

s +
b0kp

Ti

s4 + a1s3 + (a0 + b1kp)s2 +
(

b1kp

Ti
+ b0kp

)

s +
b0kp

Ti

. (34)
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The convergent method is also applicable for a static controlled systems. There
is a division by zero in the algorithm used to expand the transfer function (34)
into V-type chain fraction. The procedure to be used in such case is outlined
in Khovanskii (1956). A simpler way will be given which does not complicate
operation of this algorithm. The models of controlled systems are the simplified
models. Thus, no substantial error will be introduced when we assume

c0 = d0 and c1 = αd1,

where 0.95 ≤ α ≤ 1, α 6= 1 e.g. α = 0.98.
The issue of stability margin (gain and phase margin) plays an important

part in the selection of the controller and is discussed in numerous works (Chu
and Teng, 1999; Ho et al., 1999, 2001; Zhung and Atherton, 1993). In the
method proposed, computer is used to determine the non-oscillatory step re-
sponses for the closed-loop control systems. In systems with such responses, the
stability margin is maintained.

Conclusions

The method proposed is intended to determine PI and PID controller settings for
closed control systems with models of controlled systems described by transfer
functions. The results attained are good. The method does not require to
specify approximate controller settings which is necessary in calculations using
the NCB block of Simulink. When approximate values introduced into Simulink
are of too low accuracy for prescribed limitations, no positive results can be
reached. The program to calculate controller settings by means of Mathematica
is simple and short. The method proposed requires viewing the step response of
the closed system for calculated controller settings and, if necessary, repeating
the calculations for other values of ω0 and ξ in case an overshoot exists. It is
proposed to calculate controller settings for prescribed ω0 and several values of
ξ. If excessive overshoot occurs, the value of ξ shall be increased.
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