
Control and Cybernetics

vol. 34 (2005) No. 4

A scaling out-of-kilter algorithm for minimum cost flow

by

Laura Ciupală

Faculty of Mathematics and Informatics, Transilvania University of Braşov
Iuliu Maniu 50, Romania

Abstract: The out-of-kilter algorithm is one of the basic algo-
rithms that solve the minimum cost flow problem. Its drawback is
that it can improve the objective function at each iteration by only
a small value. Consequently, it runs in pseudo-polynomial time. In
this paper, we describe a new out-of-kilter algorithm for minimum
cost flow that runs in polynomial time. Our algorithm is a scaling
algorithm and improves the objective function at each time by a
”sufficiently large” value.

Keywords: network flow, minimum cost flow, shortest path,
scaling technique.

1. Introduction

Let G = (N, A) be a directed network, defined by a set N of n nodes and a set
A of m arcs. Each arc (x, y) ∈ A has a capacity c(x, y) and a cost b(x, y). We
associate with each node x ∈ N a number v(x) which indicates its supply or
demand depending on whether v(x) > 0 or v(x) < 0. The minimum cost flow
problem is to determine the flow f(x, y) on each arc (x, y) ∈ A so as to

minimize
∑

(x,y)∈A

b(x, y)f(x, y)

subject to

∑

y|(x,y)∈A

f(x, y) −
∑

y|(y,x)∈A

f(y, x) = v(x) for all x ∈ N

0 ≤ f(x, y) ≤ c(x, y) for all (x, y) ∈ A.

A flow f satisfying the last two conditions is a feasible flow.
Let c = max(max{v(x)|x ∈ N}, max{c(x, y)|(x, y) ∈ A, c(x, y) < ∞}).
The residual network G(f) corresponding to a flow f is defined as follows.

We replace each arc (x, y) ∈ A by two arcs (x, y) and (y, x). The arc (x, y) has

1170 L. CIUPALĂ

cost b(x, y) and residual capacity r(x, y) = c(x, y) − f(x, y) and the arc (y, x)
has cost b(y, x) = −b(x, y) and residual capacity r(y, x) = f(x, y). The residual
network consists only of arcs with positive residual capacity.

Without any loss of generality (see Ahuja, Magnanti and Orlin, 1993, for
details), we shall assume that the minimum cost flow problem satisfies the fol-
lowing assumptions:

1. All data (cost, supply/demand and capacity) are integers.

2. The network contains no directed negative cost cycle of infinite capacity.

3. All arc costs are nonnegative.

4. The supplies/demands at the nodes satisfy the condition
∑

x∈N v(x) = 0
and the minimum cost flow problem has a feasible solution.

5. The network contains an uncapacitated directed path (i.e. each arc in the
path has infinite capacity) between every pair of nodes.

We associate a real number π(x) with each node x ∈ N . We refer to π(x)
as the potential of node x. For a given set of node potentials π, we define the
reduced cost of an arc (x, y) as bπ (x, y) = b(x, y) − π(x) + π(y).

The reduced costs are applicable to the residual network as well as to the
original network.

Theorem 1.1 (Ahuja, Magnanti and Orlin, 1993) A feasible solution f∗ is an

optimal solution of the minimum cost flow problem if and only if some set of

node potentials π satisfy the following reduced cost optimality conditions:

bπ (x, y) ≥ 0 for every arc (x, y) in G(f∗).

2. The out-of-kilter algorithm

This algorithm is one of the basic algorithms for minimum cost flow problem.
The name of the algorithm reflects the fact that arcs either satisfy the optimality
conditions (and we say that they are in-kilter) or do not (and we say that they
are out-of-kilter).

The kilter number k(x, y) of an arc (x, y) in the residual network G(f) is
defined in the following manner:

k(x, y) =

{

0 if bπ (x, y) ≥ 0
r(x, y) if bπ (x, y) < 0 .

The kilter number of an arc (x, y) in the residual network is the magni-
tude of the change in residual capacity (or, equivalently, in flow) required to
make the arc an in-kilter arc while keeping bπ (x, y) fixed. The sum K =
∑

(x,y) in G(f) k(x, y) of all kilter numbers provides us with a measure of how far
the current solution is from optimality. The smaller is the value of K, the closer
the current solution is to being an optimal solution.

The out-of-kilter algorithm starts with a feasible flow f and a set of node
potentials π = 0. The algorithm maintains all of in-kilter arcs as in-kilter arcs

A scaling out-of-kilter algorithm for minimum cost flow 1171

and successively transforms the out-of-kilter arcs into in-kilter arcs by changing
node potentials and by augmenting flow on appropriate directed cycles. The
algorithm terminates when all arcs in the residual network become in-kilter, i.e.
when the current flow is a minimum cost flow.

Theorem 2.1 (Ahuja, Magnanti and Orlin, 1993) The out-of-kilter algorithm

runs in O(mcS(n, m)) time, where S(n, m) is the time required to solve a short-

est path problem with nonnegative arc lengths.

3. The scaling out-of-kilter algorithm

The out-of-kilter algorithm has the drawback that it can perform a lot of itera-
tions that might decrease the sum K of the kilter numbers by a small amount.
Our algorithm, that we will call scaling out-of-kilter algorithm, uses scaling
technique and decreases K by a ”sufficiently large” value at each time. Conse-
quently, its running time is substantially better than the running time of the
out-of-kilter algorithm.

The scaling out-of-kilter algorithm starts with a feasible flow f and a set of
node potentials π = 0. Like the out-of-kilter algorithm, our algorithm succes-
sively transforms all the out-of-kilter arcs into in-kilter arcs, maintaining all the
in-kilter arcs as in-kilter arcs. The scaling out-of-kilter algorithm terminates
when all arcs in the residual network are in-kilter, consequently the current flow
is a minimum cost flow.

Unlike the out-of-kilter algorithm, our algorithm performs several scaling
phases for different values of a parameter ∆. We refer to a scaling phase with

a specific value of ∆ as a ∆-scaling phase. Initially, ∆ = 2⌊log c⌋. During each
∆-scaling phase, after each operation performed by the algorithm (i.e. updating
node potentials or augmenting flow) the sum of kilter numbers decreases by at
least ∆ units. When the residual network contains no arc whose kilter number is
at least ∆, the algorithm reduces the value of ∆ by a factor of 2 and repeats the
same process. Eventually, ∆ = 1 and, at the end of 1-scaling phase, the current
flow is a minimum cost flow because it satisfies the reduced cost optimality
condition.

The ∆-residual network G(f, ∆) is defined as the subgraph of G(f) consisting
of those arcs whose residual capacity is at least ∆.

The scaling out-of-kilter algorithm is formally described as follows:

ALGORITHM SCALING OUT-OF-KILTER;
BEGIN

π := 0;

∆ := 2⌊log c⌋;
establish a feasible flow f in the network;
define the ∆-residual network G(f, ∆) and compute the kilter numbers

of arcs;

1172 L. CIUPALĂ

WHILE ∆ ≥ 1 DO
BEGIN

WHILE the ∆-residual network G(f, ∆) contains an out-of-kilter arc
DO BEGIN

select an out-of-kilter arc (p, q) in G(f, ∆);
define the length of each arc (x, y) in G(f, ∆) as max{0, bπ (x, y)};
let d(·) denote the shortest path distances from node q to all other

nodes in G(f, ∆) − {(q, p)};
let P denote a shortest path from node q to node p;
FOR all nodes x in N DO

π′(x) := π(x) − d(x);
IF bπ′

(p, q) < 0 THEN
BEGIN

W := P ∪ {(p, q)};
r(W) := min{r(x, y)|(x, y) ∈ W};
augment r(W) units of flow along W ;
update f and G(f, ∆);

END;
π := π′;
update the reduced costs;

END;
∆ := ∆/2;

END:
END.

The correctness of the scaling out-of-kilter algorithm follows from the cor-
rectness of the out-of-kilter algorithm, that can be found in Ahuja, Magnanti
and Orlin (1993).

Theorem 3.1 The scaling out-of-kilter algorithm solves the minimum cost flow

problem in O(m log cS(n, m)) time, where S(n, m) is the time required to solve

a shortest path problem with n nodes, m arcs and nonnegative arc lengths.

Proof. At the end of a 2∆-scaling phase, the 2∆-residual network G(f, 2∆)
contains no out-of-kilter arcs. At the beginning of the ∆-scaling phase, the
∆-residual network G(f, ∆) might contain out-of-kilter arcs. The residual ca-
pacities of these arcs (x, y) satisfy the following inequalities: ∆ ≤ r(x, y) < 2∆.
Therefore, the sum of the kilter numbers of the arcs in G(f, ∆) is at most 2m∆
at the beginning of the ∆-scaling phase. Evidently, at its end, the sum of the
kilter numbers of the arcs in G(f, ∆) becomes zero.

During the ∆-scaling phase after each updating node potentials, the sum of
the kilter numbers of the arcs in G(f, ∆) decreases by at least ∆ units, either the
algorithm augments the flow along the directed cycle W or not. If it does not
augment the flow then the arc (p, q) selected as an out-of-kilter arc in G(f, ∆)

A scaling out-of-kilter algorithm for minimum cost flow 1173

must become an in-kilter arc after updating node potentials. Therefore, the sum
of the kilter numbers of the arcs in G(f, ∆) decreases by at least ∆ units. If the
algorithm augments the flow along the directed cycle W , the kilter number of the
out-of-kilter arc (p, q) decreases by at least ∆ units because r(W) ≥ ∆. Since
at the beginning of the ∆-scaling phase, the sum of the kilter numbers of the
arcs in G(f, ∆) is at most 2m∆ and it becomes zero at its end, the algorithm
performs at most O(m) updatings of potentials per scaling phase. Since we
need to solve a shortest path problem for each updating of node potentials,
the complexity of a scaling phase is O(mS(n, m)), where S(n, m) is the time
required to solve a shortest path problem with n nodes, m arcs and nonnegative
arc lengths. The scaling out-of-kilter algorithm runs in O(m log cS(n, m)) time
because it performs O(log c) scaling phases.

If we solve the shortest path problem using Fibonacci heap implementa-
tion of Dijkstra’s algorithm then S(n, m) = O(m + n log n). Consequently,
our scaling out-of-kilter algorithm solves the minimum cost flow problem in
O(m(m + n logn) log c) time.

4. Conclusions and remarks

In this paper, using the scaling technique, we developed a new polynomial al-
gorithm for the minimum cost flow problem. Our algorithm runs in O(m(m +
n log n) log c) time and, unlike most of minimum cost flow algorithms, can be
easily modified in order to solve a minimum cost flow problem in a network with
positive lower bounds.

Scaling is a powerful technique that can be used to obtain more efficient
algorithms for other classes of network flow problems, for example minimum
flow problems, dynamic flow problems etc.

References

Ahuja, R., Magnanti, T. and Orlin, J.(1993) Network Flow. Theory, Al-

gorithms and Applications. New Jersey, Prentice Hall.
Ciupală, L.(2004) About universal maximal dynamic flows. Annals of Uni-

versity of Bucharest 53 (1), 115-124.
Ciurea, E. and Ciupală, L.(2004) Sequential and parallel algorithms for

minimum flows. Journal of Applied Mathematics and Computing 15 (1-2),
53-78.

Ciurea, E. and Ciupală, L. (2001) Algorithms for minimum flows. Com-

puter Science Journal of Moldova 9 (3), 275-290.
Hoppe, B. and Tardos, E.(1994) Polynomial time algorithms for some evac-

uation Problems. Proceedings of the Fifth Annual ACM- SIAM Sympo-

sium on Discrete Algorithms, 433-441.

1174 L. CIUPALĂ

Sokkalingam, P.T., Ahuja, R. and Orlin, J.(2001) New Polynomial-Time
Cycle-Canceling Algorithms for Minimum Cost Flows.
http://web.mit.edu/jorlin/www/papers.html

