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1. Introduction

Let T be a nonnegative, absolutely continuous random variable (life time) with a
distribution function F (x) = P{T ≤ x}, a reliability (survival) function R(x) =
1−F (x), a density function f(x), a failure rate function λ(x) = f(x)/R(x) and
a finite mean value ET.

Reliability theory (see Barlow and Proschan, 1981; Bryson and Siddiqui,
1969; Korczak, 2001; Marschall and Proschan, 1972) deals with the following
ageing classes of distributions:

IFR - nondecreasing failure rate λ(x) for x ∈ S = {t : R(t) > 0},

NBU - new better than used, if R(x + y) ≤ R(x)R(y) for x, y ≥ 0,

DMRL - decreasing mean residual life, if

∞∫
x

R(t)dt

R(x)

is nonincreasing for x ∈ S,

IFRA - increasing failure rate average, if lnR(x)/x is increasing for x ∈ S−{0},

NBUE - new better than used in expectation, if
x∫
0

R(t)dt ≥ F (x)ET for x ≥ 0.
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In particular, it is well known that

IFR ⊂ NBU ⊂ NBUE

and

IFR ⊂ DMRL ⊂ NBUE .

NBUE is the weakest of all these classes. In this paper, we introduce a new
ageing class MTFR such that

IFR ⊂ MTFR ⊂ NBUE .

We prove that the MTFR class is preserved under formation of any parallel sys-
tem and series system (with identically distributed components). In the respec-
tive theorems we assume that the life times of the components are independent
and absolutely continuous random variables.

The class MTFR is the outcome of the formation of criteria for existing
maximum profit per a unit of time in semi-Markov systems (Knopik, 2003).

2. Definitions and basic properties

If we consider an age replacement policy as the one in which a unit is replaced
x time units after installation or at failure, whichever occurs first, then the
expected value for the first time to an in-service is (see Barlow, Proschan, 1980):

M(x) =

x∫
0

R(t)dt

F (x)
for x ∈ {t : F (t) > 0} .

The case when M(x) is monotonic was considered by Barlow, Campo (1975),
Marschall, Proschan (1972) and Klefsjö (1982).

Definition 2.1 The random variable T belongs to the MTFR class (mean time
to failure with replacement) if a function M(x) is non-increasing for x ∈ {t :
F (t) > 0}.

If T is absolutely continuous variable then T ∈ MTFR if only if

r(x) = f(x)

x∫

0

R(t)dt − F (x)R(x) ≥ 0 for x ≥ 0 (1)

or

λ(x) ≥
1

M(x)
for x ∈ {t : F (t) > 0} .
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The properties of the function r(x) were described by Klimaszewski and
Knopik (2003) and Knopik (2003). These properties were used for characteri-
zation of exponential distributions.

It has been shown in Barlow (1965), Klefsjö (1982) that

IFR ⊂ MTFR ⊂ NBUE .

It is also known that if T is an absolutely continuous variable, then (Barlow,
1975)

IFRA ⊂ MTFR .

3. Preservation of life distribution classes under reliability

operations

Theorem 3.1 If X1, X2, . . . , Xn are independent nonnegative absolutely con-
tinuous random variables and Xi ∈ MTFR for i = 1, 2, . . ., n, then Yn =
max(X1, X2, . . ., Xn) ∈ MTFR.

Proof. (for n = 2) Let X1, X2 ∈ MTFR be independent random variables with
distribution functions F1(x) and F2(x).

Let us define Y2 = max(X1, X2),

rY (x) = fY (x)

x∫

0

RY (t)dt−FY (x)RY (x), (2)

where

FY (x) = F1(x)F2(x), RY (x) = 1 − FY (x), (3)

fY (x) = f1(x)F2(x) + F1(x)f2(x), (4)
x∫

0

RY (t)dt =

x∫

0

R1(t)dt +

x∫

0

R2(t)dt −

x∫

0

R1(t)R2(t)dt. (5)

From (2), (3), (4) and (5) we obtain

rY (x) = [f1(x)

x∫

0

R1(t)dt − F1(t)R2(t)]F2(x) + [f2(x)

x∫

0

R2(t)dt

−F2(t)R2(t)]F1(x) + f1(x)F2(x)[

x∫

0

R1(t)dt −

x∫

0

R1(t)R2(t)dt]

+F1(x)f2(x)[

x∫

0

R2(t)dt −

x∫

0

R1(t)R2(t)dt] + F1(x)F2(x)R1(x)R2(x). (6)
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It is easy to verify that

x∫

0

Ri(t)dt ≥

x∫

0

R1(t)R2(t)dt for i = 1, 2 . (7)

From the definition of MTFR class and (7), we obtain

rY (x) ≥ 0 for x ≥ 0 and Y2 ∈ MTFR .

Using induction, this result can be generalized to n independent variables from
the class MTFR.

Lemma 3.1 If X1, X2, . . . , Xn ∈ MTFR are independent absolutely continuous
random variables, identically distributed with a common distribution function
F (x), then

x∫

0

Rn(t)dt ≥

x∫
0

R(t)dt

n
[1 + R(x) + R2(x) + ... + Rn−1(x)]. (8)

Proof. It is easy to check that for n = 1 the inequality (8) is true. If Xi ∈ MTFR,
then

f(x)Rn−1(x)

x∫

0

R(t)dt ≥ F (x)Rn(x)) (9)

for n ≥ 1, x ≥ 0.
Integrating the left side of the equation (9) by parts we obtain

x∫

0

f(t)Rn−1(t)dt

x∫

0

R(t)dt = −
1

n
Rn(x)

x∫

0

R(t)dt +
1

n

x∫

0

Rn+1(t)dt . (10)

Using (9) and (10) we get

1

n

x∫

0

Rn+1(t)dt −
1

n
Rn(x)

x∫

0

R(t)dt ≥

x∫

0

F (t)Rn(t)dt

and

x∫

0

Rn+1(t)dt ≥
n

n + 1

x∫

0

Rn(t)dt +
1

n + 1
Rn(x)

x∫

0

R(t)dt.
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From (8) we have

x∫

0

Rn+1(t)dt ≥
1

n + 1

x∫

0

R(t)dt[1 + R(x) + R2(x) + ... + Rn−1(x)]

+
1

n + 1
Rn(x)

x∫

0

R(t)dt .

This results in
x∫

0

Rn+1(t)t ≥
1

n + 1

x∫

0

R(t)dt [1 + R(x) + R2(x) + ... + Rn(x)] . (11)

From (11) and by induction, we obtain the thesis of the lemma for n + 1.

Theorem 3.2 If X1, X2, . . . , Xn ∈ MTFR are independent nonnegative ab-
solutely continuous and identically distributed random variables, then Zn =
min(X1, X2, . . . , Xn ∈ MTFR.

Proof. Let F (x) be a common distribution function of Xi, Fn(x) a distribution
function of Zn and fn(x) a density function of Zn.

Let

rn(x) = fn(x)

x∫

0

Rn(t)dt − Fn(x)Rn(x), where Rn(x) = 1 − Fn(x).

It is well known that

Fn(x) = 1 − Rn(x) and fn(x) = nf(x)Rn−1(x),

where Rn(x) = 1 − Fn(x) and f(x) is a density function of Xi.
Hence

rn(x) = nf(x)Rn−1(x)

x∫

0

Rn(t)dt − Rn(x) [1 − Rn(x)] .

From Lemma 3.1, we have

rn(x) ≥ Rn−1(x){f(x)

x∫

0

Rn(t)dt [1 + R(x) + R2(x) + . . . + Rn−1(x)]

−R(x) [1 − Rn(x)]}

=
Rn−1(x)[1−Rn(x)]

F (x)
{f(x)

x∫

0

R(t)dt−R(x)F (x)} ≥ 0 for x ∈ {t : F (t)>0}.

Since Xi ∈ MTFR, the above results shows that Zn ∈ MTFR.
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