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Abstract: Spatial databases present challenges to data man-
agement not found in typical RDBMS. Among these is the desire
of users for highly distributed access to data. A new peer to peer
database model is being developed that supports high distribution
and concurrency of information access. Some aspects of the model
are presented in this paper. However the new peer to peer model
faces the critical problem of how to lock data as it becomes highly
distributed. Conceptual methods borrowed from decision support
and data mining are proposed to create a new type of locking model
based on 3D volumetrics. The methods and mathematics proposed
in this paper can become the basis for the implementation of a new
type of peer to peer based spatial database system where spatial
information flows to where it is needed on demand.
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1. Introduction

As spatial data and GIS systems have become more widely utilized, users have
become more demanding of the capabilities and performance they require of
a useful system. Traditional RDBMS technology has seen advances in speed,
distribution methods and reliability, but the application of such advances has
been slow to transfer to the world of spatial database systems. Part of the
reason for this has been the fact that spatial data is intrinsically different from
other data types because it requires a geometric and contextual relationship to
be maintained among spatial objects. Consequently, there are questions that
need investigation when developing methods of distributing spatial data for
performance purposes. Distribution in conjunction with the contextual nature
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of spatial data also requires the development of methods to help manage data
integrity problems in such an environment.

Several software packages are widely used in conjunction with spatial data
management. Most attempt to provide a single centralized repository for all
spatial data resources in an organization. Most software created thus far has
little or no support for highly distributed spatial data access. Few, if any, address
methods dealing with distributed data integrity problems that arise from users
at different locations working on the same region of data simultaneously as a
result of contextuality. Problems in current systems arise from limitations in
the use of underlying technologies and from limitations of the approach they
have taken.

As an example, SmallWorld is a centralized system that was introduced in
1990 to manage spatial datasets (Easterfield, Newell and Theriault, 1998). It is
presented as an open solution that runs on multiple platforms, including Win-
dows NT and UNIX. SmallWorld spatial data is relatively platform neutral and
attempts to model the world that it manages in terms of objects. These ob-
jects can have spatial and aspatial attributes and are implemented through the
use of a virtual database. This database sits on top of relational technology
and can interface to industry-standard relational databases such as Oracle, In-
gres and Sybase. Data from these databases are extracted and assembled into
SmallWorld objects.

The Spatial Database Engine (SDE) (Spatial Database Engine, 1998) from
ESRI is another product on the market that has been created to manage spatial
data. It supports large spatial databases that are built on top of commercial
centralized repositories of relational database packages common in industry such
as Oracle, Informix, DB2 and Microsoft’s SQL server. This package provides a
central point from which users can retrieve spatial information. Because SDE
retrieves from centralized databases located on several different computers it
could be considered to be a virtual distributed system.

Concurrency access to the same regions of data by multiple users can be an
issue with the SDE. The SDE allows for multiple users to access the data that
it controls. However, access to data in SDE is only as good as the underlying
databases it retrieves data from. Since most RDBMS’s are limited in spatial
data management capabilities, SDE will only be as effective to a users perception
as the weakest RDBMS behind it.

Oracle has developed a product that is designed to manage spatial data
referred to as the Spatial Cartridge. This application provides an integrated set
of functions and procedures that enable spatial data to be stored and accessed
efficiently. Similarly as to other approaches the Spatial Cartridge uses an Oracle
RDBMS to store data. One of the features of the cartridge is the ability to store
spatial and attribute data in the same monolithic centralized database (Spatial
Cartidge for Windows NT, 1997).

PANDA (Egenhofer, Frank, 1989) is a spatial DBMS system developed at
the University of Maine in the Department of Spatial Information Science and
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Engineering. It is an extensible database management system. Based on object-
oriented software techniques, it was designed to deal with non-standard appli-
cations and spatial data. As such, it is a series of object-oriented classes that
can be extended, or used to encapsulate spatial data into objects. Applica-
tion of object orientation methods is promising; however, these efforts seldom
address distribution problems, concurrency or the data integrity problems of
spatial data in a highly distributed DBMS.

In the above systems, as is the case with most others, users must query a
central location for spatial information. Centralization works well for manage-
ment of data, but when people interact to complete projects it is more typical
for users to operate in a peer to peer fashion. In other words, documents are
likely to float from user to user on a project for editing and information shar-
ing. This natural pattern of information flow is counter to the concepts of a
centralized repository, such as is found in most models of RDBMS. The pattern
provides a metaphor for a new type of database model of information sharing
based on the concept of peer to peer exchanges of information. In such a system,
there is no hierarchy of management, or centralized location for data. Such a
model would view chunks of spatial data as regions that reside on the nodes in
a computer network. In this model the distributed regions of data collectively
become the entire database. Data in this model would flow where it is needed,
in the fashion that an amoeba searches for food.

The conceptual model developed as part of this research proposes a new type
of spatial database system that supports peer to peer distribution of spatial data
over a widely distributed network. In the development of this model, problems
of data integrity must be considered where there are overlapping regions with
the same objects in them being edited by different users. Traditional locking of
data in these cases is not the best solution because spatial data has geometric
relationships with other spatial data that somehow must be preserved in any
scheme where areas, spatial extents, can overlap. The issue becomes one of how
to lock and to what extent to lock when spatial extent overlap occurs.

This paper presents some details of a new peer to peer spatial DBMS (P2PS-
DBMS) model and methods based in decision support systems and data min-
ing to develop a new type of locking paradigm based on 3D volumetrics, and
organization of thematic spatial data into a layered cube based on semantic
relationship of the layers themes. This initial conceptual investigation has lead
to many questions that will need to be addressed in future work.

This paper is organized in the following fashion. Section 2 provides a detailed
overview of problems with existing spatial DMBS data distribution and the goal
of this research. Section 3 provides details of the approach taken and Section 4
presents conclusions and summary.
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2. Problems of locking

The goal of this research was to develop a new model for management and
distribution of spatial data based on the peer to peer mechanisms typical of
team projects. The benefits of such a model would be rapid, localized access to
spatial regions of data, parallel simultaneous knowledge capture by many users
working on many regions of spatial data at the same time, and high information
exchange among users by sharing regional spatial data. Such a system also
would need to have new mechanisms for insuring integrity of data when there
are conflicts of information about the same given spatial object.

Current approaches to Spatial DBMS suffer from several problems when
one wants to provide highly concurrent, peer to peer access to spatial data.
In general most spatial packages on the market are not considered distributed
because they rely on the older concept of a centralized repository of spatial
information. Distribution of spatial data presents problems not found in typical
databases. Among these is that a user of spatial data typically needs to see all
data surrounding a point of interest. We refer to this as spatial context. The
reason that spatial context is important is that editing or analysis decisions
often need to consider surrounding spatial information, because everything is
related to everything else, but near spatial objects are more related than distant
spatial objects. Spatial context can be implemented by presenting a view of a
region. In this case a view may be defined as a rectangular region of spatial
data that is being operated upon and which is a subset of the overall region
defined by the union of all existing views.

Complicating the concept of spatial context is the need to maintain data
integrity in overlapping contexts. For instance, if two contexts overlap the
possibility exists that two users, working unknowingly of the other, may modify
the same spatial object location or properties, such as the coordinates of a line
segment.

ESRI, a producer of GIS software notes that there are several types of prob-
lems found when trying to merge or reconcile two spatial datasets in a versioning
system (ESRI, Versioning, 2005; ESRI, What Is Versioning?, 2005). Merge and
reconciliation problems are created by:

• addition of an new spatial object
• deletion of a spatial object
• modification of an existing spatial object.

These types of modification are difficult enough to deal with when trying
to reconcile versioned sets of spatial data into one set. They are also the types
of modifications that must somehow be addressed by a locking scheme for dis-
tributed spatial data where spatial extents overlap, containing the same objects
and thus are subject to corruption of information

To deal with this problem a centralized database can distribute a tuple of
data which can be locked. The semantics of locking and concurrency manage-
ment are fairly well defined for such an operation borrowing from principles of
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fragmentation and concurrency management (Shekhar, Chawla, 2003). There
are several methods of fragmentation of tuple data that are employed in a tradi-
tional distributed RDBMS. Horizontal fragmentation distributes tuples across a
system as subsets of the original data tuples (rows) found in a centralized table.
Vertical fragmentation produces the same distributed effect by sending subsets
of relations (columns) from a tuple all of which have methods of managing
concurrency.

However, both of the above methods for distribution are geared towards
management of alpha numeric data that does not have the property of spatial
context or nexus. There is no spatial semantic to the fact that a tuple that
is being distributed is related to another tuple when they are fragmented and
distributed. In other words one row of alpha numeric text in a table has generally
no relationship to the tuples of data immediately preceding or following them.
However, a spatial context suggests that tuples are related because they can be
describing objects in a view. Consequently, a different scheme that addresses
spatial context must be developed for fragmenting and distributing spatial data.
The benefit of such a scheme is that users can potentially have smaller and
custom tailored views of spatial data that are directly related to regions of
interest to them. The regional chunks of data can be described semantically as
a view where all the tuples of data in the view at the storage level are related to
adjacent rows. In this model of related tuples based on a view, regional chunks
of spatial data could then be passed between users in a peer-like fashion because
a view represents a cohesive atomic unit. However, there are several factors that
complicate spatial distribution of small regions of data across a network.

The first problem is how to build a model of all the spatial regions that
users may be interested in viewing or editing. The second problem is how to
lock and or reconcile changes to the same spatial object whose properties may
have been edited differently in two different but overlapping views of spatial data
located on different computers. ESRI has a product that attempts to deal with
this via versioning and long transactions (ESRI, Versioning, 2004). However,
the approach is based on the concept of a centralized database model where
methods for version reconciliation are well established.

This paper presents the initial conceptual underpinnings of the concept of
volumetric locking in a peer two peer spatial DBMS model (P2PSDBMS) that
can be used for locking and support reconciliation of conflicting distributed spa-
tial information. Such a model has the potential to support view fragmentation
based on spatial contexts, peer to peer distribution and reconciling differences
in spatial properties of objects found in overlapping views. The investigation
builds on previous research in new types of fuzzy based spatial databases (Vert,
Morris, Stock, 2002, 2003; Vert, Stock, Jankowski, 2002, 2005), fuzzy based
query mechanisms (Vert, Morris, Martin, 2004) and suggests a new type of
database system that utilizes decision support techniques to create effective 3D
volumetric locking in such a system

The model proposed demonstrates how the application of decision support
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methods can be used to maintain the data integrity of the spatial properties of
an object when it is being viewed and edited by multiple users. This is initial
work, which has identified many areas that need further investigation. These
are discussed in the conclusions and noted in the following sections.

3. Approach

In order to understand locking in the P2PSDBMS model it is necessary to
present some current thinking, background and research about such a model.
A goal of this research was to investigate the development of an architectural
model that could manage problems found in distribution and editing of highly
distributed spatial data in a P2PSDBMS. The first phase of this research was
to create a local logical representation of spatial data that would allow for the
geometric relationship among spatial objects to be analyzed. At the core of
this model is the concept of the spatial data simulator (SDSIM). The SDSIM
organizes spatial data into three dimensional layers that can be used to support
the locking processes proposed later in this paper.

The SDSIM is a container of geographical information. Fig. 1 illustrates the
SDSIM concept. Every layer of the SDSIM can instantiate a different layer of

Figure 1. The Spatial Data Simulator concept (SDSIM)

spatial data. For example, if a spatial data set consists of three layers, a road
layer, a forest layer and housing layer, layer one of the SDSIM could hold the
road layer data, layer two could hold the forest layer data and layer three would
hold the housing layer data. The SDSIM represents the underlying stored file
data by instantiation of the data’s spatial and thematic relationships. When
developing the layering concept, it is observed that a unique three dimensional
relationship of objects in various layers is created. For instance, if layer 3 has a
street system, the intersection of streets is going to have a unique angular and
distance relationship to the representation of houses in layer 2. Of note is that
not all layers will have a meaningful relationship such as street systems in one
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layer being related to weather patterns above the streets in another layer. This
is discussed later in the paper.

Data organized into the SDSIM is stored locally on a computer and instanti-
ates local spatial data. However, it does not model the distribution of all spatial
data in a set across a collection of computers. To accomplish this; the concept of
a virtual space was developed. This space is a virtual description of the spatial
data space. The data space is defined to be the extent of the bounding hull of all
regional spatial data views in a universe of discourse. It is from this data space
that users select regional data views of spatial data that are then distributed to
local nodes in a network for editing. This concept can be represented as:

VS = { BH | min(
∑

datasets x1), min(
∑

datasets y1),

max(
∑

datasets x2 ), max(
∑

datasets y2 ) }

where :

VS – Virtual Space

BH – Bounding hull

x1 – minimum lower left hand x value of all datasets

y1 – minimum lower left hand y value of all datasets

x2 – maximum upper right hand x value of all datasets

y2 – maximum upper right hand y value of all datasets.

Visually the space may be represented as shown in Fig. 2, where c, d, a,
and b are regional data sets, defining a rectangular region (bounding hull) that
describes the extent of the universe of discourse. Of note is that the model
assumes that some regions will not have regional data defined for them.

a
d

c

b

Figure 2. Virtual data space with views of regional data

Initial selection of data from this space is performed by users using a sliding
rectangular window of equal width and height. This type of selection operation
is what is defined as range or regional query (RQ) (Beckmann et al., 1990). It
works on the premise, given a polygon P, of finding all spatial objects (SO) that
intersect P. The rectangular polygon represents the contextual view of a region
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of spatial data that the user is interested in retrieving and can be expressed
mathematically as:

RQ(p) = { SO | Geometry (SO) ∩ Geometry (P) 6= Ø}.

At the physical storage level of data, this selection may be going against an initial
repository of data, but this is not constrained to being a database. The selection
operation, however, is defined using relational algebra as would a typical data
base query. The repository is only an initial source of information and its data
management functionality has not been defined at this point in the research. At
time t0 user selects data from the repository using the rectangular view area.
The selection is defined by a typical relational algebra operator that has been
extended for spatial extent selection. This operation is defined as:

σboundpoly(dr) ∈ VS

where:
dr – data repository at to

boundpoly – x1,y1,x2, y2 defines a subset of the virtual data space.

For the purpose of initial model development, selections have been con-
strained to rectangles that are regular in size. The reason behind this is that
it simplifies the research examination of the issues presented when a user wants
to select a region already being owned and edited by another user. Future
investigation will examine more exotic geometric selection methods.

Regionally selected spatial data are placed on individual machines during
the initial phases of the systems operations. However, as the system continues
to operate, the extent of fragmentation of regions existing on various machines
can increase. As users start requesting data in a peer to peer like fashion from
other user’s computers, the proliferation of copies of the same regional spatial
data can occur. That can lead to problems in data integrity to which fuzzy set
theory can be applied to potentially solve.

Peer to peer data swapping and view based selection have the same problems
and issues as found in traditional RDBMS, concurrency control and locking.
Concurrency control prevents users working on the same tuple in a database
from destroying each others changes. A variety of methods have been examined
to attempt to deal with concurrency. The simplest of this is that of using a
binary lock. Binary locks have two states for a given data item, that of being
locked or unlocked. If an item is locked, it can only be written to by the owner
of the lock. Other users wishing access have to wait until the lock is released.
In order to implement this scheme all that is needed is a binary variable. The
algorithm for binary locking is relatively straightforward.

Spatial databases have typically utilized R-tree and B-tree locking on un-
derlying data structures when they are located on the same local machine (Ko-
rnacker, Bank, 1995; Chakrabart, et al., 1999; Lehman, Yao, 1981). Traditional
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methods of locking do not work well for the P2PSDMS system because of the
contextuality of spatial data mentioned earlier. This implies that a region of
spatial data must be locked, not just a tuple. However, in a system where mul-
tiple regions of the same spatial data may exist on different computers, such
as found in the P2PSDBMS, binary locking mechanisms become complicated
and impractical. An example of how the contextual locking requirement might
apply is the situation of moving a street that has houses surrounding it. If a
user decides that a street is in an incorrect location and decides to move the
street, this user will also need to move houses associated with the street. This
can be addressed with a topology rule that states which street lines must not
intersect house polygons. However, knowing where and how to apply the locks
at the level of database object can require a complicated process of reasoning.

In the P2PSDMS model we have made an initial investigation of a method
based on decision support and data mining techniques to maintain data integrity
via a new locking mechanism when multiple overlapping copies of the same
regional data is shared among many users. To understand this method one has
to understand how users may operate when utilizing the peer based model.

In a use case scenario a user may request another user’s data for editing.
This data may exist on another computer where the users, unaware of each
other, edit the same spatial object. If the two users involved are attempting to
read data at the same time, this is generally not considered dangerous to the
integrity of the data and access can be granted to the data. However, spatial
extent overlap can complicate the problem of maintaining data integrity. When
selecting a spatial view of data to edit that is being edited by another user
elsewhere in the system, there are three possible geometries that may exist in
the spatial extent overlap of the local data set and the retrieved set from another
persons computer.

A1

A2

Figure 3. Disjointness of two sets of spatial data

The first spatial extent that must be considered is that of disjointedness as
seen in Fig. 3. This condition can be described as

IA = { SO | Geometry(A1) ∩ Geometry(A2) = Ø}

where:
IA – intersection area
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SO – spatial objects
A1 – data view off user A
A2 – data view of user B.

The second spatial extent is that of proper overlap, where all spatial objects
of one set are included in the other set as seen in Fig. 4. This condition might
be described by:

IA = { SO | Geometry(A1) = Geometry(A2)}

Equality in this case means one set or the other contains complete geometric
copy (subset) of another spatial dataset.

A2

A1

Figure 4. Proper overlap of two sets of spatial data

The final overlapping scenario can be referred to as a partial overlap where
the collections of objects in both views are subsets of each other. This can be
described as

IA = { SO | Geometry(A1) subset Geometry(A2)

AND Geometry(A2) subset Geometry(A1)}

and is demonstrated in Fig. 5.

A1

problem

area

A2

Figure 5. Partial overlap of two sets of spatial data

When overlap occurs, there can be a case where the same object O in both
peer views has a modified spatial property as shown in Fig. 5 “problem area”.
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In this case, a line segment in view A1 may have the coordinate pair (1,10)(10,
1) and the same line segment may have a coordinate pair of (2,10)(11,2). This
creates an editing problem because these coordinate pairs describe the same
line segment in two different views A1 and A2. Detection of this fact and
reconciliation methods are a problem in the P2PSDBMS model and can be
addressed through the use of decision support methods. In this case an advanced
type of decision support based locking tailored to spatial data can do a lot to
mitigate the need for reconciliation. It is observed that the degree of locking
and reconciliation management required depends on the type of overlap that
occurs.

As mentioned previously, concurrency management requires locking mecha-
nisms on alpha and number data in a relational database. There are a number of
methods of doing this (Kornacker, Bank, 1995; Chakrabart et al., 1999; Lehman,
Yao, 1981). However, spatial data has geometric context, in other words a house
in a spatial database may be represented by a series of points and line segments.
If a user modifies a point in the structure of data, for instance drags the point,
all the other points connected to that point via a line relationship should also
be locked. What can be noted is that locking in a spatial context is not record
based, but based on a region in space that needs to be locked. The farther from
the location of editing activity in spatial data a point or spatial object is, the
less likely that there will be a need to conduct locking.

In the above scenario, 2D locking could be useful but probably is too simplis-
tic for spatial data. In fact, when one considers that spatial data is organized
into thematic layers, e.g. road systems, housing, ground cover, it can be de-
duced that a change in any given layer’s spatial geometry can affect geometries
in other layers. As an example, consider dragging road systems intersections in
layer 1 which now places an intersection directly on top of a house in layer two.
To illustrate this point consider Fig. 6 where the P2PSDBMS model has orga-
nized data into the SDSIM data cube (Fig. 1). It is relatively easy to visualize
a three-dimensional space where we can see 3D partial overlap.

Figure 6. Example of three dimensional overlap of thematic data
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Fig. 6 suggests that 3D partial overlap requires a type of locking that is also
three-dimensional in nature. We define this to be volumetric locking borrowing
on terms from calculus and computational geometry (Anton et al., 2002).

In fact, overlap in 3D and thus the need to lock can also happen as a function
of proper overlap. Because of this scenario, this research pointed to the fact that
locking in the P2PSDBMS needs to be regional and that the region must be
defined as occurring in three dimensional space.

It is also clear that for the disjoint overlap no concurrency management
is required since the spatial extents of data are different. Partial overlap and
proper overlap require some type of method to resolve conflicts in object spatial
properties and thus require some type of locking.

To resolve locking in a three dimensional space, decision support methods
seem a natural application because they can classify and make decisions that
suggest how to address complicated conflicting questions. In the case of three
dimensional overlap, a decision needs to be made about how to lock the space
and the degree of locking that might be required. This results from the fact
that while there may be a physical overlap in the data being edited by two users
in the P2PSDBMS architecture, the nature of editing may not require locking.
For example, if there is overlap, two users may be merely viewing the data and
thus no locking is required.

This research identified three patterns of editing activity that can occur in
an overlap area. These patterns suggest the need to do volumetric locking only
if data is being modified, added or deleted.

The first of these is referred to as point editing. Point editing occurs when
a user in two sets edits a single point in the overlap area. In this particular
example one wants to lock that point from modification in another overlapping
extent. Additionally, there is a need to have a degree of potentiality to lock on
surrounding spatial object that may have spatial geometries changed as a result
of a point modification. The example cited previously is that of modification of
value of points x, y, when it is a part of a collection of points describing a house.
An example can be found in Fig. 7 where the point being edited has a lock
applied to it and surrounding points have a decreasing potential to be locked as
a function of distance from the point being edited. Of note is that the concept
of potentiality of locking was identified as part of this research, however, was
beyond the scope of research. At this place in the investigation it is thought
that perhaps application of fuzzy logic and a user specified parameter might be
a potential method to implement potentiality locking.

The second type of editing pattern that can occur within an overlapping area
is sporadic and unpredictable. This pointed to the need for the development
of a regional locking scheme referred to as rectangular volume locking (RVL),
which is presented in more detail later. In this type of locking user’s editing
and modification of data is sporadic and unpredictable, with the overlapping
spatial extent. Edits may occur in a three dimensional sense in that they occur
on spatial data in various layers of the SDSIM model. Because of the erratic
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point being edited

Figure 7. Point editing that may require a degree of locking as a function of
distance

nature of such edits an aggressive model of locking had to be developed and that
model is proposed to be locking a three dimensional volumetric space for the
user conducting the edits. In this case the research has identified the problem
that time plays in the decision to lock. A user may show erratic editing active for
a time span of tx, and then suddenly shift to a point editing behavior previously
mentioned. In this case, to make the data as much available as possible, the
model of locking should be adaptive, responding to changes in editing behaviors.
Unfortunately, due to the novelty of the concepts and methods developed in this
initial research, we could not address this temporal change in editing behaviors
but will consider it in future research. An example of this three dimensional
RVL locking can be seen in Fig. 7 where the points represent places a user edits
over a specified time span. The random nature of edits is clearly seen.

Fig. 8 is a top view of two 3D SDSIM spaces with overlapping spatial extents.
In the diagram, the black dots are the objects or points that may be being edited
or requested for editing by A1, or A2. One can see that the editing pattern is
random and scattered, thus creating a need to lock all objects in the overlap
area.

A1

A2

Figure 8. Top view of 3D SDSIM’s with overlap for user A1 and A2 leading to
locking of a 3D rectangular space
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Finally, the third type of editing pattern behavior identified was that of edits
within a tightly constrained region of the spatial overlap extent. In this type
of editing, user activities can usually be constrained to a circular area. The
type of locking required in this scenario is referred to as circular volume locking
(CVL) An example of this can be found in Fig. 9, where edits are contained in
a circular volumetric area.

A1

A2

Figure 9. Top view of 3D SDSIM’s with overlap for user A1 and A2 leading to
locking of a 3D circular space

As with the other types of range locking identified it is observed that this
method can have its efficiency improved by defining volume boundary by the
minimum and maximum points in any given direction. Such a space might
be visualized as a semi deflated cylinder with spiky points representing the
minimum and maximum points.

In the identified types of editing patterns and suggested locking required
for the P2PSDBMS there needs to be a method(s) of determining what type
of locking should be applied. Decision support and data mining methods of
clustering and decision trees seem ideal for determining how to lock based on a
classification of variety of input criteria.

Initially, it was thought that a decision tree would be the best way to decide
which type of lock to apply. Decision trees have been around for a while and
much has been written about their application and development (Roiger, Geatz,
2003). Most tree development techniques require some sort of training data
that is then placed into a special algorithm which generates a tree (Elmasri,
Navathe, 2003) with specific classification outcomes. However, in the case of
this investigation into locking, the outcome classifications are known in advance
so it seemed that there was no need for training data. The approach became one
of creation of the tree based on factors that could affect the classification of which
type of lock to apply. In the future, it would be interesting to investigate further
the application of training data to dynamically generate a locking classification
tree as the system operates.

When the concept of using decision trees to lock was considered, it was
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realized that another type of classification mechanism, that of clustering could
be useful before determining the type of lock to apply. Specifically, clustering
looks at grouping of data items into small groups such that these groups have
something in common (Garcia et al., 2002). There are several categories of
clustering that can be applied to classification problems. Hierarchical methods
start with all patterns in a single cluster or as separate clusters, and successively
split or merge until a criterion is met. Partitional methods start from an initial
grouping and iteratively relocate data points until a pattern criterion is met.
This is typically the class that k-means falls into and the pattern is usually
determined as a function of feature vector distance (Elmasri, Navathe, 2003)
and can be denoted as:

distance(rj,rk) =

√

|rj1 − rk1|
2

+ . . . + |rj
n
− rkn|

2
.

The algorithm utilized commonly is K-means which has the following form:

Begin

choose k records as centers for k clusters

repeat

assign each record to a cluster st. the distance

between the record and center of the cluster is small

recalculate the center of each k (mean)

based on records assigned to the cluster

until reassignment stops

End

In the above algorithm one must select the number of clusters believed to exist
in the system. For the sake of this research, we selected:

k = (j/2 ∗ k)/2

where:
k – number users logged in
j – number of users editing or modifying data.

This justification for value of k assumes that at any given time, half the users
logged into the system could have potential conflicts in modification of data with
other logged in users that are actively editing data. However, this assumption
has not been tested and probably would change because of circumstances not
yet investigated. Additionally, K-means is not the only method of clustering.
Because this work is conceptual we did not have a chance to consider the effect
of efficiency or accuracy that a fuzzy k-means or c-means algorithm may have
on the operation of locking. This is definitely a subject of future research.

Because of the spatial nature of the clustering technique, this method seemed
ideal for determining if locking among overlapping sets was even required. To
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accomplish this several feature vector components are thought to be necessary
for calculation of clustering utilizing distance measures and k-means methods.

Clustering in this investigation is initially utilized to determine if locking
via a decision tree is required. Clusters mean that data sets are close together
in the feature space and should be passed onto the decision tree to determine
whether to lock or not lock and how to apply a volumetric lock.

The clustering function is a modified version of k-means and denoted by
SEclust(u) for spatial extent cluster. SEclust() takes as a parameter a feature
vector u, against which the clustering algorithm is applied. A clustering rep-
resents the degree of semantic distance from one spatial data set to another
and thus the possibility of spatial extent overlap. A minimal distance leads to
clustering and locking. The vector u has the following elements:

• Si.timespan
• Si.Pti
• Si.centroid
• Si.edittype
• Si.criticality

where the above have the following attribute naming template:

Si – is the identifier of a given spatial data set i, e.g. S1 would identify set one
of data

Si.timespan.st – the start time of editing a set
Si.timespan.et – end time of editing on the set
Si.Pti – the x, y, z values of point i describing the bounding rectangular hull

of the set data points denoted by Si (see above). Note: there are four of
these points where N ranges from S1.pt1.x to S4.pt4.z.

Si.centroid – the physical center of a set bounded by its spatial extent
Si.criticality – user defined value to skew clustering to create tighter clusters or

looser clusters.
Si.edittype – user defined measure of editing being done on a set where updates

and deletes have minimal distances and reads and creates have maximal
distances.

The points defining the bounding hull, Si.Pt, and the centroid, Si.centroid,
are utilized in a distance measure calculation to determine a degree of overlap
in the spatial extent of two sets. The equation for this calculation is given as:

a =

4
∑

i=1

√

(S1.Pti.x - S2.Pti.x)2 + (S1.Pti.y - S2.Pti.y)2 + (S1.Pti.z - S2.Pti.z)2.

Sets may have an overlap in their spatial geometry but still not need locking
due to the point in time when they may be edited. This is especially true
if a versioning system is in place and two overlapping sets are on different
lineage trees. However, if sets overlap in time, there is a need to measure the
temporal distance for use in the k-means clustering. The attributes Si.timespan
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are utilized for this distance measure (b) and the equation is given by:

b = weight*
1

S1Overlap + S2Overlap

where S1Overlap and S2Overlap are calculated as:

S1Overlap =
|S1max - S2min|

S1max - S1min

and

S2Overlap =
|S1max - S2min|

S2max - S2min

where:
S1max, S1min – max min of time span
S2max, S2min – max min value of time span
weight – utilized to increase the impact of time.

The determination of overlapping time span is complicated in that a span
consists of a start and end time, not just a single point in time. Several scenarios
of overlap can be seen in Fig. 10.

S1max

S2

S1

S3

Time

S1min

Figure 10. Diagram of overlapping time periods

The algorithm developed to determine time span overlap notices that overlap
in time spans can be found first by sorting the start (Si.timespan.st) and end
(Si.timespan.et) times of the spans for spatial data sets e.g. S1, S2. If there is
overlap, it will show up in the sorted list as an S1 value next to an S2 value.
When subtracted, this then becomes a measure of distance between the sets in
time space. The algorithm for this is described as follows:
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if Sx.timespan = Sy.timespan //proper overlap

return distance 0

else

Sort(Sx.timespan, Sy.timespan by the start times .st

and end times .et)

if a Sx.timespan.st or .et is adjacent to

any Sy.timespan.st or .et

subtract the two values

calculate b term

return b time value as a measure of time overlap

and distance

Figure 11. Algorithm to determine time span overlap

While sets may have overlapping physical extents, the extent may be stretched
in one direction or the other. This is can be due to the fact that sets can have
considerably different dimensions as shown in Fig. 12.

Figure 12. Examples of different types of overlap based on spatial geometries
of sets

Because of this, it is also important to get a distance measure based on
relative centrality between two sets. This can be accomplished by measuring
the distance between the centroids. The distance equation for this is given by:

c =

√

√

√

√

√

(S1.centroid.x - S2.centroid.x)
2
+

(S1.centroid.y - S2.centroid.y)
2
+

(S1.centroid.z - S2.centroid.z)
2
.

Another attribute utilized in clustering is that of user assigned criticality.
This attribute allows a user input to tighten or loosen clustering based on factors
not already included in the feature vector. A user might use criticality to force



Facilitating 3D volumetric locking in peer 2 peer spatial databases 183

locking on all sets regardless of semantic distance or lock only sets very close in
semantic distance. For instance, a user may be looking at two overlapping data
sets doing “what if analysis” and not want any locking to occur. In this case
the data is not going to be saved and a low criticality value might be selected.
Criticality can be set by a user to a value of:

high – where distance = 0 or user assigned
low – where distance = ∞ or a very high value
medium – where low < distance < high value.

Criticality can be denoted as:

d(u) =







∞| u = low
0 | u = high
[0,∞] | low < u < high







Finally, the type of editing being done on a set should also be considered
in the clustering. For this purpose we defined a Create, Read, Update, Modify
model having the following values:

Distance

Create ∞
Delete 0
Modify 0
Read ∞ or very high value

e(u) =

{

∞| u = create ∨ read
0 | u = delete ∨ modify

}

.

The Si.edittype is applied to the set in general and not to individual points
in the set.

The overall distance vector utilized in the cluster algorithm mentioned pre-
viously for Si can be denoted as

Vsx = a + b + c + d + e

where:
a – is a measure of spatial overlap
b – is a measure of temporal overlap
c – is a measure of distance between the central points of the bounding hulls of

the sets that may not have the same geometries
d – is a user defined measure of criticality that something be locked
e – is a measure of the semantic distance (relationship) between editing changes

that can create conflicting information in the database.
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SeClust() has the following general logic:

SeClust(u)

Begin

choose (j / 2 * k) / 2 records as centers for k clusters

repeat

calculate Vsx utilizing feature vector u

assign each record to a cluster st. the between the record

and centerof the cluster is small

recalculate the center of each k based on records

assigned to the cluster

until reassignment stops

End

Figure 13. Cluster algorithm logic utilizing semantics distance measures (Vsx)

From SEclust() a classification is made about which data sets are similar to
others and which need to be examined for potential locking. Sets of spatial data
(Si, Sj, . . . ) found in the same cluster are candidates for potential volumetric
locking.

However, SEclust() does not comment on how to lock. For this purpose,
we decided to utilize a statically defined decision tree in conjunction with the
cluster requiring locking. We informally refer to this construct as a “cluster
tree”. A graphic of the cluster tree is shown in Fig. 14. The semantic of the

Figure 14. Schematic of a single cluster tree

cluster tree is to use clustering at the top to identify overlapping sets that need
some type of spatial locking and then feed the members of the cluster into the
tree below as a means of determining how the locking should be applied. A
graph of clusters might of course have the cluster tree symbology with every
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cluster, however it is plausible that some clusters will not have tree’s attached
to them. The cluster tree concept is an offshoot of seeking a solution to locking
in the P2PDBMS and needs to be investigated further.

In development of the decision tree it was decided not to train the tree with
test data as is typically done in a decision tree. However, it is an unresolved
issue for future research about what role training might have in a system that
dynamically develops its own locking schemes in response to user editing activity
over given time periods and defines dynamically a function SElock(v) that im-
plements the dynamic locking logic. The locking function that implements the
tree part of the cluster tree (SElock(v)) takes a feature vector, v, that contains
the following attributes:

Si.points[ ].

SElock() takes as input the u vector from SEclust(), however Si.points[ ] is
a new element that contains identifiers for the points or spatial objects that are
requested for modification. The contents of Si.points[ ] can be point data, but
also could be spatial object identifiers. Therefore feature vector v is defined to
be:

v = (u, Si.points[ ]) .

The decision tree determines which type of lock to apply. For the purpose
of this research we define a new type of locking construct, that of volumetric
locking. This type of lock is applied to a three dimensional space and to all
object or points within the space. Consequently, because of the splitting of
spatial data into thematic layers as mentioned with the SDSIM, a volumetric
lock is applied to several layers as they are stacked into a three dimensional
cube. The semantics of organizing the stacking was beyond the scope of this
initial research but needs to be investigated in the future. The reason for this
can be seen when one considers stacking a thematic layer of roads and street
layout with housing locations in an layer that is immediately above or below
the streets layer. In this case there is a semantic relationship between the
layers which should be locked volumetrically. However, it makes no sense to
stack weather data next to street data because there is no relationship of street
systems to patterns of weather, thus no rationale for volumetric locking in this
case. The semantics of organizing these layers will be the subject of subsequent
research.

The decision tree develops three locking decision outcomes, namely to ap-
ply a:

• cylindrical volumetric lock (CVL)
• spherical volumetric lock (SVL)
• rectangular volumetric lock (RVL).

The nomenclature for the lock type is derived from the geometric space described
by the type of lock.
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A CVL lock is cylindrical in shape. An RVL is rectangular in shape and an
SVL is spherical. All are applied across several thematic layers in the SDSIM
with a locus centered on the points being requested for locking. Additionally, the
selection of the type of lock to apply is based on the geometric patterns of points
being requested for locking found in the Si.points[ ] array. More specifically, if
a user is requesting a pattern of points that is erratically scattered throughout
the overlapping extent (Fig. 7), then an RVL is applied which locks all points
and spatial objects in the overlap. This is the most aggressive form of locking.
Ideally, one wants to lock as little an area as possible. The next less aggressive
type of locking is applied with the CVL. If points requested for locking are found
to be located generally in a cluster (Fig. 8), then a cylindrical volume region
can be calculated, which then determines which points and object to lock by
identifying those inside the region.

The least aggressive locking is the SVL lock. It is generated when Si.points[ ]
contains a single point. This point is then locked and a degree of locking is
calculated for surround points as a function of their distance from the single
point. The degree of locking semantic is not fully defined at this point, but is
thought to be useful for applying predictive locking utilizing decision support
techniques. It is the subject of future research.

With the above types of locking defined, the decision tree for determining
the type of lock to apply is as in Fig. 15.

tree overlap()

SVL()

overlap()

singlepoint()

dispersion()

false

CVL() RVL()

Figure 15. Decision tree component of a cluster tree for determination of CVL,
RVL, SVL locking

Above the treeoverlap() function is the cluster part of the tree (not shown)
which is implemented via SEclust(u). SEclust() passes its u vector, which is
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concatenated with a v feature vector that contains some additional information
utilized in the locking decision tree processing. The elements of the vector
mentioned previously include:

• points modified during time span
• user specified aggressiveness where the value promote locking to a higher

level of locking (refer to diagram)
which, when concatenated, includes all the elements of the u vector utilized in
SEclust().

The tree determines how to lock primarily by examining the extent of editing
changes and the change of spatial object geometry (SOG) over time represented
by:

∆ SOG / time.

The first function in the tree treeoverlap() implements logic to verify that
the spatial areas for two sets of data that potentially overlap, do in fact overlap.
SEclust() only suggests overlap by examining a number of temporal, spatial
and editing elements that may be associated with overlap. The algorithm for
treeoverlap() is given in Fig. 16.

given rectangular regions A,B

if B < A in x axis then swap (A, B) points

assign points to:

A.ptmax.x

A.ptmin.x

A.ptmax.y

A.ptmin.y

B.ptmax.x

B.ptmin.x

B.ptmax.y

B.ptmin.y

if A.ptmax.x > B.ptmin.x and

A.ptmin.y < B.ptmin.y < A.ptmax.y or

A.ptmin.y < B.ptmax.y < A.ptmax.y then

return overlap = True

else

return false

Figure 16. Algorithm for treeoverlap() given rectangular regions A, B

In this algorithm max and min points are assigned as shown in Fig. 17.
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Pt4 = B.ptminx,x,A.ptmin.y 

Pt3 =  A.ptmax.x, A.ptmin.y 

Pt1 = B.ptminx,x, Bptmax.y 

A

B

Pt2 = A.ptmax,x, B.ptmax.y 

Figure 17. Max and min point assignment for determining if overlap exists

The treeoverlap() function returns true if there is overlap or false if there is
no overlap. A true value continues processing with the overlap() function.

The overlap() function determines the coordinates of the overlapping rec-
tangle. This is done by using the max and minimum values shown in Fig. 17:

Pt1 = B.ptmin.x, B.ptmax.y

Pt2 = A.ptmax.x, B.ptmax.y

Pt3 = A.ptmax.x, A.ptmin.y

Pt4 = B.ptmin.x, A.ptmin.y

where the rectangular intersection area (Fig. 17) is denoted as:

I = (Pt1, Pt2, Pt3, Pt4)

The next decision made by the clustertree is to apply a SVL regional lock.
This is done by examining the arity of points found in the Si.points[ ] element
of feature vector v. If there is a single point in this array then a SVL lock will
be generated on data. The degree of lock is calculated as a function of distance
from the point. The proposition is that points farther from the singular point
need not be modified. Therefore a degree value of locking is applied to all points
within a user specified radius. While the logic of this argument seems to make
sense, the method and semantics of how one locks a point with a degree of
e.g. 0.5 is not understood at this point and the subject of further work and
definition.

The equations for applying this type of lock are given by the following:
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Si.point[1] = lock degree = 1, a full lock

for all Pt.N < radius

Pt.N.lockdegree = lockcalc() end

where:

lockcalc(x,y,z,pt.N) =
1

√

(x - pt.N.x)2 + (y - pt.N.y)2 + (z - pt.N.z)2

and:

x = Si.Pt[1].x

y = Si.Pt[1].y

z = Si.Pt[1].z

where:
x, y, z = the center of the spherical locking region
Pt.N – any point in the region bounded by radius in 3D space.

Upon examination, one can see that a locking degree is calculated in 3D
space given from the above equations. It is important to note that at this
stage of research due to the nature of 3D locking it is important to define
which layers of spatial thematic data are stacked adjacent to each other. As
mentioned previously, a spatial layer in the SDSIM containing a road data should
be adjacent to a layer containing house data by the logic that the placement
of roads is related to the location of houses. However, road layers and weather
data probably do not have this sort of relationship.

The next function in the cluster tree is invoked if a SVL lock is not applied.
The dispersion() function needs to evaluate the degree of dispersion in the re-
quested spatial objects (SO’s) or points requested for editing. This function
starts the process by sorting all points in the Si.points[ ] feature array element.
It then finds the minimum and maximum values in the x and y directions. The
next step is to find the minimum and maximum values of the points of a box
defining a bounding rectangle and compare this to a radius that would deter-
mine the need for circular CVL locking. CVL locking could be implemented
by creating bounding rectangle, however, the goal is to lock as little a spatial
region as possible. Since a circle has less area than a rectangle, a CVL lock will
lock fewer spatial objects than a rectangular lock. The algorithm is shown as
follows, given the labels in Fig. 18.

The algorithm to determine if a CVL lock should be applied is given in
Fig. 19.
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Pt2 = (maxx,maxy)
Pt1 = (minx, maxy)

Pt3 = (maxx, miny)
Pt4 = (minx, miny )

PtZ

Figure 18. Example of point dispersion in which CVL locking would be selected

find points Pt1 -- Pt4 from max, min values in Si.points[ ]

centerx = .5(maxx - minx)

centery = .5(maxy - miny)

radius = distance(minx, .5(maxy - miny), centerx, centery)

find the point (Ptz) with the smallest distance to any bounding

point Pt1,,,Pt4 that has been requested for editing

Ptzdistance = distance(centerx, centery, Ptz.x, Ptz.y)

if Ptzdistance < radius then

CVLlock()

else

RVLlock()

Figure 19. Algorithm to determine if CVL locking should occur

CVL locking in the above example has several constraints that must be ob-
served for successful operation. First, the rectangle created by Pt1,,,Pt4 must
have equal length sides. Secondly, based on the first assumption, the center
of the circular locking areas will be the exact center of an equal sided rectan-
gle. While these constraints seem artificial, they are necessary for this initial
attempt. An unequal sided rectangle can lead to problems in the generation
of the circular region that may or may not include the correct points to lock.
Future work will investigate this effect for improved resolution and efficiency.

The RVL lock is the most aggressive and would lock all points within the
bounding hull (dashed line in Fig. 18). If the CVL is applied, locking will prune
the region where edits can not occur by approximately half of the area of an
RVL lock.
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The algorithm for applying a CVL lock is fairly straightforward:

CVLlock()

find center point of editing area

distance1 = maxx - minx

distance2 = maxy - miny

if distance1 > distance2 then

lockradius = distance1 / 2

else

lockradius = distance2 / 2

for all layers

for all points with distance from center < lockradius

lockpoint(pt)

end

end

Figure 20. Algorithm for CVLlock()

Of note is that the locking scheme for CVL and RVL does not have an intrinsic
(no z value calculation) three dimensional component such as a SVL lock. To
lock in 3D space, the lock is applied in the z dimension to all layers in the
SDSIM falling within a projection of the 2D locking area on the layer being
initially locked.

The locking algorithm for RVL is much the same as CVL and given by
Fig. 21.

for all layers

for all points minx < ptx < maxx and miny < pty < maxy

lockpoint(pt)

end

end

Figure 21. Algorithm for RVLlock()

A geometric enhancement to the cluster tree presented earlier (Fig. 15) shows
the organization of CVL, RVL and SVL locking and decision support processes
in Fig. 22.

Overall, the above locking scheme can be mathematically represented by the
equation:

f(u,v) = (SElock(SEclust(u),v))

where:
u, v – are the feature vectors for SElock() and SEclust()
f(u, v) - selects and applies the type of lock required.
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Figure 22. Enhanced schematic of cluster tree (Fig. 15) for SVL, CVL, RVL
locking.

Finally, the overall locking process utilizing the above equations and concepts
can be modeled with the following steps:

1. Initial editing of a set of data begins
2. A second editing session (new user) starts with overlapping spatial extent
3. The user of the second editing session is notified of potential locking and

queried to:

(a) select the area or region s/he will be
– editing
– define expected time span of editing

4. Feature vector u, v is passed to the cluster tree algorithm by invoking
f(u,v)

5. f(u,v) applies a minimal volumetric lock, or does not apply locking
6. Go to step 2.

4. Conclusion

The P2PDSDB model presented can provide a new type of highly distributed
spatial database system where users have high availability of regionally defined
access to the spatial data and surrounding regions. This capability is not pro-
vided in the traditional RDBMS. Due to the contextual nature of spatial data,
it is important to be able to view objects surrounding a spatial object of in-
terest and to manage differences in spatial properties when views overlap with
discrepancies from the editing process.

One of the most difficult questions to answer for this model is how to ac-
complish locking in this highly distributed peer to peer environment.

The model presented in this paper suggests means for doing sophisticated
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spatial locking and reconciliation based on decision support and data mining
techniques.

The contribution of presented research is the:

• development of the theoretical underpinning of efficient locking in a new
type of spatial database system

• application of decision support methods in the process of determining how
to lock

• fusion of decision trees, clustering techniques and spatial geometries to
propose a method of locking

• development of a model for facilitation of 3D locking through the use of
organizing layers of thematic spatial data into the SDSIM model

• development of the concepts of volumetric locking and classifications of
such types of locks.

The initial research presented in this paper suggests the need to investi-
gate several areas in further detail, including methods to reconcile and lock
distributed spatial objects that appear to be the same but with different spatial
properties and what types of underlying storage structures best support this
implementation.

It is important to note that this research is preliminary and theoretical so
that there are a number of research questions raised by the work that need to
be investigated.

One of these is how to determine the ordering of layers and how this can
affect the effectiveness of locking. Also, the underlying file structure necessary
to support the mathematics has not been investigated.

Future research will consider several question raised by this work. One of
these is how to conduct irregular polygonal locking. This could maximize data
access by minimizing the three-dimensional locking volume. Additionally, the
CVL and RVL locks probably should not be applied blindly to all layers in the
SDSIM. The solutions to these questions and more can lead to a potentially
much more powerful model of data sharing than is currently seen in typical
database technology.
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