
Control and Cybernetics

vol. 35 (2006) No. 2

Stability criteria for large-scale time-delay systems:
the LMI approach and the Genetic Algorithms

by

Jenq-Der Chen

Department of Electronic Engineering
National Kinmen Institute of Technology

Jinning, Kinmen, Taiwan, 892, R.O.C
e-mail: tdchen@mail.kmit.edu.tw

Abstract: This paper addresses the asymptotic stability analy-
sis problem for a class of linear large-scale systems with time delay
in the state of each subsystem as well as in the interconnections.
Based on the Lyapunov stability theory, a delay-dependent criterion
for stability analysis of the systems is derived in terms of a linear
matrix inequality (LMI). Finally, a numerical example is given to
demonstrate the validity of the proposed result.
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1. Introduction
Time delay naturally arises in the processing of information transmission be-
tween subsystems and its existence is frequently the main source of instability
and oscillation in many important systems. Many practical control applica-
tions are encountered, involving the phenomena in question, including electrical
power systems, nuclear reactors, chemical process control systems, transporta-
tion systems, computer communication, economic systems, etc. Hence, the
stability analysis problem for time-delay systems has received considerable at-
tention (Kim, 2001; Kolmanovskii and Myshkis, 1992; Kwon and Park, 2004;
Li and De Souza, 1997; Niculescu, 2001; Park, 1999; Richard, 2003; Su et al.,
2001). In the recent years, the problem of stability analysis for large-scale sys-
tems with or without time delay has been extensively studied by a number of
authors. Moreover, depending on whether the stability criterion itself contains
the delay argument as a parameter, stability criteria for systems can be usually
classified into two categories, namely the delay-independent criteria (Hmamed,
1986; Huang et al., 1995; Lyou et al., 1984; Michel and Miller, 1977; Schoen and
Geering, 1995; Siljak, 1978; Wang et al., 1991) and the delay-dependent crite-
rion (Tsay et al., 1996). In general, the latter ones are less conservative than
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the former ones, but the former ones are also important when the effect of time
delay is small. However, there are few papers to derive the delay-dependent and
delay-independent stability criteria for a class of large-scale systems with time
delays, to my knowledge. This has motivated my study.

In this paper, delay-independent and delay-dependent criteria for such sys-
tems can be derived to guarantee the asymptotic stability for large-scale systems
with time-delays in the state of each subsystem as well as in the interconnec-
tions. Appropriate model transformation of original systems is useful for the
stability analysis of such systems, and some tuning parameters, which satisfy
the constraint on an LMI can be easily obtained by the GAs technique. A
numerical example is given to illustrate that the proposed result is useful.

The notation used throughout this paper is as follows. We denote the set
of all nonnegative real numbers by �+, the set of all continuous functions from
[−H, 0] to �n by C0, the transpose of matrix A (respectively, vector x) by
AT (respectively xT ), the symmetric positive (respectively, negative) definite
by A > 0 (respectively A < 0). We denote identity matrix by I and the set
{1, 2, ..., N} by N̄ .

2. Main results
Consider the following large-scale time-delay systems, which is composed of N
interconnected subsystems Si, i ∈ N̄ . Each subsystem Si, i ∈ N̄ is described
as

ẋi(t) = Aixi(t) +
N∑

j=1

Aijxj(t − hij), t ≥ 0, (1a)

where xi(t) is the state of each subsystem Si, i ∈ N̄ , then, Ai, Aij , i, j ∈
N̄ are known constant matrices of appropriate dimensions, and hij , i, j ∈ N̄ ,
are nonnegative time delays in the state of each subsystems as well as in the
interconnections. The initial condition for each subsystem is given by

xi(t) = θi(t), t ∈ [−H, 0], H = max
i,j

{hij}, i, j ∈ N̄ , (1b)

where θi(t), i ∈ N̄ is a continuous function on [−H, 0].
A model transformation is constructed for the large-scale time-delay systems

of the form:

d

dt

[
xi(t) +

N∑
j=1

Bij

∫ t

t−hij

xj(s)ds
]

= Aixi(t) +
N∑

j=1

[
Bijxj(t)

+(Aij − Bij)xj(t − hij)
]
, (2)

where Bij ∈ �ni×nj , i, j ∈ N̄ are some matrices that can be chosen by GAs
such that the matrix Āi = Ai + Bij , i, j ∈ H̄ is Hurwitz.
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Now, we present a delay-dependent criterion for asymptotic stability of sys-
tem (1).

Theorem 2.1 The system (1) is asymptotically stable for any constant time
delays hij satisfying 0 ≤ hij ≤ h̄ij, i, j ∈ N̄ under the condition that Āi are
Hurwitz and there exist symmetric positive definite matrices Pi, Rij , Tij, Vij ,
and Wijk , i, j, k ∈ N̄ such that the following LMI condition holds:

Ξ̆ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ξ̆11 Ξ̆12 Ξ̆13 Ξ̆14 Ξ̆15

Ξ̆T
12 −Ξ̆22 0 0 0

Ξ̆T
13 0 −Ξ̆33 0 0

Ξ̆T
14 0 0 −Ξ̆44 0

Ξ̆T
15 0 0 0 −Ξ̆55

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (3)

where

Ξ̆11 =

⎡
⎢⎢⎢⎢⎢⎣

Ψ̆1 BT
21P2 + P1B12 · · · BT

N1PN + P1B1N

P2B21 + BT
12P1 Ψ̆2 · · · BT

N2PN + P2B2N

...
...

. . .
...

PMBN1 + BT
1NP1 PNBN2 + BT

2NP2 · · · Ψ̆N

⎤
⎥⎥⎥⎥⎥⎦ ,

Ψ̆i = ĀT
i Pi + PiĀi +

N∑
j=1

[
h̄ji · Rji + Vij +

N∑
k=1

h̄ki · (Tkji + Wkji)
]
,

Ξ̌12 = diag(Γ1, · · · , ΓN ), Γi = [
√

h̄i1 · AT
i PiBi1 · · ·

√
h̄iN · AT

i PiBiN ],

Ξ̌22 = diag(Γ̂1, · · · , Γ̂N ), Γ̂i = diag(Ri1, · · · , RiN ),

Ξ̌13 = diag(Π1, · · · , ΠN ), Πi = [Πi1 · · ·ΠiN ],

Πki = [
√

h̄i1 · BT
ikPiBi1 · · ·

√
h̄iN · BT

ikPiBiN ],

Ξ̌33 = diag(Π̂1, · · · , Π̂N ), Π̂i = diag(Π̂i1 · · · Π̂iN ),

Π̂ki = diag(Tik1, · · · , TikN ),

Ξ̌14 = diag(Λ1, · · · , ΛN), Λi = [(A1i − B1i)T P1 · · · (ANi − BNi)T PN ],

Ξ̌44 = diag(Λ̂1, · · · , Λ̂N), Λ̂i = diag(V1i, · · · , VNi),

Ξ̌15 = diag(Ω1, · · · , ΩN ), Ωi = [Ωi1 · · ·ΩiN ],

Ωki = [
√

h̄i1 · (Aik − Bik)T PiBi1 · · ·
√

h̄iN · (Aik − Bik)T PiBiN ],

Ξ̌55 = diag(Ω̂1, · · · , Ω̂N ), Ω̂i = diag(Ω̂i1 · · · Ω̂iN ),

Ω̂ki = diag(Wik1, · · · , WikN ).
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Proof. From the Schur Complements of Boyd et al. (1994), the condition (3) is
equivalent to the following inequality:

Ξ(h̄, Pi, Rij , Tijk, Vij , Wijk) =⎡
⎢⎢⎢⎢⎢⎣

φ1(h̄) BT
21P2 + P1B12 · · · BT

N1PN + P1B1N

P2B21 + BT
12P1 φ2(h̄) · · · BT

N2PN + P2B2N

...
...

. . .
...

PMBN1 + BT
1NP1 PNBN2 + BT

2NP2 · · · φN (h̄)

⎤
⎥⎥⎥⎥⎥⎦ < 0 (4)

where h̄ denotes {h̄ij , i, j ∈ N̄}, and

φi(h̄) = ĀT
i Pi + PiĀi

+
N∑

j=1

[
h̄ij · AT

i PiBijR
−1
ij BT

ijPiAi + h̄ji · Rji

+(Aji − Bji)T PjV
−1
ji Pj(Aji − Bji) + Vij

]
+

N∑
j=1

N∑
k=1

[
h̄jk · BT

jkPjBjkT−1
jikBT

jkPjBji

+h̄ki · Tkji + h̄jk · (Aji − Bji)T PjBjkW−1
jik BT

jkPj(Aji − Bji) + h̄ki · Wkji

]
.

The Lyapunov functional is given by

V (xt) = V1(xt) + V2(xt) + V3(xt), (5a)

where

V1(xt) =
N∑

i=1

Li(xt)T · P · Li(xt), Li(xt)

= xi(t) +
N∑

j=1

Bij

∫ t

t−hij

xj(s)ds, i ∈ N̄ (5b)

V2(xt) =
N∑

i=1

N∑
j=1

xT
j (s)[(s − t + hij) · Rij

+(Aij − Bij)T Pi(V −1
ij +

N∑
k=1

hik · BikW−1
ijk BT

ik)Pi(Aij − Bij)]xj(s)ds, (5c)

V3(xt) =
N∑

i=1

N∑
j=1

N∑
k=1

∫ t

t−hik

(s − t + hik) · xT
k (s)(Tijk + Wijk)xk(s)ds, (5d)
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are the legitimate Lyapunov functional candidates. The time derivatives of
Vi(xt), i = 3̄, along the trajectories of the system (2) are given by

V̇1(xt) =
N∑

i=1

xT
i (t)(AT

i Pi + PiAi)xi(t)

+ 2
N∑

i=1

N∑
j=1

xT
i (t)AT

i PiBij

∫ t

t−hij

xj(s)ds + 2
N∑

i=1

N∑
j=1

xT
j (t)BT

ijPixi(t)

+ 2
N∑

i=1

N∑
j=1

N∑
k=1

xT
j (t)BT

ijPiBik

∫ t

t−hik

xk(s)ds

+ 2
N∑

i=1

N∑
j=1

xT
j (t − hij)(Aij − Bij)T Pixi(t)

+ 2
N∑

i=1

N∑
j=1

N∑
k=1

xT
j (t − hij)(Aij − Bij)T PiBik

∫ t

t−hij

xk(s)ds.

It is known fact that for any x, y ∈ �n and Z ∈ �n×n > 0, the inequality
2xT y ≤ xT Zx + yT Z−1y being true, we have

V̇1(xt) ≤
N∑

i=1

xT
i (t)(AT

i Pi + PiAi)xi(t)

+
N∑

i=1

N∑
j=1

[
hij · xT

i (t)AT
i PiBijR

−1
ij BT

ijPiAixi(t) +
∫ t

t−hij

xT
i (s)Rijxj(s)ds

]

+
N∑

i=1

[
xT

i (t)(BT
iiPi + PiBii)xi(t) + 2

N∑
j=1,j �=i

xT
j (t)BT

ijPixi(t)
]

+
N∑

i=1

N∑
j=1

N∑
k=1

[
hik · xT

j (t)BT
ijPiBikT−1

ijkBT
ikPiBijxj(t) +

∫ t

t−hik

xT
k (s)Tijkxk(s)ds

]

+
N∑

i=1

N∑
j=1

[xT
j (t−hij)(Aij−Bij)T PiV

−1
ij Pi(Aij−Bij)xj(t−hij)+xT

i (t)Vijxi(t)]

+
N∑

i=1

N∑
j=1

N∑
k=1

[
hik · xT

j (t−hij)(Aij−Bij)T PiBikW−1
ijk BT

ikPi(Aij−Bij)xj(t−hij)

+
∫ t

t−hik

xT
k (s)Wijkxk(s)ds

]
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V̇2(xt) =
N∑

i=1

N∑
j=1

{
xT

j (t)
[
hij · Rij + (Aij − Bij)T

× Pi(V −1
ij +

N∑
k=1

hik · BikW−1
ijk BT

ik)Pi(Aij − Bij)
]
xj(t)

−
∫ t

t−hij

xT
j (s)Rijxj(s)ds − xT

j (t − hij)[(Aij − Bij)T

× Pi(V −1
ij +

N∑
k=1

hik · BikW−1
ijk BT

ik)Pi(Aij − Bij)]xj(t − hij)
}
,

V̇3(xt) =
N∑

i=1

N∑
j=1

N∑
k=1

[
hik · xT

k (t)(Tijk + Wijk)xk(t)

−
∫ t

t−hjk

xT
k (s)(Tijk + Wijk)xk(s)ds

]
.

Now, considering that

N∑
i=1

N∑
j=1

xT
j (t)

[
hij · Rij + (Aij − Bij)T PiV

−1
ij Pi(Aij − Bij)

+
N∑

k=1

hik · BT
ijPiBikT−1

ijkBT
ikPiBij

+hik · (Aij − Bij)T PiBikW−1
ijk BT

ikPi(Aij − Bij)]xj(t)

=
N∑

i=1

N∑
j=1

xT
j (t)[hji · Rji + (Aji − Bji)T PjV

−1
ji Pj(Aji − Bji)

+
N∑

k=1

hjk · BT
jiPjBjkT−1

jikBT
jkPjBji

+hjk · (Aji − Bji)T PjBjkW−1
jik BT

jkPj(Aji − Bji)]xi(t)
N∑

i=1

N∑
j=1

N∑
k=1

Hik · xT
k (t)(Tijk + Wijk)xk(t)

=
N∑

i=1

N∑
j=1

N∑
k=1

hki · xT
i (t)(Tkji + Wkji)xi(t).
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Then, the derivative of V (xt) satisfies

V̇ (xt) = V̇1(xt) + V̇2(xt) + V̇3(xt)

≤
N∑

i=1

[xT
i (t)φi(h)xi(t) + 2

N∑
j=1,j �=i

xT
j (t)BT

ijPixi(t)]

≤ XT (t)Ξ(h̄, Pi, Rij , Tijk, Vij , Wijk)X(t), (6)

where X(t) = [xT
1 (t) · · ·xT

N (t)]T .
Hence, by Theorem 9.8.1 of Hale and Verduyn Lunel (1993) with (4)-(6),

we conclude that systems (1) and (2) are both asymptotically stable for any
constant time delays hij satisfying 0 ≤ hij ≤ h̄ij , i, j ∈ N̄ .

Remark 2.1 Notice that for fixed h̄ij, and Bij , i, j ∈ N̄ , the entries of Ξ̆ in
(3) are affine in Pi, Rij , Tijk, Vij , and Wijk , i, j, k ∈ N̄ , so that the asymptotic
stability problem for the large-scale time-delay systems can be converted into a
strictly feasible LMI problem.
Remark 2.2 Notice that for any chosen matrix Bij = 0, i, j ∈ N̄ it means that
the delay terms Bij

∫ t

t−hij
xj(s)ds, i, j ∈ N̄ have not been converted to the left

side of the system (2). By the above Theorem 2.1, the corresponding matrices
Rij , Tijk, Uijk, and Wijk , i, j, k ∈ N̄ could be chosen as zero matrices, and the
LMI condition in (3) is reduced by it‘s corresponding elements.

Letting Bij = 0, i, j ∈ N̄ in Theorem 2.1, we achieve the following result
that does not depend on delay arguments.

Corollary 2.1 The system (1) is asymptotically stable with hij ∈ �+, i,j ∈ N̄ ,
provided that Ai is Hurwitz, and there exist Pi, and Vij , i, j ∈ N̄ , such that the
following LMI condition holds:[

Ξ̂11 Ξ̂12

Ξ̂T
11 −Ξ̂22

]
< 0. (7)

where

Ξ̂11 =

⎡
⎢⎢⎢⎢⎢⎣

Ψ̆1 0 · · · 0

0 Ψ̆2 · · · 0
...

...
. . .

...
0 0 · · · Ψ̆N

⎤
⎥⎥⎥⎥⎥⎦ , Ψ̆i = AT

i Pi + PiAi +
N∑

j=1

Vij ,

Ψ̆12 = diag(Λ1, · · · , ΛN ), Λi = [AT
1iP1 · · ·AT

NiPN ],

Ψ̆22 = diag(Λ̂1, · · · , Λ̂N ), Λ̂i = diag(V1i, · · · , VNi).
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Remark 2.3 Suppose that for any chosen matrix Bij = Aij, i, j ∈ N̄ we have
that the delay term Aij

∫ t

t−hij
xj(s)ds, i, j ∈ N̄ , have been converted to the

left side of the system (2). By the proof of Theorem 2.1, the corresponding
matrices Vij , and Wijk , i, j, k ∈ N̄ , could be chosen as zero matrices, and the
LMI condition in (3) is reduced by its corresponding elements.

Choosing Bij = Aij , i, j ∈ N̄ in Theorem 2.1 we achieve the following result
that depends on delay arguments.

Corollary 2.2 The system (1) is asymptotically stable for any constant time
delays hij satisfying 0 ≤ hij ≤ h̄ij, i, j ∈ N̄ , provided that Âi = Ai + Aii is
Hurwitz and there exist symmetric positive definite matrices Pi, Rij, and Tij,
i, j ∈ N̄ satisfying the following LMI condition:⎡

⎢⎢⎣
Ξ̄11 Ξ̄12 Ξ̄13

Ξ̄T
12 −Ξ̄22 0

Ξ̄T
13 0 −Ξ̄33

⎤
⎥⎥⎦ < 0 (8)

where

Ξ̄11 =

⎡
⎢⎢⎢⎣

Ψ̄1 AT
21P2 + P1A12 · · · AT

N1PN + P1A1N

P2A21 + AT
12P1 Ψ̄2 · · · AT

N2PN + P2A2N

...
...

. . .
...

PNAN1 + AT
1NP1 PNAN2 + AT

2NP2 · · · Ψ̄N

⎤
⎥⎥⎥⎦ ,

Ψ̄1 = ÂT
i Pi + PiÂi +

N∑
j=1

(h̄ji · Rji +
N∑

k=1

h̄ki · Tkji),

Ξ̄12 = diag(Γ1, · · · , ΓN ), Γi = [
√

h̄i1 · AT
i PiAi1 · · ·

√
h̄iN · AT

i PiAiN ],

Ξ̄22 = diag(Γ̂1, · · · , Γ̂N ), Γ̂i = diag(Ri1, · · · , RiN ),
Ξ̄13 = diag(Π1, · · · , ΠN ), Πi = [Πi1 · · ·ΠiN ],

Πki = [
√

h̄i1 · AT
ikPiAi1 · · ·

√
h̄iN · AT

ikPiAiN ],

Ξ̄33 = diag(Π̂1, · · · , Π̂N ), Π̂i = diag(Π̂i1 · · · Π̂iN ),

Π̂ki = diag(Tik1, · · · , TikN ).

Now, we provide a procedure for testing the asymptotic stability of the
system (1).

Step 1. Choosing all Bij = 0, i, j ∈ N̄ the delay-independent criterion in
Corollary 2.1 is applied to test the stability of the system (1).

Step 2. If the condition in Corollary 2.1 cannot be satisfied, we choose all
Bij = Aij , i, j ∈ N̄ and the delay-dependent criterion in Corollary 2.2 is applied
to test the stability of the system (1).
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Step 3. By employing the method of GAs (Chen, 1998; Eshelman and Schaf-
fer, 1993; Michalewicz, 1994; Gen and Cheng, 1997), the matrix parameters Bij ,
i, j ∈ N̄ that maximize the fitness function h̄ij , i, j ∈ N̄ and Theorem 2.1 will
be search in this algorithm. Continue this algorithm until finding optimal ma-
trix parameters Bij = 0, i, j ∈ N̄ such that the system (1) and (2) are both
asymptotically stable for any constant time-delays hij satisfying 0 ≤ hij ≤ h̄ij ,
i, j ∈ N̄ .

3. Example

Example 3.1 Large-scale systems with time delays:

Subsystem 1:

ẋ1(t) =
[−3 0

0 −3

]
x1(t) +

[−1−0.2
0 −1

]
x1(t − h11) +

[−0.5 0
0 −0.5

]
x2(t − h12),

Subsystem 2:

ẋ2(t) =
[−2 1

0 −1

]
x2(t) +

[
0.1 0.1
0 0.1

]
x1(t − h21) +

[−0.5 0
0 −0.5

]
x2(t − h22). (9)

Comparison of system (1) with system (9), we have N = 2. By Theorem 2.1

and GAs with h̄11 = 2.1143, B11 =
[−0.0645 0.1668
−0.1179 −0.1064

]
, and B12 = B21 =

B22 =
[

0 0
0 0

]
, the LMI (3) is satisfied with P1 =

[
460.4918 71.8576
71.8576 648.4622

]
, P12 =[

0.6084 0.0044
0.0044 0.3914

]
, R11 =

[
389.6232 48.6947
48.6947 528.4440

]
, V11 =

[
451.9861 112.1321
121.1321 598.9035

]
,

V21 =
[

0.4502 0.0170
0.0170 0.1432

]
, V12 =

[
334.8959 52.2607
52.2607 15762

]
, V22 =

[
1.7714 −0.0122
−0.0122 0.5554

]
,

T111 =
[

12.0867 2.2675
2.2675 17.6433

]
, W111 =

[
76.8247 1.9405
1.9405 89.1764

]
, W121 =

[
0.0175 0.0010
0.0010 0238

]
.

Hence, we conclude that system (9) is asymptotically stable for 0 ≤ h11 ≤
2.1143, and h12, h21, h22 ∈ �+. The delay-independent criteria in Hmamed
(1986), Huang et al. (1995), Lyou et al. (1984), Schoen and Geering (1995),
Wang et al. (1991) cannot be satisfied. The delay-dependent stability crite-
ria of Tsay et al. (1996) cannot be applied for sufficiently large time delays,
h12, h21, h22 ∈ �+.

4. Conclusions

In this paper, asymptotic stability analysis problem for a class of large-scale
neutral time-delay systems has been considered. A model transformation and
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the Lyapunov stability theorem have been applied to obtain some stability cri-
teria for such systems. Furthermore, the computational programming LMI with
GAs has been used to improve the proposed results. Finally, it has been shown
using a numerical example that the result shown in this paper is flexible and
sharp.
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