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Abstract: As a result of the severe practical and ethical con-
straints imposed on medical measurements, the parameter estima-
tion procedure designed for diagnosis and therapy is often a difficult
problem. When blood sampling provides the data, the number of
samples and the observation interval should be minimized. Design-
ing an experiment for parameter estimation requires a step known
as quantitative experiment design, usually preceded by a step called
qualitative experiment design. The latter answers if a model is
identifiable under particular experimental conditions. The former
is suitable for the purpose of obtaining the maximum information
from the data to be collected. An experiment design is based on the
optimization of a suitable criterion formulated with respect to the
analyzed variables of the experiment (input shape, sampling sched-
ule). This paper considers sampling schedule design. New criteria
for new optimal sampling schedules (OSS) have been formulated on
the basis of sensitivity function. These are referred to as S-OSS and
RS-OSS designs. The results of optimization for both criteria are
compared with the result obtained with a reputable established D-
optimal design based on the Fisher information matrix. By showing
the results of S-OSS and RS-OSS design we can present the reliabil-
ity and efficiency of the new criteria in comparison to D-OSS design.
Illustrative examples are presented.

Keywords: optimal sampling schedule, sensitivity criterion.

1. Introduction

Advanced mathematical modelling and identification methods are necessary for
the investigation of biomedical system kinetics. Numerous limitations are im-
posed on experimental conditions, the most common of which concern the num-
ber of input and output samples. When blood is the medium being sampled,
the total amount of plasma that can be drawn from the subject is limited. This
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requires that as short a measurement interval and as small a number of samples
as possible be established for model identification. This falls within the scope
of sampling schedule optimization.

Let us consider compartmental models of non-linear regression (model) func-
tions ym(p, t), with parameter vector p and discrete-time noisy measurements.
For single-output models these measurements are:

y (ti) = ym (p, ti) + e (ti) ; i = 1, . . . , N ; p = [p1, . . . , pn] (1)

where N and n are the numbers of measurements and number of model para-
meters, respectively.

Measurement noise e(ti) - zero mean, variance σ2(ti) - is independent of
model parameters. It is normally distributed at each ti and all e(ti) are uncor-
related with the others. It is assumed that a nominal "true" parameter vector
is known on the basis of intuitive experiment with a sufficiently large number
of measurements. The aim is to design for y(ti) a minimal optimal sampling
schedule (MOSS), which consists of a minimum of measured samples NMOSS ,
equal to the number of model parameters: NMOSS = n.

The Cramer-Rao theorem, also known as information inequality, gives the
relationship between the obtainable precision of the parameter estimates p̂ and
the amount of information concerning these parameters available in the noisy
data y(t) = f(p, t)+e(t). The Cramer-Rao inequality gives a lower bound (Wal-
ter and Pronzato, 1990) for the asymptotic covariance matrix of any unbiased
estimate p̂ of p:

cov (p) = E
[

(p− p̂) (p− p̂)
T
]

≥ M−1 (p)

M (p)
def
= E

{

[

∂ lnF (y|p)
∂p

]T

·
[

∂ ln F (y|p)
∂p

]

}

.
(2)

M(p) is Fisher information matrix, F (y|p) is conditional probability density
and E is the expectation operator. The expression F (y|p) is a complicated
function of p. It simplifies (Godfrey, 1983) when samples of measurement er-
ror ek = e(tk) at each time point are uncorrelated and have identical normal
distribution

E (e) = [0, 0, . . . 0] = 0

E
(

e2
k

)

= σ2
k; E (ek, er) = 0; k 6= r; k, r = 1, 2, . . . , N

(3)

In most practical applications (Godfrey 1983, Brandt, 1999), when the noise
is assumed to be white, so that R is diagonal

R =









1
σ2

1

· · · 0

...
. . .

...
0 · · · 1

σ2

N









=

[

1

σ2
i

]

; i = 1, 2, . . . , N (4)
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one obtains the well-known expression

M (p) =

N
∑

i=1

1

σ2
i

· ∂ym (p, ti)

∂p
· ∂ym (p, ti)

∂pT
. (5)

Classical criteria of optimality are scalar cost functions Φ(M). Expression
(5) is then the starting point for the classical mathematical theory of quantita-
tive experiment design. A general cost function Φ(M) is defined (Walter and
Pronzato, 1990; Zarrop, 1979) as:

Φ (M) =
[

n−1trace
(

HM−1HT
)k

]1/k

if det (M) 6= 0

Φ (M) = ∞ if det (M) = 0
(6)

where H is n × n, a non-singular matrix, and k ≥ 0.
Each of the above criteria delivers the MOSS. Three examples are given

below of the most popular optimality criteria obtained for H = In×n and k =
0, 1,∞ (Walter and Pronzato, 1990; Zarrop, 1979):

• D-optimality, H = In×n; k = 0; Φ(M) = [det(M)]−1;
• A-optimality, H = In×n; k = 1; Φ(M) = n−1trace(M−1);
• E-optimality, H = In×n; k = ∞; Φ(M) = max(λM−1).

where λM−1 is the eigenvalue of M−1, and Φ(M) is minimized with respect to
the sampling schedule.

1.1. Local optimal approximate design

The most frequently used approach, known as local optimal design (Fedorov,
1972), is based on designing an optimal experiment for a given nominal value p0

of the model parameter. The approach leads to an optimal experiment that de-
pends on p0. For an approximate design approach the number of measurements
to be performed need not be specified. The most commonly used criteria for
optimal experiment design are D, A, E-optimality (Feng and Siu, 1997; Cobelli
and Ruggeri, 1985; DiStefano, 1982; Kalicka, 1999; Kalicka and Bochen, 1999;
Landaw, 1982).

The D, E and A-optimality criteria were implemented and their reliability,
efficiency and applicability were analyzed and compared (Kalicka and Bochen,
1999, 2005). The resulting conclusions concerning D, E and A optimal minimal
sampling schedules are:

• Different optimization criteria used for the same data give different optimal
SS.

• D-optimal design shows the best numerical robustness and its physical
interpretation is attractive: the design minimizes the volume of the as-
ymptotic confidence region for the maximum likelihood estimate p̂ of p.
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• There are some SS optimizations that deliver, instead of OSS, a non-
optimal set of time points which are not the co-ordinates of a cost func-
tion extreme value. Our earlier work (Kalicka and Bochen, 2005) shows
that the noted lack of convergence to the optimal solution (the faulty so-
lution) for compartmental models and for D-optimal design results from
the numerical inconveniences of the searching algorithms. A fraction, a
priori unknown, of faulty results obliges one to repeat the optimization
procedure with different initial conditions to become convinced of the ac-
tual optimality of the solution. Faulty results appear less frequently for
D-optimal design than for A and E-optimal designs.

For these reasons we have decided to use D-OSS design in further investiga-
tion as a gold standard for comparing features of the newly designed criteria.

2. New OSS design

The above conclusions induced us to look for an alternative to the commonly
used methods. The alternative should not show the tendency to yield faulty
results. This requires a new direct method of finding the location for the opti-
mal sampling points. Our proposal is the method based on sensitivity analysis
(Kalicka and Bochen, 1999; Thomaseth and Cobelli, 1999).

Let us consider compartmental model of regression functions ym(p, t) and
output measurements y(ti) (1). A "true" parameter vector p0 (nominal value)
was estimated in the time domain by minimizing the weighted residual sum of
squares (WRSS) with the objective function OF

OF (y,p) = WRSS (y,p) =
N

∑

i=1

1

σ2 (ti)
· [y (ti) − ym (ti,p)]2 (7)

where y = [y(p, t1), . . . , y(p, tN)]T represents the column vector of measure-
ments. The measurement noise variance is assumed to be known as a scale
factor estimated from the final WRSS and it is equal to

√
WRSS (Kalicka,

1999). Consequently, 1
σ2(ti)

= 1
σ2 = R is a scalar factor. Parameter estimate

p̂ = argmin OF (y,p) satisfies the condition

∆pOF (y,p)|
p=p̂

= ∆pOF (y, p̂) = 0. (8)

The estimate p̂ is unbiased, with an expected value E(p̂) = p0. Sensitivity
S(t,p) of model output with respect to the parameters is

S (t,p) =









∆pym (t1,p)
T

...

∆pym (tN ,p)
T









. (9)
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S(t,p) represents the change δym in model output trajectory with respect to
the small variation δp0 in the model parameter:

δym = S (t,p) · δp0

δym = ym (t,p) − ym (t,p0) ; δp0 = p− p0.
(10)

The above results from the Taylor series expansion of ym(t,p) in the neigh-
borhood of p0. S(t,p) does not depend on measurement error and therefore
perturbation δy in model output is as follows:

δy =







∆pym (t1,p)
T

...

∆pym (tN ,p)T






· δp0. (11)

Objective function (7) in vector notation with scalar factor R and the min-
imization condition are:

OF (y,p) = [y − ym (p)]
T · R · [y − ym (p)]

T
= min

∂OF
∂p

= 0 = [y − ym (p)]
T · ∂ym(p)

∂p
, ∂ym(p)

∂p
= Sp.

(12)

For p̂ that represents the estimate vector at the minimum point of the ob-
jective function the regression function can be expressed as:

ym (p) = ym (p̂) + Sp̂ · (p− p̂) . (13)

After substituting (13) into (12)

[y − ym (p̂)]T · Sp̂ = (p− p̂)T · Sp̂
T · Sp̂ (14)

and solving the acquired equation, one obtains the formula

(p − p̂) =
[

ST
p̂ · Sp̂

]−1

· ST
p̂ · (y − ym (p̂))

δp̂ =
[

ST S
]−1 · ST · δy = W · δy.

(15)

The variation δyj in measurements yj ; j = 1, 2, . . . , N , being a result of
variation in parameter value, causes variation in parameter estimates p̂r, r =
1, 2, . . . , n. Therefore, instead of p̂r, one obtains p̂r + δp̂r and







δp̂1

...
δp̂n






=







w11 . . . w1N

...
. . .

...
wn1 . . . wnN






·







δy1

...
δyN







δp̂r =
N
∑

j=1

wrj · δyj ; r = 1, . . . , n.

(16)
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The entries of matrix WnxN [wrj ]; r = 1, . . . , n; j = 1, . . . , N show the ability
of individual measurements δyj to produce an effect on the resulting changes δp̂r

in the parameter estimates. The larger |wrj |, the more significant the impact
of measured δyj on calculated δp̂r. For small |wrj | even quite marked changes
in δyj cause no noticeable change δp̂r in parameter estimates. Therefore, the
time points which assure the highest |wrj | values are the points at which a
change in model parameter causes the most observable change in the measured
output. Hence these time points are candidates for optimal sampling points
(OSS). The approach presented is the one of approximate design. The final SS
being designed does not fulfil an optimality criterion and depends on starting
SS. The matrix W depends on the sensitivity matrix, which in turn depends on
a model regression function calculated for a given value of parameter estimates.
The idea consists in improving the initial estimate by means of a new experiment
design, which uses the estimate obtained from a previous experiment. The
previous estimate has to be chosen very carefully and has to be close to a
real parameter value, because the design is optimal for the particular chosen
regression function together with particular chosen parameter estimates.

2.1. S-optimal design

Large values of |wrj | are desirable for the effective identification of possible
variations in model parameters. This inspires the introduction of S-optimal SS
design as the set of time points at which |wrj | reaches the largest value. As
values of |wrj | within a chosen measurement protocol differ greatly, it is more
convenient to analyze |wrj/ max(wrj)| instead of |wrj |. The objective function
for S-OSS design is

OFr = max
j

(|wrj/ max (wrj)|) ; r = 1, . . . , n; j = 1, . . . , N. (17)

These maxima are detected for every r for a given experimental protocol.
The time points tj , for which OFr reaches the maxima, are candidates for S-OSS.
Every individual OFr provides information on one parameter pr; r = 1, . . . n and
delivers a number of candidates for S-OSS. A reduced S-OSS (where the number
of time points is equal to the number of parameters) consists of n optimal time
co-ordinates. We assumed additionally that every parameter pr; r = 1, . . . , n
has to have at least one representative in the S-OSS.

2.2. RS-optimal design

Let us consider the relative deviations εp̂r
and εyj

εp̂r
= δp̂r/p̂r; εyj

= δyj/yj. (18)
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These are related to wrj , as follows:

εp̂r
=

N
∑

j=1

wrj · δyj · yj

yj
· 1

p̂r
=

N
∑

j=1

vrj · εyj

vrj = wrj · yj

p̂r
.

(19)

The above indicates the possibility of using relative sensitivity for establish-
ing OSS. This we termed relative S-OSS, or RS-OSS. Objective function for
RS-OSS design is

OFr = max
j

(|vrj/ max (vrj)|)
r = 1, . . . n; j = 1, . . .N.

(20)

Designing the RS-OSS requires a similar procedure to that described for
S-OSS. The maxima of OFr that are detected and time points tj , for which
OFr reaches the maxima, are taken as candidates for RS-OSS. Each individual
OFr gives information on one parameter pr; r = 1, . . . n and delivers a number
of candidates for RS-OSS. Reduced S-OSS (where the number of time points
is equal to the number of parameters) consists of n optimal time co-ordinates.
Each parameter pr; r = 1, . . . n has to have at least one representative in the
RS-OSS.

The maxima of wrj and the maxima of vrj have different time co-ordinates.
This is because the term yj in equation (19) changes subsequent values of wr

into vrj in a non-linear way.
The MATLAB implementation of fmins procedure was used to solve the D,

S and RS-optimal SS problem. The purpose of fmins is to minimize a function
of several variables. The syntax x = fmins(′fun′,x0) returns a vector x (a set
of optimal sampling points), which is a local minimizer of fun(x), with x0 as a
starting point. For different optimization criteria fun(x) gets the proper form
of Φ(M) or of OFr.

The results obtained for S and RS criteria were compared with the results
obtained for D-optimal SS design.

3. Cases under study

To examine S-OSS and RS-OSS and to compare these to D-optimization two
stationary model functions (a) and (b) have been chosen. For model (a) the pa-
rameter values and the error imitate the result of a pharmacokinetic experiment
(McIntosh and McIntosh, 1980) concerning the distribution of gonadotropine
administered in an intravenous injection. Intuitive SS consisted of N = 23 sam-
ples collected over a time interval of 0 ÷ 117 hours. Regression function giving
the best fit to data was ym = p1 exp(−p2t) + p3 exp(−p4t) with initial "true"
parameter vector p0 = [19 0.02 6 0.5] and weighted residual sum of squares
WRSS = 0.341. The model (b) (Thomaseth and Cobelli, 1999) is described
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by an input-output relationship ym = exp(−p1t) + exp(−p2t) + exp(−p3t) with
initial parameter vector p0 = [5 4 1].

Simulated data were used to assess the properties of S and RS-optimal de-
signs and to compare these methods with D-optimal design. Regression func-
tions were used as the basis for the simulation, yielding 1000 sets of data. "Mea-
surements" were simulated as sets of numerical values ym (p0, ti) ; i = 1, . . . , N
with measurement error e(ti) - Gaussian, N(0,

√
WRSS). For model (a) each

set of simulated data contained 2401 samples related to subsequent time points
in the time interval t ∈ (0, 240) with step dt = 0.1. For case (b) each set of
simulated data contained 201 samples over the time interval t ∈ (0, 2) with step
dt = 0.01.

4. Results

4.1. Simulation technique

To validate the simulation technique adopted we perform a number of tests.
Let us take, as an example, model (a). Simulated data were generated by
adding uncertainty, selected randomly from normally distributed population
N(0,

√
WRSS) to the exact response of the model calculated for p0. Next, the

parameters were re-estimated for the data generated by minimizing the weighted
residual sum of squares (WRSS). After 1000 simulation runs we obtained 1000
estimates for each pi. Mean parameter estimates p̄i, their standard deviations
σpi

= std devpi
and the errors ∆ are defined as follows:

p̄i = 1
1000

1000
∑

r=1
pr

i

σpi
= std devpi

=

√

1
999

1000
∑

i=1

(pi − p̄i)
2

∆ = |pi0−p̄i|
pi0

[%] .

(21)

The Kolmogorov-Smirnov test (Filliben, 2006; Krysicki, Bartos and Dyczka,
1986) was used to answer the question of whether the sample (1000 parameter
estimates) came from a normal distribution population. The test statistic D
has the form:

D = max
1≤r≤1000

(

F (pr
i ) −

r

1000
,

r

1000
− F (pr

i )
)

(22)

where F is the theoretical cumulative normal distribution, i = 1, .., n is the pa-
rameter number and r = 1, .., 1000 is the simulation number. The Kolmogorov-
Smirnov test accepts the normality hypothesis concerning parameter estimates
at significance level α = 0.1. The test statistic D obtained was 0.0170, 0.0202,
0.0197 and 0.0271 respectively for p1 ÷ p4, which is not greater than the critical
value (the cutoff value) obtained from a table for N = 1000 and equal to 0.0386.
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The hypothesis is accepted that the data were taken from a normal distribution
with a mean of p̄i and a standard deviation of σpi

. We therefore concluded that
we have 1000 normally distributed estimates for each pi .

The results are presented in Table 1. As the table shows, the mean parameter
estimates p̄i are very close to their nominal values. This validates the adopted
simulation technique and ensures that the simulation is not the reason for any
discrepancy which may appear in the optimization results for S, RS and for the
D-optimal design.

Table 1. Mean parameter estimates p̄i, standard deviations σpi
and ∆[%] calcu-

lated on the basis of 1000 simulation runs for model (a) with nominal parameter
vector p0 = [19 0.02 6 0.5].

- p̄i σpi
∆[%]

p1 18.99197 0.07497 0.042
p2 0.019987 0.00009 0.065
p3 6.008938 0.24663 0.148
p4 0.499735 0.03522 0.053

The Kolmogorov-Smirnov test was also adopted in the later parts of this
paper when the normality hypothesis was postulated for scatter in S, RS and
D-optimal points ti and scatter in parameters pi re-estimated for S, RS and
D-optimal SS.

4.2. Model (a) - S and RS-OSS optimal design

The time course of |wr/ max(wr)| and of |vr/ max(vr)| for the nominal parame-
ter vector p0 = [19 0.02 6 0.5] are presented in Figs. 1 and 2, respectively. The
four curves are drawn for pr; r = 1, 2, 3, 4 over time interval 0 ÷ 240 minutes,
with a time step of 0.1. The time co-ordinates of maxima of |wr/ max(wr)|
and |vr/ max(vr)| were identified (Table 2) and the levels of these maxima (in
brackets) were calculated. In Table 2 the time co-ordinates of the maxima are
ordered according to the levels of the maxima, from the largest to the smallest.
In this way the maxima are ordered from the most significant to the least sig-
nificant for parameter estimation purpose. The time co-ordinates of subsequent
max|wr/ max(wr)| and max|vr/ max(vr)| are shifted. The shift is larger for
time co-ordinates more distant from t = 0.

As can be seen from the table (columns 1 and 3), |wr max| and |vr max| differ
greatly within the analyzed measurement protocol: |w3 max| : |w2 max| ≈ 20 and
|v4 max| : |v2 max| ≈ 80. Therefore, it is rational to analyze |wr/ max(wr)| and
|vr/ max(vr)| instead of |wr| and |vr|. Sampling schedules S-OSS and RS-OSS
are selected on the basis of |wr/ max(wr)| and |vr/ max(vr)|, respectively. The
steps in choosing optimal time points (similar for both approaches) are:
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Figure 1. Functions |wr/ max(wr)| for parameter pr, r = 1, . . . , 4 at points
j = 1, . . . , 2401 for time tj = (j − 1)/10 = 0 ÷ 240.
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Figure 2. Functions |vr/ max(vr)| for parameter pr, r = 1, . . . , 4 at points
j = 1, . . . , 2401 for time tj = (j − 1)/10 = 0 ÷ 240.
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Table 2. Co-ordinates of maxima of |wr/ max(wr)| and of |vr/ max(vr)| for
model (a) over time interval t ∈ (0, 240). The time points in the table are
ordered according to the level of the maxima (in brackets), from the largest to
the smallest value.

Maxima of Time co-ordinates of Maxima of Time co-ordinates of
|wr/ max(wr)| maxima |vr/ max(vr)| maxima

With t1 = 0.00 → (1.00) With t1 = 0.00 → (1.00)
respect to p1 t2 = 11.1 → (0.86) respect to p1 t2 = 10.1 → (0.53)
|w1/w1max| t3 = 1.90 → (0.52) |v1/v1max| t3 = 1.80 → (0.43)
|w1 max| = t4 = 102 → (0.19) |v1max| = t4 = 76.8 → (0.03)

= 9.8 · 10−3 = 1.3 · 10−2

With t1 = 0.00 → (1.00) With t1 = 0.00 → (1.00)
respect to p2 t2 = 10.3 → (0.81) respect to p2 t2 = 9.90 → (0.51)
|w2/w2max| t3 = 1.90 → (0.52) |v2/v2max| t3 = 1.80 → (0.43)
|w2 max| = t4 = 83.0 → (0.49) |v2max| = t4 = 58.0 → (0.10)

= 8.9 · 10−3 = 1.1 · 10−2

With t1 = 0.00 → (1.00) With t1 = 0.00 → (1.00)
respect to p3 t2 = 4.20 → (0.14) respect to p3 t2 = 4.00 → (0.10)
|w3/w3max| |v3/v3max|

|w3 max| = 0.18 |v3 max| = 0.74
With t1 = 0.00 → (1.00) With t1 = 0.00 → (1.00)

respect to p4 t2 = 2.70 → (0.47) respect to p4 t2 = 2.50 → (0.37)
|w4/w4max| t3 = 14.4 → (0.11) |v5/v5max| t3 = 13.8 → (0.06)

|w4 max| = 0.02 t4 = 106 → (10−3) |v4 max| = 0.88 t4 = 80.9 → (0.003)

1. Calculate |wr/ max(wr)| (|vr/ max(vr)|) for the experimental protocol.
Find the co-ordinates of max |wr/ max(wr)| (max |vr/max(vr)|) and or-
der them from the most significant to the least significant, as shown in
Table 2.

2. Take the best t1 point and place it in the SS. There are four equally good
time points. These are the co-ordinates of the highest maxima for all
parameters. The four t1 time points are identical and for r = 1, 2, 3, 4 give
one candidate for OSS: t = 0. Therefore, at present, S-OSS = [0,−,−,−],
(RS-OSS = [0,−,−,−]).

3. Take the best t2 of the largest value of |wu/ max(wu)|, (|vu/ max(vu)|).
Add it to the previous OSS. Therefore, at present, S-OSS = [0, t2u,−,−],
(RS-OSS = [0, t2u,−,−]). In the further search do not take into account
the already used |wu/ max(wu)|, (|vu/ max(vu)|).

4. Take the best t3 of the largest value of |ws/ max(ws)|, (|vs/ max(vs)|). Add
it to the previous OSS. The current S-OSS = [0, t2u, t3s,−], (RS-OSS =
[0, t2u, t3s,−]). In the further search do not take into account the already
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used |wu/ max(wu)|, (|vu/ max(vu)|) and |ws/ max(ws)|, (|vs/ max(vs)|.
5. Take the best t4 of the largest |wt/ max(wt)|, (|vt/ max(vt)|). The final

S-OSS = [0, t2u, t3s, t4t] (RS-OSS = [0, t2u, t3s, t4t] ).

Sensitivities max |wr/max(wr)| and max |vr/max(vr)| were calculated and
the co-ordinates of the maxima were selected in the programming environment
MATLAB, using previously developed software (Kalicka and Bochen, 1999).
The results of the individual steps of the algorithm and the final choice for
model (a) are presented in Table 3.

S, RS and D-OSS start from the same zero time point. D-OSS ends earlier
than RS and S-OSS. In the above example p1 is represented once in S-OSS and
in RS-OSS (the first step), while p2, p3 and p4 are represented twice (steps 2, 3
and 4 respectively).

Table 3. Selection of S-OSS and RS-OSS on the basis of wr = |wr/ max(wr)|,
and |vr/ max(vr)|. For comparison, D-OSS is given in the last row of the table.

step |wr/ max(wr)| |vr/ max(vr)|
1 For pr, r = 1, 2, 3, 4 For pr, r = 1, 2, 3, 4

[0, _, _, _] [0, _, _, _]
2 For pu, u = 2 pu, u = 2

[0, 11.1, _, _] [0, 10.1, _, _]
3 For ps, s = 3 For ps, s = 3

[0, 11.1, 1.9, _] [0, 10.1, 1.8, _]
4 For pt, t = 4 For pt, t = 4

[0, 11.1, 1.9, 105.8] [0, 10.1, 1.8, 80.9]
Final S-OSS RS-OSS
choice [0, 1.9, 11.1, 105.8] [0, 1.8, 10.1, 80.9]
Gold D-OSS D-OSS

standard [0, 1.9, 9.6, 60.3] [0, 1.9, 9.6, 60.3]

4.3. Model (b) - S and RS-OSS optimal design

Time time courses of |wr/ max(wr)| and |vr/ max(vr)| for nominal parameter
vector p0 = [5 4 1] are presented in Fig. 3. The time co-ordinates of the maxima
of |wr/ max(wr)| and |vr/ max(vr)| and the values of subsequent maxima (in
brackets) are presented in Table 4. Similarly, as for case (a), time co-ordinates
of subsequent maxima of |wr/ max(wr)| and |vr/ max(vr)| are shifted.

As can be seen from the above, there are two equally good values of t1 for
|wr/ max(wr)|: t1 = 0.10 (for p1 and for p2) and t1 = 1.65 (for p3). There-
fore, the first step for |wr/ max(wr)| gives two optimal sampling times. For
|vr/ max(vr)| all t1 points are the same: t1 = 0.08.
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Table 4. Co-ordinates of the maxima of |wr/ max(wr)| and |vr/ max(vr)| for
model (b) over time interval t ∈ (0, 2). The time points in the table are ordered
according to the values of maxima (in brackets).

Maxima of Time co-ordinates of Maximum of Time co-ordinates of
|wr/ max(wr)| maxima |vr/ max(vr)| maxima

With t1 = 0.10 → (1.00) With t1 = 0.08 → (1.00)
respect to p1 t2 = 0.59 → (0.62) respect to p1 t2 = 0.52 → (0.21)
|w1/w1 max| t3 = 1.87 → (0.36) |v1/v1max| t3 = 1.54 → (0.03)
w1max = 2.5 v1 max = 1.1

With t1 = 0.10 → (1.00) With t1 = 0.08 → (1.00)
respect to p2 t2 = 0.57 → (0.77) respect to p2 t2 = 0.49 → (0.27)
|w2/w2 max| t3 = 1.84 → (0.46) |v2/v2max| t3 = 1.52 → (0.04)
w2max = 1.7 v2 max = 0.95

With t1 = 1.65 → (1.00) With t1 = 0.08 → (1.00)
respect to p3 t2 = 0.09 → (0.65) respect to p3 t2 = 0.43 → (0.32)
|w3/w3 max| t3 = 0.48 → (0.53) |v3/v3max| t3 = 1.28 → (0.16)
w3 max = v3max =

= 3.8 · 10−3 = 5.7 · 10−3

Table 5. Selection of S-OSS and RS-OSS, for model (b), on the basis of wr =
|wr/ max(wr)| and |vr/ max(vr)|. For the purpose of comparison D-OSS is given
in the last row of the table.

Step |wr/ max(wr)| |vr/ max(vr)|
1 For pr, r = 1, 2 For pr, r = 1, 2, 3

[0.10, _, _] [0.08, _, _]
For pr, r = 3
[_, 1.65, _]

2 For pu, u = 2 For pu, u = 3
[_, _, 0.57] [_, 0.43, _]

3 SS already consists of 3 For ts, s = 2
time points [_, _, 1.52]

Final S-OSS RS-OSS
Choice [0.10, 0.57, 1.65] [0.08, 0.43, 1.52]
Gold D-OSS D-OSS

Standard [0.14, 0.51, 1.47] [0.14, 0.51, 1.47]
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Figure 3. Functions |vr/ max(vr)| and |vr/ max(vr)| for parameter pr, r = 1, 2, 3
at points j = 1, . . . 201 for time tj = (j − 1)/100 = 0 ÷ 2.

The optimal SS for the three criteria considered do not differ noticeably.
D-OSS starts later then the others and ends earlier then RS and S-OSS end. In
the above example p1 and p3 are represented twice and p2 is represented once
in the S-OSS. In the RS-OSS, p1 has one representative and p2 and p3 have two
representatives.

4.4. Comparison of D, S and RS-OSS criteria

More detailed results will be presented on the exemplary model (a), a two-
compartmental model with four macro-parameters. In order to compare prop-
erties of D, S and RS-OSS we used the simulation technique described in section
4.1. The whole process of simulation and parameter estimation, delivered 1000
simulated model functions and 1000 sets of OSS calculated using S, RS and
D-optimal design.

Scatter in ti was analyzed for the criteria tested. We concluded that ti are
normally distributed (the Kolmogorov-Smirnov test hypothesis of normality was
accepted at the significance level α = 0.01). Table 6 presents the mean optimal
sampling points t̄i and σti

= std devti
and subsequently for S, RS and D-optimal

design for model (a).
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Table 6. Scatter in OSS = [t1 t2 t3 t4], mean values t̄i = 1
1000 ·

1000
∑

r=1
tri standard

deviations σti
= std devti

and CV = σti
/t̄i[%] for S, RS and D-optimal design,

model (a).

S-optimal SS t1 t2 t3 t4
t̄i 0.0 1.9 11.1 105.8

σti
= std devti

, CV % 0.0 0.13, 6.8% 0.57, 5.1% 0.69, 0.6%
RS-optimal SS t1 t2 t3 t4

t̄i 0.0 1.8 10.1 80.9
σti

= std devti
, CV % 0.0 0.14, 7.7% 0.56, 5.5% 0.72, 0.9%

D-optimal SS t1 t2 t3 t4
t̄i 0.0 1.9 9.6 60.3

σti
= std devti

, CV % 0.0 0.1, 5.3% 0.5, 5.2% 0.8 ,1.3%

It should be noted that:

• Different optimization criteria used for the same model function gave dif-
ferent OSS and consequently gave different mean sampling points t̄i.

• S and RS-OSS and D-optimal criteria give t = 0 as the first optimal point
(while E-optimal design, for instance, does not).

• When compared, scatter in OSS for S, RS and D-OSS are found to be
similar. The last optimal sample t4 has an even smaller coefficient of
variation value for S-optimal (CV = 0.6%) and RS-optimal (CV = 0.9%)
design than it has for D-optimal design (CV = 1.3%).

Table 7 presents the comparison of parameter estimates obtained on the basis
of intuitive sampling schedule ISS (23 samples not uniformly, but intuitively
allocated over a time interval of 0-117 hours) and of D, S, and RS-OSS designs.
These particular results were obtained for an exemplary simulation (one out of
1000 simulation runs).

The general conclusion is that S, RS and D-OSS give very similar results.

There is a loss in parameter accuracy for every minimal optimal SS (4 sam-
ples) in relation to the numerous ISS (23 samples). This is the price paid for
decreasing the cost and onerousness of clinical measurements. D, S and RS-OSS
give almost the same parameter estimates and coefficients of variation. There-
fore, the newly designed criteria S and RS give equally good results as the D
criterion as far as parameter estimates and accuracy are concerned. The newly
designed criteria have an important advantage over D-optimal design. They do
not have a tendency to give a non-optimal solution instead of the optimal one,
as happens with D-optimal design.

Other results (Kalicka and Bochen, 1999, 2005) show that there is a fraction
of optimization procedures which ends in a faulty solution and not in the optimal
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Table 7. Parameter estimates pi and coefficient of variation CV % calculated for
model (a) with nominal parameter vector p0 = [19 0.02 6 0.5].

p1 p2 p3 p4

(CV %) (CV %) (CV %) (CV %) WRSS
ISS 19.19 0.020 6.075 0.497 0.265

23 non optimal samples (2.5%) (3.6%) (9.1%) (21%)
D-OSS 18.94 0.0197 6.811 0.554 0.299

4 optimal samples (4.8%) (10%) (16%) (32%)
S-OSS 18.95 0.0198 6.797 0.555 0.299

4 optimal samples (5.0%) (13%) (16%) (32%)
RS-OSS 18.95 0.0198 6.800 0.559 0.299

4 optimal samples (4.7%) (11%) (15%) (31%)

one according to the D-optimality criterion. For a k-compartmental model,
minimal OSS consists of n = 2 ∗ k time points. The objective function is then
spread over the multi-dimensional time space. A special procedure was designed
(Kalicka and Bochen, 2005) to determine the exact number and location of the
objective function extremes in an allowable time domain. The noted lack of
convergence to the optimal solution (the faulty solution) for some searching
algorithms results from numerical inconveniences and not from the existence of
local extremes of the objective functions of compartmental models. The lack
of local extremes does not guarantee that the optimization algorithm provides
the global extreme. The proportion of faulty solutions for D-optimal design is
of several percent. The proposed S and RS-optimal designs find candidates for
OSS over the time interval on the basis of the investigation of subsequent wrj

and vrj , r = 1, .., n for the maxima. There is therefore a need to repeat the
calculation to be convinced of the D-optimality of the solution.

The last column of Table 7 contains the weighted residual sum of squares
(WRSS). When WRSS is calculated for OSS estimates with respect to OSS
time points, it is equal to zero. This does not mean that the estimates are fault-
less but rather that the model function proposed provides a correct description
of the functioning of the system. Therefore, WRSS was calculated with respect
to ISS for estimates based on OSS, in other words – with respect to N = 23
points of intuitive SS. A slight increase in WRSS for reduced OSS causes an
increase in CV % calculated for parameter estimates based on OSS.

A nominal parameter vector p0 = [19 0.02 6 0.5] was used for simulation of
1000 model functions, which gave 1000 sets of OSS calculated using S, RS and
D-optimal design. For every reduced OSSs = [t1 t2 t3 t4], s = 1, .., 1000, the
parameters pi were re-estimated. Altogether there were 3000 simulation sets
with 1000 for each criterion. The histograms presented in Fig. 4 show scatter in
pi re-estimated on the basis of 1000 simulations. Assuming a normal distribution
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Table 8. For model (a): mean p̄i, standard deviations σpi
and ∆[%] for parame-

ters p1÷p4 obtained for S, RS and D-OSS design on the basis of 1000 simulation
runs.

p1 p2 p3 p4

(∆%) (∆%) (∆%) (∆%)

p̄i 18.92 0.0201 6.096 0.5612

S-OSS (0.5%) (0.5%) (1.6%) (12.2%)

σpi
1.049 0.0028 1.209 0.2792

p̄i 18.79 0.0198 6.217 0.5284

D-OSS (1.1%) (1.0%) (3.6%) (5.7%)

σpi
1.081 0.0022 1.214 0.2268

p̄i 18.84 0.0199 6.175 0.5248

RS-OSS (0.8%) (0.5%) (2.9%) (4.9%)

σpi
1.025 0.0023 1.169 0.2098

of pi (the Kolmogorov-Smirnov test hypothesis of normality was accepted at
significance level α = 0.01), we have calculated p̄i and σpi

, which are shown in

Table 8. Additionally, in brackets, deviations are given ∆ = |pi0−p̄i|
pi0

[%] for pi0

and p̄i, i = 1, 2, 3, 4. A comparison of p̄i and σpi
allows us to frame conclusions

concerning the OSS criteria under scrutiny. The smaller the dispersion σpi
and

the closer to the initial parameter value the mean p̄i (the smaller ∆), the more
reliable and efficient the optimization criterion.

The shaded cells in Table 8 show estimates which are the closest to their
nominal values. In the column related to p1 the most accurate (the smallest σpi

and ∆[%]) are estimates obtained for S-OSS design. For parameter p2, the S
and RS designs are equally good and are better than D-OSS. For p3 and for p4

S-optimal and RS-optimal design respectively turned out to be the best. D-OSS
was never indicated as being the best with respect to ∆[%]. This conclusion
is in compliance with expectation - S and RS-OSS search for the time points
which are most capable of reflecting the actual parameter value.

S and RS-OSS do not give faulty solutions. This is because distribution
of maximum values of objective functions over time interval in known exactly
on the basis of analysis of wrj(vrj). Criteria like that for D-optimal design,
based on the Fisher information matrix, search the multidimensional space to
determine the extreme point of criterion function. The percentage fraction (in
1000 simulation runs) of faulty, or non-optimal, SS was 1.9% for D-OSS. No
solution obtained from the reduced optimal S and RS sampling schedule was
faulty.
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a) For S-OSS

b) For RS-OSS
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c) For D-OSS

Figure 4. Histograms showing scatter in pr, r = 1, . . . , 4 (model (a)) calcu-
lated for 1000 simulation runs. In the background there are normal distribution
functions accepted by the Kolmogorov-Smirnov statistical test at significe level
α = 0.01.

5. Conclusions

An S and RS-optimal sampling schedule design has been presented. These
optimization criteria are based on maximization of the parameter estimate sen-
sitivity to changes in measurements. This method allows the location of optimal
sampling points to be found in a direct manner. This is a crucial asset in compar-
ison with methods which search for an extreme of objective function (expressed
by means of the Fisher information matrix) spread over multi-dimensional space
of time. This is the reason for accidental stopping of the algorithm in a faulty
solution. The optimal designs presented are free from this inconvenience. The
location of maximum values of an objective function over a time interval is
known on the basis of investigation of subsequent wrj and vrj , r = 1, .., n for
maxima at tj . Co-ordinates tj are candidates for OSS. The best n from these
form the reduced S-OSS (RS-OSS). The search procedure is free from the in-
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conveniences which may occur when the minimum of an objective function is
sought (such as for D-OSS) over multi-dimensional parameter space and the
procedure may end in a false solution.

The new criteria were compared with the D-OSS approach. Different criteria
give different OSS. A simulation technique was used for analyzing the way in
which the OSS criteria under consideration influence parameter estimates. The
simulation technique adopted was tested to show that it is not the reason for
a discrepancy in optimization results. The process of simulation (1000 simula-
tion runs) and parameter estimation gave 1000 sets of parameter estimates for
each criterion. The results of simulations show that parameter estimates were
normally distributed, which was verified by means of the Kolmogorov-Smirnov
goodness-of-fit tests. To validate the simulation technique adopted we per-
formed a set of simulations. The parameter estimates obtained on the basis of
numerous (not for reduced minimal) simulated measurements with normal ad-
ditive noise turned out to be normally distributed at significance level α = 0.1,
which validates the simulation technique adopted.

Next, the process of simulation and parameter estimation was used to obtain
1000 simulated model functions and 1000 sets of OSS calculated using S, RS and
D-optimal design and 1000 of the model parameters re-estimated for the reduced
optimal designs. Scatter in optimal ti and in re-estimated pi was analyzed for
the criteria tested. The hypothesis of normality for ti and for pi was accepted at
significance level α = 0.01. Mean parameter estimates and standard deviations
ware calculated, analyzed and compared. The results of 1000 simulation runs
for each method show that S and RS-optimization could be considered as an
alternative to D-optimization. All the methods have a similar accuracy, while
S and RS-optimization never give faulty solutions.
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