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Abstract: The so-calledinguistic summaries of databasese the
semi-natural language sentences that enable distilliagrthst relevant
information from large numbers of tuples, and present ithiea human
consistent forms. Recently, the methods of constructinigealuating lin-
guistic summaries have been based on Zadeh'’s fuzzy sets) védpresent
uncertain data. The main aim of the paper is to enhance ared@ee the
Yager's approach to linguistic summarization of data. Emnkancementis
based on interval-valued fuzzy sets. The newly presentedads enable
handling fuzzy concepts, whose membership degrees aréveotlny real
values explicitly, but are approximated by intervalg/inl]. From now
on, the Yager’s approach can be viewed as a special case ofdtiod
presented in this paper. Finally, illustrative examples@esented.
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1. Introduction
1.1. Motivation

The amount of data, stored and processed electronically;oing exponentially.
People’s natural capabilities to grasp all information ebhis necessary to manage
and control various processes (business, scientific, rae@ic.) are naturally limited,
therefore the need for computational support is well vésilbh particular, tools which
enable extracting information and knowledge from large benof figures, as well
as of presenting the extracted data in natural languagebeaery helpful. In this
study, we intend to focus olinguistic summarization of databasascording to the
Yager's approach (Yager, 1982; Yager, Ford, and Canas,, 1991 ) in which knowl-
edge obtained from a database is presented in the sampl@fdMmNY YOUNG girls
are VERY TALL, whereMANY, YOUNG, andVERY TALL are linguistic expressions
handled by fuzzy sets (Zadeh, 1965, 1975, 1983).
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The main motivation for extending this approach by the usetefval-valued fuzzy
sets is that memberships of properties/phenomena/fagtaotée expressible in terms
of real values, as in Zadeh’s membership functions. Fuzzyegmear insufficient when
determining the terms objective meanings in summariesaisiitessary condition to
provide a relevant linguistic description of numeric dakdembership functions for
these terms should be constructed on the basis of at least exfeerts’ knowledge.
Even if done so, final membership levels used in summariessrally the average
(arithmetic or weighted) or the median of levels given byerxp. Naturally, this causes
the loss of differences which appear when experts proposebmeships according to
their knowledge. Therefore, the use of interval-valuedjugets and of their interval-
valued membership functions is expected to provide batignzore natural handling of
experts’ propositions for membership levels. Thus, thielarpresents the methods for
obtaininglInterval-Valued Linguistic Summaries of Databagédsch are an extension
of the Yager’s linguistic summaries, and include them asexisppcase. Some basic
ideas for interval-valued linguistic summaries of datalsasave already been given in
Niewiadomski (2005a, d).

1.2. Linguistic summarization of data

Summarizing datas the process which allows to grasp and shortly describbaglo
tendencies appearing in a set of stored data without doimyieddrecord-by-record”
analysis. Summarization is defined by Mani and Maybury (1289

Summarization is the process of distilling the most impatrtaformation

from a source (or sources) to produce an abridged versica particular

user (or users) and task (or tasks)
Linguistic information and knowledge can be obtained fromtathases via many dif-
ferent algorithms, computational methods, and under masyraptions. This is the
subject of wider considerations about fuzziness and itsections with human per-
ceptions and natural language. The various points of vienpegsented by Bosc and
Pivert (1992), Bosc et al. (2002), Raschia and MouaddibZ2@®asmussen and Yager
(1997, 1999), and by Srikanth and Agrawal (1996). Howebway tare all based on the
assumptions and — in general — on philosophy which diffensifthe basic ideas given
by Yager (1982).

It can be easily noticed that automated generation of seesecontaining crisp
qualifications does not seem to be a problem for statistiedhods. The summariza-
tion via statistical tools may apply means, medians, stahdeviations, and other well
known indices. However, such a manner of interpreting datanderstandable and
practicable for rather small and specialized group of peoglich as analysts, man-
agers, etc. According to Yager, Ford and Canas (1990):

. summarization would be especially practicable if it ldoprovide us
with summaries that are not as terse as the mean, as welladingr¢he
summarization of non-numeric data
Naturally, people express information in natural languatgnce, the main assumption
for user friendly summarization is to give results formathtinguistically, not numeri-
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cally. Therefore, the effects in the form Bfany people have bought cheap cars in last
yearsrather tharBetween 1998 and 2004 3.8% of customers have bought a cae of th
average price of 10,376.99 Euare expected, not only by an average user, but also by
qualified personnel frequently needing approximated antpawt information, instead
of detailed figures and thousands of raw tuples.

Thus, fuzzy sets, which provide computational support amdastics for linguis-
tic summaries of databases, are employed in modeling tigeiifitic terms describ-
ing features of objects, e.g/ERY TALL, LOW PRICE, Or HIGH SPEEQ and amounts
of records/objects/tuples satisfying given propertieg, @ucH LESS THAN 1000,
ABOUT 10, ABOUT HALF, Or ALMOST ALL. These elements of summaries are called
summarizerandlinguistic quantifiersrespectively, and the main idea presented here
is to apply interval-valued fuzzy sets to model them, in otdeobtain more universal
and satisfactory linguistic summaries of databases.

1.3. Basic definitions
1.3.1. Fuzzy sets

A fuzzy setd in a non-empty universe of discourdgis the classical set of ordered
pairs

A=g {<z,palz) >z e X} 1)

whereps: X — [0,1] is themembership function off, whose values express the
membership level of in A (Zadeh, 1965). Each functigny may be seen as a gener-
alization of the characteristic function of the crisp get in this sense, crisp sets are
special cases of fuzzy sets.

A fuzzy setA in X is normalif and only if

sup pa(z) = 1. 2)
zeX

An a-cutof 4, « € [0, 1], is the crisp sefl,, C X having the characteristic function

1, ifpalx)>a
Xa. (@) = { 0, otherwise (3)

A is convexf and only if Vo € [0,1] A, is convex in the classical sense.
Cardinality of a fuzzy setd in a finite X can be represented as

card(A) = Z palz). 4)

zeX

The method is called-count and, in contrary to th&uzzy cardinalitie®f fuzzy sets,
e.g. FG-count, see, e.g., Zadeh (1983)(A) is a real number.

Fuzzy sets are mostly applied to formalize linguistic angdriecise but understand-
able statements which express both properties of objegtss&ST CAR, BIG HOUSE,
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and amounts, e.QvERY FEW, ABOUT 3/4, MUCH MORE THAN 20,000, etc. In par-
ticular, the idea ofinguistic variable based on fuzzy sets, is applied to the former,
and the so-calleflizzy quantificationas the model dinguistic quantification- to the
latter.

1.3.2. Linguistic variables

A linguistic variable (Zadeh, 1975) is an ordered quintuglel, H, X, G, M >,
where:

L is the name of the variable,

H or H(L) is the term-set (linguistic values @f)

X is the universe of discourse,

G is a syntactic rule which generates values (labeld),of

M is a semantic rule which associates a term fiomith a fuzzy set int'.

A linguistic variable is exemplified byZ="temperature”,H(L) = {low, medium,
acceptable, high, very highxX = [-50°C, +50°C], in which M associates to e.g.
"very high” a non-decreasing monotonic and continuous nmenstiip function inx’,
etc. Values of the membership functions of fuzzy setgimre interpreted asom-
patibility levels i.e. the degrees in which labels given are relevant’sp e.g. the
compatibility level 0f39°C with "low temperature” i9) and with "very high” —0.9.

1.3.3. Linguistic quantifiers

The predicate calculus in the two-valued logic is extendgdhle use ofexistential

3, andgenera) v, quantifiers. Similarly, linguistic predicates can be difeed by
the linguistic quantifiers which are natural language stetets expressing amounts
or numbers of objects, e.g.ESS THAN HALF. There are two (canonical) forms of
linguistically quantified propositions

Q) objects ares; (5)
denoted also a§’, and
Q objects beings, aresS; (6)

or Q! (zadeh, 1983; Liu, Kerre, 1998). In terms of fuzzy logk;, and S, are the
labels associated with fuzzy sets, apds a linguistic pronouncement of quantity rep-
resented by a normal and convex fuzzy set in a non-negativerse of discourse
Y C R*T U {0}. In particular, two types of the Zadeh fuzzy quantifiers candis-
tinguished:absolute e.g. ABOuT 1000,BETWEEN 3 AND 6, which are fuzzy sets in
R* U {0}, andrelative, e.g. ABOUT HALF, VERY FEW OF, which are fuzzy sets in
[0, 1].

The degree of truth of proposition (8), is computed via the membership function
of a fuzzy quantifie and via cardinalities of fuzzy sets iti associated t&, Ss.

corls)

% (7)

T ( Q objects ares) = ug (
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whereM = card(X) if Q is relative, and\/ = 1 if @ is absolute. And for (6):

(8)

T ( Q objects beings, areS;) = pg (M)

card(Sz)

Moreover, in (6),5; can be interpreted asportance

2. Classical linguistic summaries

This section is intended to present the most fundamentaiimdtion on linguistic sum-
marizing of databases by Yager and on its selected improweme€rucial terms and
definitions are introduced, on the basis of which the intevatued-fuzzy-set-based
approach is then explained in detail in Section 4.

2.1. The Yager approach: the point of departure

"To summarize a database linguistically” means — accordinyager — to build a
natural language sentence which describes amounts of efettat have the chosen
properties (Yager, 1982). In general, a linguistic sumnudiy database by Yager is in
the form of

Q P are/haves [T 9)

where the symbols are interpretéglis a determination of amount (a quantity in agree-
ment), or alinguistic quantifier e.g. ABOUT HALF, FEW, MORE THAN 150. P is a
subject of summary; it is determined as a set of objects floensummarized data-
base. These objects manifest the attributes with valudtewiin the fields of records.
S is a feature of interest, the so-callsdmmarizere.g. LOW TEMPERATURE, HIGH
SALARY. T is a quality measure for the summasaydegree of truthor a truth of a
summarywhich describes the reliability of the quantity pronounesnt) for a given
featureS. T' is a real number from the intervil, 1], and it is interpreted abe level of
confidencdor a given summary.

If y1, y2,..., ym are the objects which manifest an attribliteand the value o¥
for y; is denoted a¥ (y; ), thenT is computed as a value of the membership function
of a quantifierQ:

-
T=pq () (10)
if Q is relative or
T = po(r) (11)

if @ is absolute, where

r= s (V). (12)
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A sample summary, constructed in this way, is:
ABOUT HALF of my friends haveiG HOUSES [0.65]

where ABOUT HALF andBIG HOUSEare the linguistic quantifier and the summarizer,
respectively, both handled by fuzzy sets.

2.2. Extensions of linguistic summaries

Yager’s idea of linguistic summarization was extended bgi@e and Srikanth (1996).
Apart from original application of genetic algorithms, yh®rmulated the linguistic
summary which concerns more than one attribute, and th&deusts are joined by
the '’AND’ connective, e.gTALL AND VERY YOUNG.

Let us define a set of objecd = {y1, y2,..., ym }, @ set of attribute¥ = {17,
Vayooy Vi b Let Xy, As,..., X, be the domains o¥3, Va,..., V,,, respectively. The
attributes fromV” describe objects frony; this is denoted a¥;(y;) — a value of the
attributeV; for the objecty;, i=1, 2,...,m, j = 1, 2,..n. Hence, the databag& which
collects information about elements frgih is in the form of

D = {< Vl(yl)vvé(yl)a"'avn(yl) >7<Vl(y2)7‘/2(y2);-~-;vn(y2) >a
........... s < Vi(ym), Va(Um)s ooy Vo (ym) >} =
= {di,da,...,dn} (13)

wheredy, ds, ..., d,,, are the records describing objegts s, ..., ym, respectively, such
thatd; € X} x Xpx...xX,. Let Sy, Ss,..., S, be the labels associated to fuzzy sets in
X1, Xa,..., Xy, respectively. Le) be a linguistic quantifier. The expected summary is

Q objects from) are/haveS; AND S AND ... S, [T] (14)

where the summarizef is expressed as the family of fuzzy sét$,, Sa,..., Sn}. s
is the membership function determined as

/J/S(di) :jzingin " {MSJ' (‘/J(yz))}7 it=12..,m (15)
wheremin is the t-norm. This or anothet-norm is a model of the operatamD
which connects linguistic descriptions of featuresigé. Computation ofl" has not
been changed since the Yager's approach; it is still a reaben from[0, 1], and it is
interpreted as the level of confidence for a given summary.

When the number of records is relatively large and each ohtlsedescribed by
several attributes, computation 6f may be costly and/or may take much time. For
instance, when a database contains- 6000 records, described by = 12 attributes
each, it is necessary to computex n = 72000 membership degrees. Experience
shows that usually most of these degrees egulaénce the computation of them may
seem to be pointless. Therefore, the limitations which belgecrease the computa-
tional cost should be determined. One of propositional fications is presented by
Kacprzyk and Yager (2001) and Kacprzyk, Yager, and Zadyq2000, 2001) and is
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based on limiting classes of admissible summary by definiradifications of a sum-
marizet. While in Yager's and George and Srikanth’s summaries, tise danonical
form of a quantification (5) is used, this version is basedhensecond canonical form
(6) — summaries are constructed only for these objects wighifest a preselected
propertyw,, named "a query”, at a non-zero level. As the result, theckeprocess is
significantly shorter and quicker, since computation ofiman (or¢-norms, see (15))
of all attributes values for all records is not necessaryréduoer, obtained summaries
are much more interesting, informative, and close to nhlanguage.

Let us preselect a qualificatian, = S, from amongS, Sa,..., S,. The general
form of such a summary is

() objects from) being/havingu, are/haves [T (16)

and finding the degree of truth is a bit different in this cake; membership function
of the summarizer must be reformulated from (15) to

/J/S(di) = . {??2171}.7” {/’[/Sj (‘/J(yz)) t Haw,g (Vt‘](yt))} aZ' = 1) 27 ey (17)

j=

where the cofactoy.,, (V4 (y;)) means that only the tuples with the non-zero mem-
berships taS are considered in final results; other records are not cereid It must
be explained that it is necessary to preselect a database D consisting of those
recordsd; only for whichp,,, (d;) > 0, and|D’| = m/; otherwise, the computation via
(17) would be more, instead of less, complicated. The toahivership- is

r= L (18)

m/’

; Hawyg (Vg (yZ))

which is similar to the total membership (12) dividedy but differs in the form of

the denominator that is the sum of memberships ta:théeature for all objects irD.
Notice that in this case, only the relative quantificatiopdassible, which is suggested
by the specific form of- that relates the total membership to the sum of memberships
towy.

Not only numerical data can be summarized; an original aggrao textual data-
base mining and summarizing is presented by Ochelska, Bitmiski, and Szczepa-
niak (2001), and by Ochelska, Szczepaniak, and Niewiadb(®8k4). The charac-
teristic point there is a summarizer in the textual form, sdnamembership function is
computed according to its similarity to a given textual patt Moreover, the approach
is enriched by the application of intuitionistic fuzzy séfganassov, 1999).

1Another possible manner is to seek these records only, fachwét membership function takes the
greatest values, or at least equals an assumed threshold.
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2.3. Quality measures for linguistic summaries

The method of determining a quality meastitéor a linguistic summary in the basic
form by Yager, depends essentially on membership functdrssimmarizers and/or
quantifiers. When the summarizer or quantifier is determwigttbut sufficient expert
knowledge, e.g. the membership functiorvafunG MAN takesl on the whold0, 120]
interval, the informativeness of a summary is, in fact, n@awen if its degree of truth
equalsl.

That fact was noticed very early — Yager (1982), Yager, Fardi Canas (1990),
George and Srikanth (1996), Kacprzyk and Yager (2001), amcplkzyk, Yager, and
Zadrazny (2000, 2001) defined various modifications and improwvesjevhich enable
to eliminate, at least partially, the problem of subjectjuality measures for linguistic
summaries. For instance, Yager, apart from his fundamé&niadlex, defines also the
informativeness of a summark; which is computed on the basis of relations between
a summary and its "complement” in the form@p<, 5S¢, T'), whereQ° and S¢ are the
complementsl(— u(+)) for @ and forS, respectively (Yager, Ford, and Canas, 1991).

Other two quality measures are defined by George and Srika8€6) and named
constraint descriptoand constituent descriptor Both of them are summaries of a
given database, and the former one is the summary that ecmasrarge as possible
number of records with attributes meeting at least an assuhreshold of member-
ship, while the latter is the most specific summary that ggdkp largest number of
records in a database.

The quality indices of knowledge mined from databases afiaatk by Traczyk
(1997); they can express degrees of truth due to lengthstésees expressing some
facts, or due to the fuzzy set modeling properties, shap€lagtthviour”. These in-
dices are reformulated and applied by Kacprzyk, Yager, adt@ny (2000, 2001) to
determinémprecision covering appropriatenessandlengthfor a linguistic summary;
these qualities are expressed with real numbers féofr). Furthermore, the method of
finding the optimum summary for a given database is also ptedes an optimization
task.

3. Interval-valued fuzzy sets
3.1. Basic concepts

The main idea of an interval-valued fuzzy set is based on im&tead of one, mem-
bership mappings (Turksen, 1986; Gorzalczany, 1987, 19B%y are called, analo-
gously to ordinary fuzzy setshe lower membership functi@ndthe upper member-
ship function Both are established on a universe of discod'ses a domain, and map
each element front’ to a real number in thg), 1] interval.

DEeFINITION 3.1 An interval-valued fuzzy setin X is a (crisp) set of ordered triples

A —df {< xvﬁA(x)vﬁA(:w > xE X;HAaﬁA: X — [Oal]} (19)
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where: i, 1z are the lower and the upper membership functions, respgfisatisfying
the following condition

0<p,(x) STalx) <1 Vre X, (20)

With respect to the name of this kind of fuzzy seteerval-Valuedvalues ofu , and

T4, computed for any € X have the interpretation of the lower and upper bounds of
the interval number which is the membership degree:farthe setd. That interval is
included in[0, 1] and closed on both ends.

ExXAMPLE 3.1 LetX = {36.0,36.5,37.0,37.5}. The interval valued fuzzy sdtin X
which is a model of the predicate "regular temperature of altley human body” is
defined as

A ={ <36.0,0.3,0.6] >,< 36.5,[0.8,1.0] >,
< 37.0,]0.0,0.5] >, < 37.5,[0.0,0.0] >} (21)

A sample interpretation of the elemeat 36.5,[0.8,1] > is: the minimal grade of
acceptability that temperature of 366 suitably characterizes a healthy human body
is 0.8; the maximal acceptability i$.0.

This method of data representing is very promising wheniijsossible to determine
membership degrees as real-valued. In data summarizatteryal-valued fuzzy sets
may be a very useful tool when applied as models for lingugatements expressing
both amounts and properties of objects described by recétasy could be especially
fruitful when:

1. summarized information is of the interval characterraguently occurs in tech-
nical and engineering data, e.gir pressure in tires: 220-250 kPar Device
powered with 220-23QVh medical and economical diagnosis, expert opinions,
measurements, and reducing these intervals to reals mag taeiloss of infor-
mation (i.e. presenting it too tersely or laconicallyjr

2. membership functions of quantifiers and/or summarizersanstructed accord-
ing to a few different sets of data (e.g. experts opiniong)gare Example 3.1)
and it is required to maintain this uncertainty rather theamputing average val-
ues.

Two interval-valued fuzzy setd, B in X areequalif and only if their lower and

upper membership functions take the same value¥on

A=B (@) = (@) NTig(e) = ip(z) Va € X. (22)

Aninterval-valued fuzzy set (IVFS) in X isempty iffu , () = Ti4(z) =0 Vo € X.
From the point of view of using interval-valued fuzzy setssasnmarizers it is
crucial to definecardinality of an IVFS:

2Such data must be, due to their semantics, collected andliexaeth some "margin of safety”, and,
in fact, they always consist of intervals expressing mestiips and other quantities. Very intuitive and
convincing explanations, and motivating examples of pseitey medical interval data are presented by Chen,
de Korvin, and Hu (2002).
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DEFINITION 3.2 Let A be an interval-valued fuzzy setiM. Thecardinalityof A is
the interval number

card(4) = [eard(A), zard(A)] = | 3 p, (@), 3 Falas)| 29
reX zeX
Naturally,
0 < card(A) < card(A) < card(X) (24)

Some arithmetic operations on interval-numbers, defineflity(1997), Hu, Xu,
and Yang (2002), Moore and Lodwick (2003), and by Senguth.add Chakraborty
(2001), have been recalled since they are useful in opgratircardinalities of interval-
valued fuzzy sets. Let = [a,a],b = [b,b] be intervals inR, andr € R*. The

arithmetic operationst’,” —’,’ -’ and power are defined
[a,@] + [b,0] = [a + b,a + D] (25)
a,d] [b,b] = [a—b,a@— b (26)
[a’ﬂa] [ ] = [mln{gbv@B;ab;al—)}ﬂmax{gbaggvabvag}} (27)
(la,a])" =[a",a"] for non-negative, a. (28)

In addition, the division of. by b, b #~ 0 is defined as the multiplication afby {5, i} .

The variant of (27) — the operation of multiplying/dividiag interval by a positive real
numberr € RT is needed frequently. If is treated as the degenerated intefvat],
(27) is in the form of

[Qaa]'r:[g'raa'r]' (29)

It must be emphasized that if operations (25)—(28) are todes in processing
membership values in interval-valued fuzzy sets, then smfdéional restrictions must
be taken to ensure that the set of all interval®iri] (denoted agnt([0, 1])) is closed
under these operations.

The complement of an interval-valued fuzzy gein X is denoted asi© and its
membership function has the form

pac(@) =1 = pa(@) = [1 = ia(), 1= p (@) Voex. (30)

It may be noticed that

card(A°) = (1 —Jia(x)) (31)
rzeX

card(A%) =" (1—p,(x)) (32)
rzeX

card(A) + card(A°) = card(A) + card(A°) = card(X) (33)
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and
(A°)° = A. (34)

The operations of union and intersection for interval-ealfuzzy sets are defined
by triangular norms. Le#l, B be interval-valued fuzzy sets ik, ¢t — at-norm ands —
an s-norm (t-conorm). The union ofi and B is the interval-valued fuzzy set U B
with the membership function

pavs (@) = |1, () 5 (@), Ta(@) s ip ()] (35)
and the intersection od and B is the interval-valued fuzzy set N B in which

pacn() = |1, (@) ¢y (), Fia(@) tTip ()] (36)

Thus, de Morgan laws for interval-valued fuzzy sdisB in X are

(AUB)¢=A°nB°¢ (37)

(AN B)¢ = A°U B“. (38)
Moreover

AUA=A (39)

ANA=A (40)
but usually

AUA 4 X (41)

AN A° £ 0. (42)

3.2. Type-reduction

The operations that enable converting an interval-valugadyf set into an ordinary
fuzzy set and maintaining, at least partially, pieces adiinfation stored in the former
one, are frequently needed. This kind of operation is callesome wider sensgype-
reductionby Karnik and Mendel (1998, 1999) and Mendel (2001). Here figld of
interest is limited only to obtaining ordinary fuzzy setsrr interval-valued fuzzy sets.

DEFINITION 3.3 Let A be an interval-valued fuzzy seti, andy , (z), 14 () be its
lower and upper membership functions, respectively. Thaaimg operations, which
transformA into an ordinary fuzzy set are type-reductions

TRopi(A) ={< z,is(x) >z € X} (43)
TRpes(A) ={<z,p,(z) >z € X} (44)

TR,.(A) = {< 2,0.5- (p,(€) + Halz)) >: 2 € X} . (45)
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Here, lower indices meatmpt — optimistig pes — pessimisticandre — realistic. "Op-
timistic” means that in the ordinary fuzzy set which is theui¢ of (43), membership
degrees for’s, are taken as the highest (the most optimistic) degreesand (44),
(45) are defined accordingly. It is also possible to modify) @ith a weighted average
of u, (z) andzi4 (), if there are premises that one of membership levels coutddre
influential on a description of phenomenon than the othethdh case, (45) is in the
form of

TRyew(A) = { < 2,01 -1, (2) +wp Tia(x) >: v € X} (46)

provided thatv; + wo = 1. Formula (46) is a generalization of the definitions above.
In particular, the optimistic variant, (43), may be writtea (46) withw; = 0 and

we = 1. Analogously, the pessimistic variant, (44), is computed(¥46) forw; = 1
andw, = 0. In the case of the realistic variant, (45), = w, = 0.5. It can be noticed
that

card(T Rpes(A))

(4) (47)
card(TRopi(A)) A

(4) (48)

wherecard(T Ropt(A)), card(T Ryes(A)) are cardinalities of ordinary fuzzy sets.

The operations of type-reduction can be applied when a easge must be ex-
tracted as a final result of a computational or thinking pssceut the only accessible
data are of interval character.

= card
= card

3.3. Interval-valued linguistic variables
3.3.1. Preliminaries

The concept of linguistic variable exists, thanks to Zaded/g), in scientific litera-
ture since 1975. This simple and useful construction isrilesd in Section 1.3. The
idea ofinterval-valued linguistic variablés presented here as the enhancement of or-
dinary linguistic variable in which ordinary fuzzy sets aeplaced by interval-valued
fuzzy sets. The construction of interval-valued linguistariables has already been
mentioned in Mendel (2001) and Niewiadomski (2005a):
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NOVICE MIDDLE-AGED OLD
' YOUNG EXPERIENCED
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| | | =X
Yy
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Figure 1. Interval-valued linguistic variable

DEeFINITION 3.4 An interval-valued linguistic variable is an ordered quipte
<L ,H,X,G, M >, where:

L is the name of the variable,

H or H(L) is the set of linguistic values d@f (the term-set),

X is the universe of discourse,

G is a syntactic rule which generates values (labels) pf

M is a semantic rule which associates a term to an intervaltedifuzzy set i&’.

As the consequence, compatibility levels of linguisti¢estaents modelled by inter-
val-valued linguistic variables are interval numbers ia[th 1] interval.

ExAMPLE 3.2 Let X = [20,70]. The interval-valued linguistic variabld G E which
describes the age of workers, is defined by the set of itsv&lue {NOVICE, YOUNG,
MIDDLE-AGED, EXPERIENCED OLD }. The values ofAGE are modelled by the
interval-valued fuzzy setS;,..., S5 in X, respectively, and their membership func-
tions are given in Fig. 1. Ley be an employee who is 25. The compatibility level of
the sample statemeny’is « NOVICE” is the interval [0.5, 0.75].

As it can be concluded from Definition 3.4 and Example 3.2headinary linguis-
tic variableL’ is a special case of an interval-valued linguistic varidhlé is assumed
that crisp values of ordinary membership functions areedent to the degenerated
intervals — values of an interval-valued membership fuomcti

3.3.2. Ranking interval-valued compatibility levels

The methods, which enable comparing intervals are negessatetermine the to-
tal order, or, at least, a partial order among the values ahbaeship functions of
interval-valued fuzzy sets. The need for such comparisaisible when two inter-
vals, corresponding to greater/smaller compatibilityrealshould be ranked. In other
words, an answer to the following question is sougttiich of two (or more) different
intervals shows greater degree of trutb®, simply,is intervala more/less than interval
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b? The following partial order relation for intervads= [a, @], b = [b, b] is defined (see
Lin, 2002; Ishibuchi and Tanaka, 1990; Sengupta, Pal, arak@horty, 2001):

a<beoa<bd (49)
a<beoa<bAa<b. (50)
Ishibuchi and Tanaka (1990) defined another ordering ozldtr intervals inR. The
numberm(a) = 2% is termedthe mid-point ofa, and the numbew(a) = %52 is

termedthe half of width of:. Indicesm(a) andw(a) are an alternative representation
for an intervali. They may define the partial order relation bex([0, 1]):

a <b+—— m(a) <m(b) Aw(a) > w(d). (51)

In case of a pair of intervals that cannot be compared via{(%3) (e.g.a = [0.1,0.9]
andb = [0.4,0.5]), some other definitions must be given. The method of ranking
such intervals is defined in Sengupta, Pal, and Chakrab@®fl(). The terngrade of
acceptabilityof the sentencimtervala is less them is introduced and formulated as

m(b) —m(a)

wla) Twb) Ya,b € Int([0,1]). (52)

< (a,b) =
Formula (52) can be easily converted to the form of the mesfijerfunction of the
fuzzy relation on(Int([0, 1])) which representiiterval a is more/less than intervai
if only all the values ofu <) exceedingl are reduced ta and all the values undeér
are treated a8.

3.3.3. Operations on interval-valued linguistic variable

Interval-valued linguistic variables can be applied toresent the composite terms
which contain the connectivesiD, OR, andNOT. In case of interval-valued fuzzy sets
— models of interval-valued linguistic variable labels € tilew methods (with respect
to Definition 3.4) are necessary.

DEFINITION 3.5 Let L be an interval-valued linguistic variable, ard be its universe
of discourse. Le$, Ss,...,.5, be the labels of, which are modelled by interval-valued
fuzzy sets ilt’. TheAND, OR andNOT connectives are modelled via the intersection,
union, and complement operations for IVFSs, respectivelgarticular, the compati-
bility values for the composite terms:

1. 2isS; AND S;,i,j <n

2. xisS; ORSj,’i,j <n

3. 2ISNOTS;,i<n
wherex € X, are computed as intervais b, c:

a=la,a) = [min{ug (@), pg (@)}, min{7s, (2), s, (0)} (53)

b=[b.5) = [max{ug (), i ()} max{fis, (2), T, (2)}] (54)
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MIDDLE-AGED OR EXPERIENCED BUT NOT QLD

1 HnoT oLD

HNOT OLD

| | o X
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Figure 2. The interval-valued membership function ¥0DDLE -AGED OR EXPER}
ENCED BUT NOT OoLDin Example 3.3.

respectively, wherg j < n.

This definition is an extension of the analogous definitiondadinary linguistic
variables (Zadeh, 1975).

ExamMPLE 3.3 Let L be the linguistic variable as in Example 3.2 and Fig. 1. We-con
struct the interval-valued membership function for the posite termvIDDLE -AGED

OR EXPERIENCED BUT NOT OLD The propertiesmIDDLE -AGED, EXPERIENCED and
oLD are modelled bys3, Sy, and S5, respectively, an®r is in the form of (54) and
BUT=AND suggests the constructiof{ OR S;) AND NOT S5, whereaND is given via
(53). Hence

18, OR S, BUT NOT 5 () = min {max{ﬁsg (@), pg, ()}, 1 = Tig, (fﬂ)} (56)
and

715, 0R Sy BUT NOT S5 (¢) = min {max{7is, (@), 7is, @)}, 1 = g (@)} (57)
The function is depicted in Fig. 2.

Now, the enhancement of Definition 3.5 is introduced,; it carapplied to build
sentences based on two or more linguistic variables.

DEFINITION 3.6 Let L, Lo be interval-valued linguistic variables, antl;, x> be
their universes of discourse. L8t, Ss be the labels modelled by interval-valued fuzzy
sets inX;, Xs, respectively, such thaff; € H(L1), So € H(L2). Lety be an object
described by crisp valueiry, 22}, such thate; € X, i € {1,2}. Lett be at-norm,
ands be ans-norm. The intervals, b € Int([0, 1]) — the compatibility levels for the
propositions:

a) yis S1 AND yis Sy



430 A. NIEWIADOMSKI, J. OCHELSKA, P.S. SZCZEPANIAK

b) yiSSl ORYy is So
are computed with formulae (58), (59):

a=la,a) = | (@1) t g (w2).Tis, (21) L Tis, ()] (58)

b=[b.5) = [, (01) s i (02), s, (1) 5 i, (2)] (59)

Other two operations on interval-valued linguistic valésy analogous to the known
in fuzzy logicconcentratioranddilation, are defined. They are extensions of these op-
erations for ordinary fuzzy sets.

DEFINITION 3.7 Let A be an interval-valued fuzzy set. The membership function
of interval-valued fuzzy set..,, (A concentrated) is

A (@) =1, (0),Tia,, (2)] = (12 (2), 7 (0)), V2 € X (60)
and the membership function of interval-valued fuzzyisgt(A dilated) is
A, (l‘) = [ﬁAdu (l‘), ﬁAd” (l‘)] = [ﬁg5(x>a ﬁ%5(x)]a Vi e X. (61)

In general, the indice® and0.5 in (60) and (61), respectively, may be replaced by
any positive real index; > 1 andr < 1, respectively, if only "the strength” of the
operation is to be modified. The proposition of modeling thguistic statements like
EXTREMELY Or SLIGHTLY by the values of the index in the concentration/dilation
operations is discussed by Chen and Liu (2003).

In addition, the fact that the mappirig”, & € R* is strictly increasing off), 1] as-
suresthats , (z) < Tia(x) — p* (x) < (2), thus the intervalfe,  (2),7i4,,, ()]
and [HAM (7), 7 4,, (z)] are well determined.

3.3.4. Fuzzy quantification and interval-valued linguistc variables

The linguistic quantification of imprecise statements nlleddy interval-valued fuzzy
sets is presented in this subsection. Degree of truth oftanstant in the form of (5),
whenq@ is an ordinary fuzzy quantifier angh is an interval-valued fuzzy set ift, is
computed as an interval number in [0,1]

T =[] = [uq (card(51)) , g (card(51))] (62)
if @ is absolute, or
Cn card(Sh) card(Sh)
7= 160 = e (S ) e (G )| )

if Q is relative. The degree of truth of a linguistically quastifiproposition in the form
of (6), in whichQ is a relative ordinary fuzzy quantifies; — as given above ang}, is
an ordinary fuzzy set itt’, is computed as an interval number in [0,1]:

roe = o (2t e (M )] o9
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where the intersection of the interval-valugdwith the ordinarysS, is computed via
(36), and the membership functiqny, is treated as the degenerated interval-valued
membership functim[yl_LS2 Tis,)-

Formulae (62)—(64) are valid only for the quantifiers witmratecreasing mem-
bership functions, otherwise the results could be in thenfof an irregular inter-
val T, i.e. in whicht > %, or even irrelevant, if, e.g.Q has a local maximum in
[card(S1), card(S1)]. To make them useful also for other shapes of quantifier mem-
berships, it is needed to reformulate them as

T= inf  pg(r), sup 1q (r) (65)
| 7€ lcard(S1),card(S1)] r€[card(S1),card(S1)]

if @ is absolute, or

r= W re () sup_ pq(r) (66)
re [m(xl) eard(®) re [%(&1)) 7 iz:z(&))]

if Q is relative. For the statements constructed accordirig/foit is

T= s ms}%f I (r), sup po (r)| . (67)
caral(sy 2 car 1 2 rd(S S rd (S S
r [ card(S3) * card(Sa) re [7°“;afd(15m2)2) , m;m(\d(lsr;f) ]

Interval-valued linguistic variables are applied in lingfic summaries to express
properties with respect to which the database is summafzadtéd interval-valued
summarizersand/or quantities, i.e. quality expressions (callggrval-valued fuzzy
linguistic quantifiers.

3.4. Interval-valued fuzzy quantifiers

Interval-valued fuzzy quantifiers are introduced as anioaigextension of ordinary
fuzzy quantifiers by Zadeh (1983). They model the naturajlage quantifiers, i.e.
natural statements which pronounce quantities of objecimprecise numbers (e.g.
ABOUT 15) and/or ratios (e.gMUCH LESS THAN 1/4). Interval-valued fuzzy quan-
tifiers are very similar — with respect to their constructiorage, and intuitions — to
ordinary fuzzy quantifiers. The only difference is the apaiion of interval-valued
fuzzy sets, instead of ordinary, to express quantitieeryai-valued fuzzy quantifiers
include ordinary fuzzy quantifiers as special cases, i.esdlwith interval-valued but
degenerated membership functions.

The following propositions relate selected propertiesmirmary fuzzy sets to the
analogous properties of interval-valued fuzzy sets:

ProPOSITION3.1 An interval-valued fuzzy set in X is normal iff TR,.s(A) and
T Ropt(A) are normal.
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ProPOSITION3.2 An interval-valued fuzzy set in X is convex iffl'Rp.s(A) and
TR,pi(A) are convex.

Therefore, the definition of the interval-valued fuzzy qtifger is

DerINITION 3.8 Recall equations (5) and (6). Lét C R™ U {0} be a universe of
discourse. A normal and convex interval-valued fuzzy sgtwhich is a model of the
quantity pronouncemer in (5) or (6) is aninterval-valued fuzzy quantifier@ is
absolutdéf Y = R* U {0}. Q isrelativeif J = [0, 1].

The evaluation of the quantified linguistic statements & ftbrm of (5), (6), in
which the properties are modelled by ordinary fuzzy sets #edquantifier — via
interval-valued fuzzy sets, proceeds as follows(}éte an interval-valued fuzzy quan-
tifier, andS1, S — ordinary fuzzy sets iX’. The degree of truth for (5) is computed as
the interval number in [0,1]

T =[] = |, (card($1)) ,Tig (card(s1))| (68)
if @ is absolute, or
o card(S1)\ _ [ card(Sy)
T=1i= _HQ (card()() ) i (card(X) )} (69)
if @ is relative. The degree of truth for a proposition in the fah(6) is
o= card(S1NS2)\ _ [card(S;NSs)
T=[tt= _HQ < card(Ss3) > Ha ( card(Sz) )] (70)

for a relative®.

The properties of ordinary relative quantifiers describe@adeh (1983), Yager
(1993) and Liu and Kerre (1998) may be extended to the anakgefinitions for
interval-valued (also absolute) fuzzy quantifiers.

DEFINITION 3.9 LetQ be an interval-valued fuzzy quantifierint U {0}. Leta;, a*,
by, b, ¢, c*, dy, d* € RT U {0} be suchthaty < b, < ¢ < d;janda® <b* < c* <
d“. LetT R,es(Q) andT R,,.(Q) be convex and normal ordinary fuzzy sets.

Q is regular non-decreasing (see Fig. 3a) if

1. Ve <aq HQ(x):O/\V:cga“ﬁQ(x):O/\alZa“ (71)
2. Vx> HQ(x):l/\V:czb”ﬁQ(:c):l/\blZb“ (72)
3. Vay,xg € [a, b)) 11 < @9 — HQ(ml) < HQ(xg) (73)
4. Vay,x9 € [a", 0] 21 <29 — EQ(ml) < EQ(xg). (74)
Q is regular non-increasing (Fig. 3b) if
1. Vz <g EQ(x)zl/\VmgcuﬂQ(x)zl/\clScu (75)
2 VmZleQ(JC)zl/\Vde”ﬁQ(m):1/\dlSd” (76)
3. Vay,xg € e, d)) 11 < @9 — HQ(ml) > HQ(I‘Q) (77)
4. Vzi,m9 € [",d"] x1 < T2 — ﬁQ(:cl) > ﬁQ(:cg). (78)
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Figure 3. Interval-valued fuzzy quantifiers: a) non-desieg b) non-increasing,
¢) unimodal.

@ is regular unimodal (Fig. 3c) if

1. VacSalEQ(x):0/\Vac2leQ(ac)=0 (79)
Vo <a" fig(z) = 0A Ve > d" ig(r) =0 (80)

Yz € [by, ¢ HQ(w) =1AVz e b, c"[ig(z) =1Ab > b" Aep <
(81)

4. Conditions (73), (74), (77), and (78) are satisfied (82)

The properties of non-decreasing, non-increasing, anchactél quantifiers may be
expressed in terms of the analogous properties for ordfinazy quantifiers using the
type-reduction operations.

PROPOSITION3.3 Let @ be an interval-valued linguistic quantifier.

a) @ is non-decreasing (non-increasing) iffR,..(Q) and T'R,,:(Q) are non-
decreasing (non-increasing);
b) @ is unimodal iffI'R,.s(Q) andT R,,:(R) are unimodal.

The examples of non-decreasing, non-increasing, and wahioterval-valued
fuzzy quantifiers are shown in Fig. 3 a)-c). The original medtapplying interval-
valued fuzzy quantifiers to data summarization are predentSection 4.
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4. Interval-valued linguistic summaries

When data used for constructing membership functions ofitifiers and/or summa-
rizers, are of the interval form, e.g. experts have detezthimembership levels with
interval values instead of reals, there are at least twailpiigss for handling this un-
certainty: 1) computing average (arithmetic or weighte@mbership levels and use
them in ordinary linguistic summarizing, or 2) applyingental-valued memberships
when building summaries. Since the latter option includesformer one (e.g. via
type-reduction operations which can be applied during timersarization process), let
us introduce the concept ofterval-valued linguistic summary of a database

DEFINITION 4.1 An interval-valued linguistic summary of a database is agia
natural language sentence

Q P are/haves [t, 7] (83)

where the symbol@, P, and S are interpreted as in (9), Section 2.1, but at least one
of Q, S is represented by an interval-valued fuzzy set, @&net [ﬁ, ﬂ C [0,1] is an
interval-valued degree of truth of the summary.

The definition extends the classical Yager’s approach wwithuse of interval-valued
fuzzy sets and interval-valued linguistic variables asngjfiars and summarizers, re-
spectively.

4.1. Summaries with interval-valued fuzzy quantifiers

According to the assumption made by Yager, the goal is to figdality index for

a given summary in the form oft P are/haveS". Naturally, if @ is modelled by

an interval-valued fuzzy set, then tigindex, which is a value ofig(r), is also an
interval: T = [t,¢]. The semantics of is the same as in the classical case, see (12),
and the computation is based on (10) or on (11). SK¢ean ordinary fuzzy set; is
areal number.

LetY = {y1, y2,...,ym } be @ set of objects, arid be an attribute describing objects
from Y with crisp values fron®t’, such thal’ (y;) = z, 2 € X, i = 1,2, ..., m. Hence,
the database modelingis represented & = {V (y1), V(y2),.... V(ym) }, which de-
scribes the dependence betweééand). Let (@ be an interval-valued fuzzy quantifier
modelled by an interval-valued fuzzy set given by the mersihiprfunctiona_LQ and

Tig- Constructing and evaluating an interval-valued lingaisutmmary proceeds:

Step 1 Computer — the total membership of objects frgyto the features as in (12).

Step 2 Compute the lower and upper boundg/o¥ia membership degrees oto Q:

T = [t7) = [y (r). g (r) (84)
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if Q) is absolute, or

T 1] = [no () 7o ()] @)
if Q is relative.

Step 3 Hence, the final form of the summary is
Q y's are/haves [, 1]. (86)
The crucial fact should be noticed: if the interval-valuaddy quantifierq is de-
termined by the degenerated membership functionvhee X HQ(I) = fig(r), an
interval-valued linguistic summary is equivalent to anioady linguistic summary in
sense of Yager, as in Section 2.1.

4.2. Summaries with interval-valued summarizers

We introduce the use of interval-valued linguistic varesbin modeling of features of
objects in databases. An interval-valued linguistic uagaallows to assign intervals
as membership values of attributes manifested by the dubfjecsummary, i.e. the
recordsin a database. Hence, interval-valued summagre@esented in this section.
Let us defin€) — a set of objects, and a set of attributés= {V1,V4,...,V,,},
which describe objects fro@l. Let X1, Xs, ..., X, be the domains ofy, V5, ..., Vi,

respectively, and the symbbl(y;), i = 1,...,m, j = 1,2,...,n denotes a value of
attributeV; for objecty;. Hence, the denotation of the database is adequate to (&8). L
S1,52,...,S, be interval-valued fuzzy sets ifr, .. ., X, respectively, representing

the features expressed by attribuiés. .., V,,, respectively. Let) be an ordinary
fuzzy quantifier. The general form of this variant of summaviien the summarizer
is composed of several single featugs Ss, . . ., S5, is analogous to the form due to
George and Srikanth (14):

Q objects fromy are/have5; AND Sz AND ..., [t,]. (87)
S

The problem is to determine the construction of an intevedlied multi-featured sum-
marizerS. Since in the original approach, (15), the membership lievélis computed

as minimum (in general: astanorm) of compatibility levels inS,,..., S,,, hence, the

interval-valued extension must follow this. The definitiointhe interval-valued form
of function (15) is

pg(d) = _min {ug (Vi(w)}} (88)
and
Rs(di) = j:{ann {ﬁsj (Vj(yi))} (89)
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whered; — as in (13). In general, the minima in (88) and (89) may beaegd by
t-norms. Another manner of computing the summarizéuilt on the basis of several
attributes is

ps(di) = |ug(d),Tis(d)| = min {lug (Viw).7is, (Vi(w))|}  (90)

where themin operation is the choice of the smallest interval via one adrafions
(49)—(52).

The sum of memberships of all objectsSinr, is computed via the extended for-
mula (12). Having an interval-valued membership functiove with (88) and (89),
the interval-valued form of theindex is

m
r= [ =Y |g(di).Tis(do)| (91)
i=1
where the addition operation for interval-numbers is given(25). Constructing and
evaluating an interval-valued linguistic summary with t@mposite summarize$
proceeds as follows:
Step 1a Compute the interval-valued= [r,7] via (91).

Step 1b IF Q is relative, THEN substitute: = --.

Step 2 Determinel” — the quality of the summary — as

T=| inf pug(r), sup pg(r) (92)
re(r,7 re(r,7

(see the note at the end of the procedure).

Step 3 Hence, the final form of the linguistic summary is:
Q y's are/haves [, 1] (93)
whereT = [t,1] is the interval-valued degree of truth for the summary.

Note Step 2 should be additionally commented upon. Formula (8®rdhines the
interval [r, 7] throughpg, even if it is not monotonic and has — as unimodal fuzzy
quantifiers have — regular or irregular maxima in this indé¢&nNotice that in case of
monotonicity ofug on[r, 7] (92) may be simplified to

| lpo(®),pe@)], if ug increases monotonically dn, 7]
Ho ([r,7) = { o (™), po(r)], if ug decreases monotonically ¢n 7). (94)
4.3. Interval-valued summaries with a queryw,

Analogously to the approach presented by Kacprzyk, YagéZadrany (2000, 2001),
it is possible to construct interval-valued linguistic suaries which are built accord-
ing to the second canonical form of linguistically quantifiproposition, i.e.Q'!,
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see (6). The summaries obtained this way are more integesstid informative. More-
over, as mentioned in Section 2.2, the use ofuljepreselection prevents from com-
puting many unnecessary values, mostly the zero membesteéfs, see (16). The
limitation introduced for the classic linguistic summayiés also applied here, but in
the form which is compatible with interval-valued forms afismarizer.

In order to handle queries in the formof,, the interval-valued form of the mem-
bership function of5' should be redefined from (88) and (89) to

ng(d) = _min {ug (Vi) e, Vo) }, i =1.2,m  (95)
and
fis(d) = _min {7ig, (Vi) i, (Vy @) }, i =1.2,m. (96)

respectively. Computing requires determining the databa®e C D consisting only
of recordsd; for which p,,,(d;) > 0 (otherwise, the computational cost would in-
crease). Assuming thai, is a real-valued (non-interval-valued) membership fuorgti
the interval-valued form of is

(97)

The given method makes it possible to apply the relative tifigation only, since
r is expressed by the ratio of the total membership to the sumesfhberships in the
wy query.

The following observation must be noted here: the methosigmied does not han-
dle the cases in which a query is described by an intervalegainembership function.
It would require defining intervals with interval-valuedwals (see Wu and Mendel,
2002). Suitable methods and the semantics for them arentlyrbeing developed.

4.4. Examples

The described methods of summarization are applied as afatarger experimentin
the field of e-testing (distance and automated testing iptbeess of learning over the
Internet). The subject of the experimentis to run and scamqar tests in German for
e-students. Since the experiment requires multidis@pjikknowledge, the additional
task, solved by the use of linguistic summaries, is to supbernatural (or close-to-
natural) language data interpretation for experts in tefiédomains, such as philology,
computer science, methodology, etc. Further details caoulred in Niewiadomski,
Bartyzel, and Szczepaniak (2005), Niewiadomski (2005¢3, Miewiadomski et al.
(2005).
The set ofm = 243 correct, partially correct and incorrect answers to 50 ques

tions was collected. The answers were then scored by thigertexseparately; the
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scale used in scoring is 0 — incorrect, 0.25, 0.5, 0.75, anddtally correct. The
results — the scores given to answers — are stored in thersdcto E>, E3, where
Ey ={e11,€1,2,...,€1,243} collects scores by Expert 1, aiig}, E3 — analogously for
Experts 2 and 3. Thus, the database to be summarized is:

ID | Score | Expert

1 0.75 1

2 0.5 3

3 1 2 (98)
4 0.5 med

n 0 med

where "med” means the median of scores given by Experts 1a8 stmswer, and ID is
the key of the table. The sample linguistic quantifiers usettié experiment afe

2
pFEW(T) = exp <— (%10324) ) (99)
2
UMANY (7) = exp <— (%10376) ) (100)
2
HALMOST ALL (%) = exp (- (mo'_ll) ) : (101)

The sample interval-valued summarizers (describing s¢are used in the experiment
in the following form:

(c) = e, ifee[0.5,1]
Erich'® =\ 0, otherwise

el if e € [0.5,1]
— _ 2 )
AHiGH(e) = { 0, otherwise (103)

o] e+l if e € [0.5, 1]
Erow'® = 0, otherwise

=tlif e €[0.5,1]
_ _ [ ==t 7
Airow(e) = { 0, otherwise (105)

wheree is a score from the "Score” column in the database (98).
Constructing and evaluating the sample summanNM scores given by experts
are HIGH proceeds as given in Section 4.2: tet= 972 (number of records); = 1

(102)

(104)

3As it is seen, the quantifiers presented here are built wiinary fuzzy sets; such solution has been
chosen to present the new material as clearly as possible. sliimmarizers used in the experiment are
interval-valued; the interval-valued fuzzy quantifiersdalso been considered but finally omitted as irrele-
vant from the point of view of expected results.
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(number of summarized attributes) = HIGH [score] — the summarizef) = MANY —
the quantifier.

Step 1
r= [Es(di),ﬁs(di)} = [676.75,755.38] (106)
=1
thus [676.75, 755.38]
r . .
— = __"""==10. . 107
- = 0.70,0.78] (107)
according to (91).
Step 2
inf uMaNy = 0.79 (108)
r€[0.70,0.78]
and
sup  pumany =1 (109)
r€[0.70,0.78]

for relative@.

Step 3 Hence, the final form of the summary is
MANY scores areiIGH [0.79, 1] (110)
so its degree of truth is relatively high.

Another sample summaryew scores by Expert 1 aneow is obtained according
to the method described in Section 4.3. The additional eféia¢he quernsy EXPERT
1 which means that not all the tuples in the database aredsmesi, but only those in
which the field "Expert”, see (98), takes th&"value, which means "by Expert 1".
Letm = 972 (number of records), = 1 (number of summarized attributes)= Low
[score] — the summarizew, = BY EXPERT 1 — the queryQ) = FEW — the quantifier.

Step 1
r= =S5 = [0.17,0.35] (111)
Z:l Hoap g (dl)
according to (95)—(97).
Step 2
inf uMaNy (1) = 0.52 (112)
r€[0.17,0.35]
and
sup  pumaNy (1) = 1. (113)

re[0.17,0.35]
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Step 3 Hence, the final form of the summary is
FEW ScoresBY EXPERT 1 areLow [0.52, 1]. (114)

5. Conclusions and future work

This paper presents the concept of interval-valued lingussimmary as a tool for dis-

tilling the most important information from a large numbértaples and presenting

obtained results in a linguistic form. The approach is armsibn of the Yager ap-

proach in the same sense as an interval-valued fuzzy seidsdiee idea of an ordinary

fuzzy set, and the former includes the latter as a special dd interval-valued forms

of summarizers and fuzzy quantifiers are defined, exemplified applied in summa-

rizing a sample database. The direct consequence of udienyats as membership

values is the interval form of th& index — the degree of truth of summary. Finally,
two illustrative examples have been provided.

At least two additional concepts related to the introduaedmarization methods
should be examined in the nearest future: 1) the intervaleciform of thew, query,
which is considered here as an ordinary fuzzy set only (setd®et.3), and 2) interval-
valued-based extensions of quality measures. Till nowy tive indices by Kacprzyk,
Yager, and Zadny have been extended to interval-valued forms and destiif
Niewiadomski (2005d).

Currently, the authors are working on a further extensiohngfuistic summariz-
ing in the sense of Yager — it is based on type-2 fuzzy setsnfKaMendel, 1998,
1999; Mendel, 2001), which are a promising field for modelingertain data by fuzzy
membership levels in fuzzy sets. The very first concepts baen given already in
Niewiadomski (2005b). The crucial observation that indééwalued fuzzy sets are the
equivalent of interval type-2 fuzzy sets, and thereforestipgivalence of interval-valued
linguistic summaries to interval type-2 linguistic sumieamay be observed, has been
made. The type-2-based extension is a further generalizafinterval-valued linguis-
tic summaries presented here, and, in consequence, isclstethe Yager approach.
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