
Control and Cybernetics

vol. 35 (2006) No. 3

Dynamic Programming: an overview

by

Moshe Sniedovich1 and Art Lew2

1 Department of Mathematics and Statistics
The University of Melbourne, Australia

2Department of Information and Computer Sciences
University of Hawaii at Manoa, Hawaii, USA

e-mail: m.sniedovich@ms.unimelb.edu.au, artlew@hawaii.edu

Abstract: Dynamic programing is one of the major problem-
solving methodologies in a number of disciplines such as operations
research and computer science. It is also a very important and pow-
erful tool of thought. But not all is well on the dynamic program-
ming front. There is definitely lack of commercial software support
and the situation in the classroom is not as good as it should be. In
this paper we take a bird’s view of dynamic programming so as to
identify ways to make it more accessible to students, academics and
practitioners alike.

Keywords: dynamic programming, principle of optimality,
curse of dimensionality, successive approximation, push, pull.

1. Introduction

By all accounts dynamic programming (DP) is a major problem solving method-
ology and is indeed presented as such in a number of disciplines including op-
erations research (OR) and computer science (CS). However, there are strong
indications that it is not as popular among lecturers and practitioners in these
disciplines as it should be.

The main objective of this paper is to reflect on the state of dynamic pro-
gramming in OR and CS with a view to make it more accessible to lecturers,
students and practitioners in these disciplines.

To accomplish this task we address a number of issues related to the state
of DP as an academic discipline and a practical problem solving tool:

1. Methodology
Great difficulties have been encountered over the past fifty years in at-
tempting to encapsulate the methodology of DP in a user-friendly format.
We explain why this state of affairs is not likely to change soon, if ever.



514 M. SNIEDOVICH, A. LEW

The analysis includes a summary of Bellman’s approach – based on the
Principle of Optimality – and the axiomatic approaches that became pop-
ular in the 1960s and aimed at putting Bellman’s approach on a more
rigorous foundation.

2. Algorithms
We discuss the basic algorithmic aspects of DP and comment on Dijk-
stra’s Algorithm for the shortest path problem as a representative of an
important class of DP algorithms.

3. Curse of dimensionality
We reflect on the role of the Curse of Dimensionality in the context of DP
and remind ourselves of the distinction that should be made between the
complexity of DP algorithms and the complexity of the problems these
algorithms are designed to solve.

4. Approximations
The need for efficient methods for generating good “ approximations ” of
exact solutions to DP functional equations is an important aspect of DP.
We mention how need is reflected in the content of this special volume.

5. Software support
We lament on the lack of “ general purpose ” commercial software for DP
and explain why a major breakthrough will be difficult to make.

6. Parallel processing
Some DP functional equations are particularly suitable for parallel com-
puting. We briefly discuss this important practical aspect of DP.

7. Petri nets
Since many DP problems can be modeled as state transition systems and
solved by finding shortest paths in associated directed graphs, we intro-
duce a generalization, known as Petri nets, and discuss some connections
between DP and Petri nets.

8. Teaching and learning
Teaching DP has always been a problematic task. We explain why this
is so and discuss strategies for tackling this difficult but potentially very
rewarding task.

9. Myths and facts
We address a number of myths that somehow over the years became an
integral part of DP.

10. Opportunities and Challenges
We remind ourselves that the state of DP offers plenty of opportunities as
well as challenges.

We then briefly describe the content of the other papers in this special volume
and indicate how they relate to the topics discussed in this overview.



Dynamic Programming: an overview 515

To simplify the discussion we shall limit the review to serial deterministic
processes and focus on the analysis and solution of optimization problems.

It is assumed throughout the discussion that the reader has some familiarity
with DP.

2. Methodology

DP is definitely a “ general purpose ” problem solving tool with a distinct flavor.
One of the manifestations of this fact is that it is not too difficult to describe
in general, non-technical, jargon-free terms the inner logic of DP and how it
actualy works.

For the purposes of this discussion it is instructive to examine the outline
described in Fig. 1 that can be regarded as a sort of “ recipe ” for DP.

Figure 1. Recipe for DP

Step 1: Embed your original problem in a family of related problems.

Step 2: Relate the solutions to these problems to each other.

Step 3: Solve the relationship between the solutions to these problems.

Step 4: Recover a solution to the original problem from this relationship.

The relationship between the solutions to the related problems constructed
in Step 2 typically takes the form of a functional equation. In some situations
the functional equation is so simple that the distinction between the last two
steps is blurred.

While the above recipe is informative, it definitely falls far short of being
user-friendly in that it is not very constructive. Indeed, while it is a fact of life
that at the completion of a successful DP investigation it is not difficult at all
to identify the exact roles of these steps, the recipe itself does not give us much
guidance as to how these steps should actually be implemented.

For example, the recipe does not tell us how exactly the original problem
should be embedded in a family of related problems. By the same token, the
recipe does not give us any hint as to how we should go about formulating the
relationship between these problems. And it definitely does not tell us how we
should solve the functional equation constructed in Step 2.

This is not surprising. In fact, this is precisely what you should expect from
a recipe of this nature within the context of DP and why many scholars regard
some aspects of DP as “ art ” rather than science (e.g. Dreyfus and Law, 1977).
The main reason for this unavoidable ambiguity is the fact that the recipe applies
to a vast class of disparate problems. The “ art ” of DP is all about being able
to apply this “ general ” recipe in the context of specific problems.



516 M. SNIEDOVICH, A. LEW

It should be stressed, though, that this difficulty applies to the modeling
aspects of other problem solving tools. In particular, many students have dif-
ficulties coping with the modeling aspects of, say, integer programming. But
there are strong indications that the presence of this difficulty is especially felt
in the area of DP.

We now consider two examples. The first is very simple, in fact trivial, the
second is quite difficult.

Example 2.1

The purpose of this example is to illustrate that the DP methodology is
extremely pervasive. So much so that it is used everywhere by persons who
know know nothing about DP itself.

Let x denote a sequence of numbers. Your task is to determine the sum of
all the elements of x, call it Sum(x). An obvious “solution” to this problem is
to apply the definition of Sum and write:

Sum(x) =
∑

j

xj (1)

assuming that the summation is carried out over all the elements of x.
The DP solution is a bit different, because according to our Recipe we need

to go through four steps, the first of which requires us to embed our problem
within a family of related problems. We do this by the following innocent looking
definition:

Sum(y) :=
n

∑

j=1

yj , y ∈ R
n (2)

where R denotes the real line.
Next, we have to relate the solutions to all these problems. This is not

difficult because clearly the definition of Sum implies that

Sum(y) := Sum(y1, . . . , yn−1) + yn, y ∈ ℜn (3)

We can now apply this relationship to solve our original problem, namely
we write

Sum(x) = Sum(x1, . . . , xn−1) + xn (4)

where here n denotes the length of sequence x.
To recover a solution to our problem we just have to compute the value of

Sum(x) in accordance with (4). This can be done in various ways, e.g. recur-
sively or non-recursively.

To highlight the basic structure of this “ solution ” to the problem under
consideration, take a look at the pseudo-code in Fig. 2 for computing the sum
of the elements of a list.



Dynamic Programming: an overview 517

subroutine MySum(x,n);

sum = 0;

For j=1,...,n Do:

sum = sum + x(j);
End return sum;

Figure 2. DP code for computing
∑n

j=1 xj

1

2

3

4

5

L C R

Figure 3. Tower of Hanoi Puzzle

The important thing to observe is that the process of computing the required
sum also computes the sum of the sublists of the original list even though these
subsums were not requested.

Example 2.2 (The Towers of Hanoi Puzzle)

Move the five pieces in Fig. 3 from the left platform to the right platform,
one piece at a time. Make sure that at all times at each platform the labels of
the pieces are arranged in ascending order (from top to bottom).

If you have not solved such puzzles before, you may find it exceedingly
difficult to apply the DP Recipe in this context. Here is how it goes:

Step 1: The key to a successful application of this crucial step is the follow-
ing rather simple1 observation: The problem under consideration can be
parameterized by three bits of information: (1) the number of pieces that
we have to move (2) the present location of these pieces and (3) the des-
tination of these pieces. So, we define the following family of puzzles

P (n, x, y) := A problem involving n pieces that must be moved from
platform x to platform y.

In our case we can let n be an element of set {1, 2, 3, 4, 5} and x and y be
elements of {L, C, R}. Now let S(n, x, y) denote the solution to P (n, x, y),
that is the sequence of moves that solves P (n, x, y).

1Especially if you already know the answer!



518 M. SNIEDOVICH, A. LEW

Step 2: Because of the restrictions on how we can move the pieces, it is clear
that in order to move the largest piece from platform x to platform y we
must first move all other pieces from platform x to the third platform.
This implies that for n > 1 we have

S(n, x, y) = S(n− 1, x, !(x, y)) · S(1, x, y) · S(n− 1, !(x, y), y) (5)

where · denotes concatenation and !(a, b) denotes neither a nor b.

Step 3: There are various ways to solve (5). In particular, if n is not large it
might be convenient to solve (5) recursively. Observe that S(1, x, y) means
that we move a piece from platform x to platform y, hence S(1, x, y) is
regarded as known: S(1, x, y) := move a piece from platform x to platform
y.

Step 4: Our mission is to determine the value of S(5, L, R). Any method that
was identified in Step 3 can be used for this purpose. In particular, since
n is small in our case, (5) can be easily solved recursively.

It should be pointed out that the DP formulation presented above is non-
serial in nature: we express the solution to the subproblem of interest in terms
of two other problems. It should also be indicated that although the functional
equation does not include a min operation, the solution it generates is optimal:
it minimizes the number of moves.

More details on the DP treatment of this famous puzzle, including interactive
web-based modules, can be found in Sniedovich (2002).

These examples illustrate the idea that underlies the methodology of DP.
Of great practical importance is that this basic idea can be extended to solve
major classes of important problems. It is to the class of optimization problems
that DP has been most applied in practice and therefore this review focuses on
problems of this type.

Bellman’s (1957) strategy for tackling the methodological aspects of DP was
to keep things simple even at the expense of generality. Furthermore, he en-
deavoured to formulate the basic idea of DP as a Principle. He also deliberately
decided to frame DP as a whole as a method for dealing with sequential de-
cision processes. The end product is a methodology based on the following
fundamental concepts:

- Sequential Decision Process.
- Principle of Optimality.
- Functional Equation.

Recall that the Principle was stated as follows (Bellman, 1957, p. 83):

Principle of Optimality. An optimal policy has the property
that whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with respect to the state
resulting from the first decision.



Dynamic Programming: an overview 519

The conceptual framework is then as follows: the process starts at the first
stage j = 1 with some initial state s1 ∈ S where a decision x1 ∈ D(1, s1) is
made whereupon the process moves to the next stage j = 2 where the state
s2 = T (1, s1, x1) ∈ S is observed. Then the second decision x2 ∈ D(2, s2) is
made whereupon the process moves to the next stage j = 3 where the state
S3 = T (2, s2, x2) ∈ S is observed, and so on. The process terminates at stage
j = n where the final decision xn ∈ D(n, sn) is made whereupon the process
moves to the final stage j = n + 1 where the final state sn+1 = T (n, sn, xn) ∈ S
is observed and a reward r(sn+1) is incurred. Note that no decision is made at
the final stage n + 1.

We refer to S as the state space, to T as the transition function, and to D(j, s)
as the set of feasible decisions pertaining to state s at stage j. Associated with
this process define

fj(s) := maximum reward that can be generated at the end of the
process given that at stage j we observe state s.

Our mission is then to determine the value of f(s1) and to identify the
optimal values of the decision variables (x1, . . . , xn).

Theorem 2.1

fn+1(s) = r(s), s ∈ S (6)

fj(s) = max
x∈D(j,s)

fj+1(T (j, s, x)), j = 1, . . . , n; s ∈ S (7)

This is the functional equation of DP for the deterministic final state model
formulated in Bellman (1957, pp. 82-83) as a framework for the introduction
of the Principle of Optimality. Bellman viewed the functional equation as a
mathematical transliteration of the Principle, and argued – correctly – that a
proof (by contradiction) of the validity of the Principle – hence the functional
equation – is immediate in this case.

In practice the total cost/return often depends on intermediate decisions
and/or states, and the DP functional equation can cope with such cases. In
fact, the most common objective function in practice is additive in nature, that
is

g(s1, x1, x2, x3, . . . , xn) =

n
∑

j=1

c(j, sj , xj) (8)

where c(j, sj , xj) denotes the cost/return generated at stage j by decision xj

given that the state is sj and the corresponding DP functional equation is as
follows:

fj(s) = max
x∈D(j,s)

{

c(j, s, x) + f(j + 1, T (j, s, x))
}

, j = 1, . . . , n ; s ∈ S (9)



520 M. SNIEDOVICH, A. LEW

with f(N + 1, s) = r(s), s ∈ S.
As another example, here is a stage-free functional equation associated with

an additive objective function in the framework of a non-serial process where
after a decision is made the process diverges into two sub-processes:

f(s) = max
x∈D(s)

{

c(s, x) + f(T1(s, x)) + f(T2(s, x))
}

, s ∈ S\{s′} (10)

with f(s′) = 0.
Note that in response to applying decision x ∈ D(s) to state s the system

generates two new states, namely T1(s, x) and T2(s, x).
It is interesting to note that Bellman had no illusions about the difficulties

associated with the application of the DP methodology in the context of specific
problems (e.g. Bellman, 1957, p. 82):

We have purposely left the description a little vague, since it is the
spirit of the approach that is significant rather than the letter of
some rigid formulation. It is extremely important to realize that one
can neither axiomatize mathematical formulation nor legislate away
ingenuity. In some problems the state variables and the transforma-
tions are forced on us; in others there is a choice in these matters
and the analytic solution stands or falls upon this choice; in still
others, the state variables and sometimes the transformations must
be artificially constructed. Experience alone, combined with often
trial and error, will yield suitable formulations of involved processes.

Needless to say, over the years DP scholars expanded the scope of operation
of DP and developed numerous abstract axiomatic formulations of DP (e.g. Ellis,
1955; Brown and Strauch, 1965; Verdu and Poor, 1987; Bird and de Moor, 1997).

It is precisely for this reason that it is important to stress that Bellman’s
advice is as valid today as it was in 1957.

3. Algorithms

Generally speaking, there are two basic approaches to solving DP functional
equations, namely via direct methods and successive approximation methods.
The latter can be classified into two groups namely pull -type methods and push-
type methods.

Direct methods solve the DP functional equation as “instructed” by the
functional equation. For example, here is an outline of a direct method for
solving (6)-(7).



Dynamic Programming: an overview 521

Direct Method

Initialization: Set Fn+1(s) = r(s), s ∈ S.
Iteration: For j = n, . . . , 1 - in this order - Do:

Fj(s) = max
x∈D(j,s)

Fj+1(T (j, s, x)), s ∈ S.

Clearly, upon termination we have Fj(s) = fj(s), ∀j = 1, . . . , n, s ∈ S.
It should be noted that DP functional equations can often be solved non-

recursively. When solved recursively, it might be necessary – for efficiency rea-
sons – to adopt some means of avoiding recalculation of values, such as by saving
them for reuse as needed (a process known as memorization). Often, an explicit
stage variable is introduced so as to order the calculations with this in mind.

There are many situations, however, where direct methods cannot be used.
Consider for example the following typical DP functional equation:

f(0) = 0 (11)

f(s) = max
0≤x≤s

{
√

x + βf(s− x)}, 0 ≤ s ≤ u (12)

where 0 < β < 1.
Applying the conventional method of successive approximation, we let F be

an approximation of f and initialize F by setting F (0)(s) = 0, 0 ≤ s ≤ u. We
then update F repeatedly by the recipe

F (k+1)(s) = max
0≤x≤s

{
√

x + βF (k)(s− x)}, k = 0, 1, 2, . . . (13)

It is not difficult to show (e.g. Sniedovich, 1992) that this updating procedure
yields

F k(s) =
√

s
[

1 + β2 + β4 + · · ·+ β2(k−1)
]

(14)

so that at the limit as k→∞ the approximation becomes

F (s) =

√

s

1− β2
(15)

which is the unique solution to the functional equation (11)-(12).
We call this type of updating mechanism pull because the update of F (s) for

a given s pulls the required F (·) values in accordance with the DP functional
equation. Observe that the direct method outlined above is also based on a
pull-type mechanism.

To describe the pull mechanism more formally, consider the following generic
DP functional equation (e.g. Sniedovich, 1992):

g(s) = max
x∈D(s)

{c(s, x)⊕ g(T (s, x))} (16)



522 M. SNIEDOVICH, A. LEW

where c and g are real valued functions and ⊕ is a binary operation. Then,
formally

Pull at s : G(s)← max
x∈D(s)

{c(s, x)⊕G(T (s, x))} (17)

where G denotes the approximation of g. In short, pull is an updating mech-
anism that mimics the DP functional equation in the context of which it is
used.

The push mechanism, also known as reaching (e.g. Denardo, 2003), works
a bit differently in that it pushes the value of G(s) to states that can use it to
update their current G(·) values. Thus, in the context of (16) we have

Push at s: G(s′)← max {G(s′) , c(s′, x)⊕G(s)} (18)

where (s′, x) is any pair such that s′ ∈ S, x ∈ D(s′), s = T (s′, x).
The most famous DP successive approximation algorithm based on the push

mechanism is no doubt Dijkstra’s Algorithm (Dijkstra, 1959) for the shortest
path problem. In this context the push operation can be restated as follows:

Push at s: v(x)← min {v(x) , d(s, x) + v(s)} , x ∈ Suc(s) (19)

where Suc(s) denotes the set of all immediate successors of node s, d(s, x)
denotes the length of arc(s, x) and v(s) denotes the approximated length of the
shortest path from the origin to node s.

It is very unfortunate that the operations research and computer science
literatures do not make this important aspect of Dijkstra’s Algorithm clear.
Sniedovich (2006) discusses this point at length. On the other hand, Lew
(2006) shows how Dijkstra’s Algorithm can be viewed as a greedy algorithm
of a “ canonical ” type.

The successive approximation methods described above operate on the func-
tional of the DP functional equation, e.g. on function g in (16) and function f
in (12). That is, the functional of the DP functional equation is the object
of the approximation scheme. In a similar manner it is sometimes possible
and desirable to approximate the DP policy, that is the policy that determines
the optimal values of the decision variables. The update mechanisms of such
approximation schemes are therefore called policy iterations or policy improve-
ments (e.g. Denardo, 2003) or successive approximations in the policy space
(e.g. Sniedovich, 1992).

So as we have seen, a very important aspect of DP is the fact that the same
functional equation can sometimes be solved by a variety of methods, hence
algorithms. The situation is complicated even further because often the same
problem can be formulated in a variety of ways, yielding a variety of functional
equations. The following is a very famous case.



Dynamic Programming: an overview 523

Example 3.1 (Unbounded knapsack problem)

Consider the following standard knapsack problem:

z∗(W ) := max
x1,...,xn

n
∑

j=1

vjxj (20)

s.t.
n

∑

j=1

wjxj ≤W, xj ∈ 0, 1, 2, . . . (21)

where W and {wj} are positive integers.

We shall consider two different DP functional equations for this problem,
representing two different conceptual models of the problem.

Model 1: Suppose that the items are arranged in piles and we selected xj

items from pile j. Let fj(s) denote the maximum value of vjxj + · · · + vnxn

subject to wjxj + · · ·+ wnxn ≤ s and the integrality constraint. Then it is not
difficult to show that

Theorem 3.1 Let S := {0, 1, . . . , W} and J := {1, . . . , n}. Then

fj(s) = max
x ≤ s/wj

x ∈ 0, 1, . . .

{xvj + fj+1(s− xwj)} , ∀s ∈ S, j ∈ J (22)

where fn+1(s) = 0, ∀s ∈ S.

This DP functional equation can be easily solved for j = N, N − 1, . . . , 1
- in this order provided that N and W are not too large. Note that this is
an NP-hard problem and the time complexity of the algorithm based on a
naive implementation of this DP functional equation is O(KW 2) where K :=
k1 + · · ·+ kn and kj := 1/2wj.

Model 2: Suppose that we select the items from the piles one by one so
that each time an item is selected the question is: from which pile should the
next item be selected? Let f(s) = z∗(s), namely let f(s) denote the optimal
value of the objective function in (20) when W = s. Then it is not difficult to
show that

Theorem 3.2

f(s) =

{

0 , s < w := min{w1, . . . , wn}
max
wj≤s

{vj + f(s− wj)} , s ≥ w . (23)



524 M. SNIEDOVICH, A. LEW

The time complexity of the algorithm based on a naive implementation of
this DP functional equation is O(nW ).

In summary, we have two very different DP models for the same problem.
The DP functional equations induced by these models are substantially different
and so is the complexity of the algorithms based on them, depending on the
values of the parameters of the problem. It should be pointed out that other
DP algorithms are available for this problem.

Even simple problems can be solved by different DP models; in fact, some
problems can be solved by both a serial and a nonserial DP model. Some
examples of this are given in Lew (2006).

4. Curse of dimensionality

This term refers to the phenomenon exhibited by many problems where the
complexity of a problem increases sharply with its “ size ”. It is interesting to
note that this term was coined by Richard Bellman in his first book on dynamic
programming (Bellman, 1957, p. xii).

In the context of dynamic programming this is usually manifested in a very
large state space, namely in models where the state space is large and the DP
functional equation is solved numerically.

For example, there are many problems, where there are more than 2n distinct
states where n is a parameter representing the “ size ” of the problem. For
instance, in the case of the travelling salesman problem (TSP) there are n2n

feasible states where n denotes the number of cities to be visited.

Of course DP is not the only methodology afflicted by this Curse. Indeed,
complexity theory advises us that we should distinguish between the complexity
of problems and complexity of algorithms. It should not surprise us therefore
that the DP formulation of the TSP is subjected to the Curse, after all this
problem is NP-hard.

On the positive side, it should be stressed that not all DP algorithms are
cursed: there are many DP algorithms that are polynomial in time and space
(e.g. DP algorithms for the shortest path problem). Furthermore, many DP
functional equations can be solved analytically rather then numerically, in which
case large state spaces do not cause any problem (e.g. (6)-(7)).

5. Approximations

In view of the above, it should not come as a surprise that attempts have been
made to speed-up DP algorithms at the expense of the quality of the solutions
they generate.

Of special interest are methods where the decision at each stage of a sequen-
tial decision process is made – deliberately – based upon incomplete information.
Greedy or myopic algorithms are examples of such methods. Sniedovich (2006)



Dynamic Programming: an overview 525

discusses Dijkstra’s Algorithm, which is an example of a greedy algorithm that
is optimal for nonnegative arc length, but approximate otherwise.

Other examples of optimal and approximate greedy algorithms are discussed
by Lew (2006). An example of a myopic policy also appears in Piunovskiy
(2006).

Other methods incorporate DP within a heuristic approach, where the objec-
tive is to obtain a “ reasonably good ” solution rather than an optimal solution.

The dire need for such compromises is reflected by the fact that a number
of papers in this special volume (Hartman, 2006; Sniedovich and Voß, 2006;
Wilbaut et al. 2006) present such methods. We discuss this in Section 12.

6. Software support

In view of the preceding analysis it is not surprising that at present there is no
such thing as a “general purpose DP software package”. This is in sharp contrast
to say linear programming and quadratic programming where there are numerous
commercial software packages capable of handling large problem instances. The
situation is also much “better” in the area of integer programming.

What is currently available are specialized software packages addressing spe-
cific classes of problems. For example, there are well developed software pack-
ages for Decision Tree Analysis and Critical Path Analysis.

This state of the art means that practitioners often have to develop their
own DP software. This could be a very rewarding but not necessarily easy
endeavour. In fact, there are anecdotal evidence that this could be quite a
tricky task. One reason for this is that the performance of some DP algorithms
can be sped-up significantly using suitable data structures. Dijkstra’s Algorithm
is a good example (e.g. Denardo, 2003).

Despite the difficulties, efforts to develop better software support are ongo-
ing. Lew and Mauch (2006) report on a promising approach based upon Petri
nets. A brief review of relevant Petri net concepts is given below.

7. Parallel processing

One way to increase the efficiency and therefore practicality of DP is to con-
sider possible use of parallel processing techniques to execute DP programs.
This requires advances in both software and hardware technology. Appropriate
software is needed to identify or detect portions of a program that can be ex-
ecuted in parallel, where each portion may be assigned to a separate processor
in a distributed processing environment.

DP problems have many inherent sources of parallelism. For example, given
a DP functional equation, independent parallel processors can be assigned to
perform the calculations for each possible decision, after which the optimum of
these calculated values can be determined.



526 M. SNIEDOVICH, A. LEW

In terms of software, greater efficiency can be achieved by the provision of
suitable programming language features that enable users to explicitly identify
parallellism in their programs, or of suitable compilers that automatically detect
such parallelism. For example, modern programming languages such as java
have multithreading features that programmers can use to indicate portions of
their programs that can execute in parallel. Tereso, Mota and Lameiro (2006)
discuss an application of this for a DP problem.

It is also possible to solve a given DP functional equation using a spreadsheet
system, whose formula cells are used to compute the minima or maxima of other
cells. Some cells would compute other minima or maxima and other cells would
compute general functions of what are in other cells.

For example, a spreadsheet for finding the length of the shortest path in a
graph (from Lew, 2000) is given in the following table:

A B C D
1 = B1 = MIN(C1, C2) = D1 + A2 1
2 = B2 = MIN(C3, C4) = D2 + A3 2
3 = B3 = MIN(C5) = D3 + A3 3
4 0 = D4 + A4 4
5 = D5 + A4 5

��
��

��
����

��

��
��

A

C

B

D

�
�
�3Q

Q
Qs

?

�
�
�3 Q

Q
Qs

2 5

1 4

3

Such DP spreadsheets are easy to produce for small problems, but not for
large ones. Mauch (2006) discusses a software tool that can be used to automat-
ically generate a spreadsheet that would solve a given DP functional equation.

In terms of hardware, a computer architecture where different portions of
programs would execute on different processors in parallel would be advanta-
geous. One such architecture is that of a dataflow computer in which processors
are data-driven, where each processor awaits the arrival of data rather than the
arrival of a command from a central processing control unit before it starts exe-
cution. For a DP spreadsheet, each formula cell would be assigned to a separate
processor.

To formally model the solution of a DP functional equation, or the execution
of a spreadsheet, or the behavior of a dataflow computer, it is useful to adopt
a generalization of the usual state transition system model in which transitions
are data-dependent. Petri nets, introduced in the next section, are one such
model.

8. Petri nets

A Petri net – surveyed in Murata (1989) – is inherently a distributed or parallel
processing system, hence a Petri net model of a DP problem permits it to be
processed by a parallel system. Mauch (2006) describes a software tool that can
be used to automatically generate a Petri net model of a DP problem.



Dynamic Programming: an overview 527

DP can also be used to solve certain problems associated with Petri net
models. As we note below, Werner (2006) uses DP to solve a critical path
problem arising from a Petri net model, and Popova-Zeugmann (2006) uses DP
to reduce the number of states associated with a Petri net model. We briefly
review basic Petri net concepts below.

A Petri net is a class of directed graphs having two types of nodes, place
nodes and transition nodes, where branches connect nodes of different types, and
where place-nodes have (“ contain ”) associated objects called tokens. For any
transition-node T, branches from a place-node to the transition-node, or from
the transition-node to a place-node, define the input place-nodes (or preset) and
output place-nodes (or postset), respectively, of the given transition-node.

The state of a Petri net, called its marking M , is characterized by the to-
kens at each place-node P ; the initial state of a Petri net is a specified initial
marking M0. A Petri net makes transitions from one state to another based
upon firing rules associated with the transition-nodes: if each input place-node
of a transition-node contains a token, then the transition-node is eligible to fire.

The actual firing of a transition-node instantaneously causes “ input ” tokens
to be removed from each place-node in its preset and “ output ” tokens to be
inserted at each place-node in its postset. If more than one transition-node is
eligible to fire, only one at a time may do so, chosen arbitrarily.

The state transition diagram, whose states are markings and whose state
transitions correspond to transition-node firings, is called the reachability graph
associated with the Petri net. This graph is a (possibly infinite) tree rooted at
initial state M0.

Many properties of a Petri net can be determined by analysis of its reach-
ability graph, such as the existence or optimality of certain paths. The latter
suggests that DP can be applied to solve optimization problems related to Petri
nets. Werner (2006) uses DP to solve a critical path problem arising from a
Petri net model.

The foregoing basic definition of Petri nets has been extended in many ways.
One class of extensions allows a token to have an attribute called its color, which
may be a numerical value, and modifies the firing rules so as to require the colors
of input tokens to satisfy certain conditions for eligibility and so as to compute
a color to attach to each output token. Another class of extensions adds a
time element to transitions in some way. One way is to assume the firing of a
transition is no longer instantaneous, but may take a specified amount of time,
possibly in a given range of values. Another way is to assume a transition may
be eligible to fire only for a specified period of time, after which it becomes
ineligible.

For these more complex Petri net models, the state of the Petri net must be
redefined to incorporate additional information, hence the number of possible
states will generally be much greater. Consequently, the equivalent reachability
graph may be too large for analysis. Popova-Zeugmann (2006) uses DP to
reduce the number of states associated with a Petri net model. Furthermore, of



528 M. SNIEDOVICH, A. LEW

interest is not only the use of DP to solve Petri net problems, but also the use
of Petri nets to solve DP problems.

In such cases, a Petri net rather than a serial state-transition graph, is a more
appropriate modeling and computational framework. Mauch (2006) describes a
software tool based upon this idea that can be used to solve a very large class
of DP problems; in essence, a Petri net model, called a Bellman net in Lew
(2002), is adopted as an internal data structure representation for a given DP
functional equation. This tool automatically constructs a Bellman net model
of a DP functional equation, from which it is possible to automatically generate
ordinary or parallel processing code to solve this equation.

9. Teaching and learning

Experience has shown that many students find DP to be extremely deceptive.
When they examine a given DP formulation they regard it as intuitive and
“ obvious ”. Yet, when asked to construct a DP formulation to a slightly differ-
ent problem, they suddenly discover that the exercise is not as easy as it first
appeared to be. This is a manifestation of the difficulty known as the “ art of
dynamic programming”. Dreyfus and Law (1977) have a very vivid discussion
on this aspect of DP.

This is one of the reasons why teaching/learning DP can be a very rewarding
experience but not necessarily an easy one.

Most students’ first (and last!) encounter with DP is in introductory courses
where DP constitutes only a small part of the content of the course. It is common
practice in such environments to teach DP “by example ”. That is, there is not
much discussion on the DP methodology. Rather, students are taught how to
use DP to solve say 5-6 different types of problems. The hope is that through
this experience they will somehow “ get ” the essence of this problem solving
methodology.

It is not clear to what extent this strategy has been successful (see Dreyfus
and Law, 1977, comments on this matter), but there seems to be very little
that can be done in the short term to change this state of affairs. Lecturers
practicing this strategy are advised that in this environment it is important to
think carefully on a balanced collection of examples.

Since DP offers a versatile strategy for solving all sort of games and puzzles,
it is only natural to consider one example illustrating this side of DP. The Towers
of Hanoi Puzzle is a good choice (Sniedovich, 1992, 2002).

10. Myths and facts

Over the years a number of myths about dynamic programming have taken hold
in the literature. We shall mention only four.



Dynamic Programming: an overview 529

DP is a bottom-up technique

This myth is widespread. It creates the mistaken impression that the process of
decomposing the original problem into subproblems necessarily yields smaller
and smaller problems, until ultimately the subproblems become trivial. By
implication this means that the solution procedure starts with “ . . . the smallest,
and hence simplest, subinstances . . . ” (Brassard and Bartley, 1988, p. 142).
This common view of DP completely distorts the fundamental idea of DP, which
does not rely at all on the subproblems becoming “ smaller ” or “ simpler ”. For
example, in the case of shortest path problems with cycles, the subproblems do
not become smaller nor simpler than the original problem. And in the case of
infinite horizon problems, the subproblems are neither smaller nor easier than
the original problem.

The role of decomposition in DP is first and foremost to create related prob-
lems and quantify the relationships between them and their solutions rather
than to make the original problem smaller and smaller and/or easier and easier.
Given that the method of successive approximation is so pervasive in DP, it is
not clear why this myth is so prevalent.

Curse of dimensionality

As explained above, the Curse has to do with the size (cardinality) of the state
space - not the dimension of the state variables. Therefore, it cannot be resolved
merely by changing the representation of the state variables, as suggested for
instance by Ram and Babu (1988). A short discussion on this misconception
can be found in Sniedovich (1992, p. 184-185). On the positive side, it is
important to stress that not all DP models are subject to the Curse. There are
many situations (e.g. shortest path problems) where DP algorithms are efficient.
Furthermore, certain instances of notoriously difficult problems are amenable to
DP treatments. For example, as we already indicated above, for obvious reasons
the DP formulation of the generic TSP is subject to the Curse. But this does not
mean that all subclasses of this generic problem are difficult. For example, as
shown by Balas and Simonetti (2001) certain subclasses on this generic problem
can be solved by linear time DP algorithms.

The art of DP

It was suggested (e.g. Pollock and Smith, 1985) that the “ art of DP ” can be
resolved by a simple enumeration-aggregation process where the state of the DP
model is identified by inspection using the decision-tree representation of the
underlying problem. This approach is fundamentally flawed. To start with, it re-
quires the modeller to enumerate all the feasible solutions. Second, the states
identified by this process are not necessarily the conventional DP states because
the proposed method is prone to the whims of specialized circumstances associ-
ated with the particular instance of the problem under consideration. Thus, for



530 M. SNIEDOVICH, A. LEW

instance, the states generated by this method for an instance of the knapsack
problem may not have the “ physical ” meaning of the conventional states asso-
ciated with this problem (“ capacity not yet utilized ”). Thirdly, the approach
cannot deal with classes of problems: how do you decide what is a proper state
for the generic knapsack problem? In short, not only that complete enumera-
tion cannot be accepted as a legitimate tool for determining the states of a DP
model, the mere suggestion of this option is a clear indication of the enormous
difficulties posed by the “ art of DP”.

Principle of optimality

This is no doubt the most controversial aspect of DP. Indeed, there are a number
of myths regarding the meaning and validity of the Principle and its exact role
in the theory and methodology of DP.

Given the long history of this controversy, it seems that it would be best for
persons interested in this aspect of DP to consider the basic facts rather than
continue the spread of speculations and unwarranted claims on this topic.

The basic issue here is not whether Principle is valid or invalid, but rather
how it can be best used to explain what DP is all about (Sniedovich, 1992).

11. Opportunities and challenges

Our short discussion identified a number of problematic issues related to var-
ious aspects of DP. However, rather than regarding these issues as obstacles,
we should view them as challenges, the point being that in each case there is
certainly something constructive and useful that we can do about it.

In fact, this argument can be pushed even one step further, because where
there is a challenge there can also be opportunities. Solving DP problems more
efficiently is a major challenge that provides a variety of opportunities for re-
searchers. Many of the papers in this Special Issue address this need for effi-
ciency. Consider also the need for user-friendly general-purpose DP software.
The lack of such software is a manifestation of the tremendous difficulties associ-
ated with the development of such products. But it also points out the obvious:
the tremendous opportunities that exist in this very area.

This particular instance is also indicative of another aspect of DP, namely
that the various challenges - hence opportunities - are interrelated to one an-
other. Progress with the development of user-friendly general-purpose DP soft-
ware will no doubt facilitate tackling the teaching/learning challenge.

Such software also contributes to greater efficiency since program develop-
ment time (by people) is often more significant than program execution time
(by computers).



Dynamic Programming: an overview 531

12. Overview of papers in this volume

A number of approaches are available for making DP algorithm more efficient,
naturally at the expense of not being able to guarantee the optimality of the
solutions. We mention the following three:

1. Approximation techniques that obtain a tentative nonoptimal solution,
often followed by techniques to improve these tentative solutions, or pos-
sibly a sequence of such approximate solutions that ideally converge to
the exact optimal solution.

2. Heuristic techniques, where certain states or decisions can be excluded
from consideration based upon, for example, greedy principles.

3. Parallel processing techniques, where advances in software or computer
architecture are employed to solve the given equations.

Hartman and Perry (2006) describe the use of linear programming to obtain
the approximate solution of a DP problem. Sniedovich and Voß (2006) describe
a successive approximations techniques based upon search of neighborhoods
defined by DP methods. Wilbaut et al. (2006) describe a successive approx-
imations technique in which a tabu search method is used to improve partial
solutions. Sniedovich (2006) characterizes Dijkstra’s algorithm as a successive
approximations technique.

Lew (2006) discusses classes of greedy algorithms that yield optimal solu-
tions, including “ canonical ” greedy algorithms that can be derived directly
from a DP formulation. One example of a canonical optimal greedy algorithm
is Dijkstra’s algorithm, as also discussed in Sniedovich (2006). Greedy or my-
opic policies used for Markovian decision processes are discussed in Piunovskiy
(2006).

For a given DP formulation, efficiency can also be gained by software or
hardware means. Tereso, Mota and Lamiero (2006) describe how a DP problem
can be solved using distributed processing.

Mauch (2006) describes a software tool for DP that reduces program devel-
opment time using a Petri net model. Finally, as mentioned above, Popova-
Zeugmann (2006) and Werner (2006) discuss other problems related to Petri
nets and DP.

13. Conclusions

The role and status of dynamic programming in such fields as operations re-
search and computer science is well established, widely recognized and secured.
There are strong indications, however, that its capabilities as a tool of thought
and a versatile problem-solving methodology have not yet been fully utilized.

In this discussion we identified a number of challenges - hence opportunities
- that must be dealt with in order to make dynamic programming more acces-
sible to practitioners, researchers, lecturers and students.



532 M. SNIEDOVICH, A. LEW

Acknowledgement. This article is based on a tutorial and short paper entitled
Dynamic Programming Revisited: Opportunities and Challenges (Sniedovich,
2004).

References

Balas, E. and Simonetti, N. (2001) Linear time dynamic programming al-
gorithms for new classes of restricted TSP’s: A computational study. IN-
FORMS Journal on Computing 13 (1), 56–75.

Bellman, R. (1957) Dynamic Programming. Princeton University Press, Prin-
ceton, New York.

Bird, R. and de Moor, O. (1997) Algebra of Programming. Prentice-Hall,
New York.

Brassard, G. and Bratley, P. (1988) Algorithmics Theory and Practice.
Prentice-Hall, New York.

Brown, T.A. and Strauch, R.E. (1965) Dynamic programming in multi-
plicative lattices. Journal of Mathematical Analysis and Applications 12,
364-370.

Denardo, D.E. (2003) Dynamic Programming Models and Applications. Do-
ver, New York.

Dijkstra, E.W. (1959) A note on two problems in connexion with graphs.
Numerische Mathematik 1, 269-271.

Dreyfus, S.E. and Law, A.M. (1977) The Art and Theory of Dynamic Pro-
gramming. Academic Press, New York.

Ellis, D. (1955) An Abstract Setting of the Notion of Dynamic Programming,
P-783. The RAND Corporation, Santa Monica, CA.

Hartman, J.C. and Perry, T.C. (2006) Approximating the solution of a
dynamic, stochastic multiple knapsack problem. Control and Cybernetics
35 (3), 535-550.

Lew, A. (2000) N degrees of separation: Influences of dynamic programming
on computer science. Journal of Mathematical Analysis and Applications
249, 232–242.

Lew, A. (2002) A Petri net model for discrete dynamic programming. Inter-
national Workshop on Uncertain Systems and Soft Computing, Beijing.

Lew, A. (2006) Canonical greedy algorithms and dynamic programming. Con-
trol and Cybernetics 35 (3), 621-643.

Lew, A. and Mauch, H. (2006) Dynamic Programming: A computational
tool. Springer, Berlin.

Mauch, H. (2006) DP2PN2Solver: A flexible dynamic programming solver
software tool. Control and Cybernetics 35 (3), 687-702.

Murata, T. (1989) Petri Nets: Properties, Analysis and Applications. Pro-
ceedings of the IEEE 77, 541–580.



Dynamic Programming: an overview 533

Pollock, S.M. and Smith, R.L. (1985) A formalism of dynamic program-
ming. Technical Report 85-8. Department of Industrial and Operations
Engineering, The University of Michigan, Ann Arbor, Michigan.

Piunovskiy, A.B. (2006) Dynamic programming in constrained Markov de-
cision processes. Control and Cybernetics 35 (3), 645-660.

Popova-Zeugmann, L. (2006) Time Petri nets state space reduction using
dynamic programming. Control and Cybernetics 35 (3), 721-748.

Ram, B. and Babu, A.J.G. (1988) Reduction of dimensionality in dynamic
programming based solution methods for nonlinear integer programming.
International Journal for Mathematics and Mathematical Sciences 11 (4),
811–814.

Sniedovich, M. (1992) Dynamic Programming. Marcel Dekker, New York.
Sniedovich, M. (2002) OR/MS Games: 2. The Towers of Hanoi Problem.

INFORMS Transactions on Education 3 (1), 34–51.
Sniedovich, M. (2004) Dynamic Programming Revisited: Opportunities and

Challenges, 41, 1-11. In: Rubinov A. and M. Sniedovich, eds., Proceedings
of ICOTA 6, December 9-11, University of Ballarat, Australia.

Sniedovich, M. (2006) Dijkstra’s algorithm revisited: the dynamic program-
ming connexion. Control and Cybernetics 35 (3), 599-620.

Sniedovich, M and Voss, S. (2006) The corridor method: a dynamic pro-
gramming inspired metaheuristic. Control and Cybernetics 35 (3), 551-
578.

Tereso, A.P., Mota, J.R.M. and Lameiro, R.J.T. (2006) Adaptive re-
source allocation to stochastic multimodal projects: a distributed platform
implementation in Java. Control and Cybernetics 35 (3), 661-686.

Verdu S. and Poor H.V. (1987) Abstract dynamic programming models un-
der commutative conditions. SIAM Journal of Control and Optimization
25 (4), 990–1006.

Werner, M. (2006) A timed Petri net framework to find optimal IRIS sched-
ules. Control and Cybernetics 35 (3), 703-719.

Wilbaut, C., Hanafi, S., Freville, A. and Balev, S. (2006) Tabu search:
global intensificaton using dynamic programming? Control and Cybernet-
ics 35 (3), 579-598.


