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Abstract: Tabu search has proven highly successful in solv-
ing hard combinatorial optimization problems. In this paper, we
propose a hybrid method that combines adaptive memory, sparse
dynamic programming, and reduction techniques to reduce and ex-
plore the search space. Our approach starts with a bi-partition of
the variables, involving a small core problem, which never exceeds 15
variables, solved using the “forward” phase of the dynamic program-
ming procedure. Then, the remaining subspace is explored using
tabu search, and each partial solution is completed with the informa-
tion stored during the forward phase of dynamic programming. Our
approach can be seen as a global intensification mechanism, since at
each iteration, the move evaluations involve solving a reduced prob-
lem implicitly. The proposed specialized tabu search approach was
tested in the context of the multidimensional 0-1 knapsack prob-
lem. Our approach was compared to ILOG’s commercial product
CPLEX and to the corresponding “pure” tabu search (i.e., without
a core problem) for various sets of test problems available in OR-
libraries. The results are encouraging. In particular, this enhances
the robustness of the approach, given that it performs better than
the corresponding pure tabu search most of the time. Moreover, our
approach compares well with CPLEX when the number of variables
is large; it is able to provide elite feasible solutions in a very reason-
able amount of computational time.

Keywords: tabu search, dynamic programming, global inten-
sification, multidimensional 0-1 knapsack problem.
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1. Introduction

We propose a hybrid algorithm that combines adaptive memory techniques and
sparse dynamic programming for solving some combinatorial optimization prob-
lems. Dynamic programming is used on a subset of variables to solve exactly
a family of sub-problems that differ one from another only in the right-hand
side constraint values. Tabu search is then applied to the remaining variables
in the subset, bringing into play information generated during the dynamic pro-
gramming phase. The efficiency of the method lies in the way the variables are
partitioned into two subsets as required by the dynamic programming memory.

We developed this hybrid approach for solving the well-known multidimen-
sional 0-1 knapsack problem (MKP). The MKP consists of finding a subset of
items that maximizes a linear objective function while respecting the capacity
constraints. The MKP can be formulated as follows:

z(MKP) := max
∑

j∈N cjxj

s.t.
∑

j∈N aijxj ≤ bi i ∈ M = {1, 2, . . . , m} (1)

xj ∈ {0, 1} j ∈ N = {1, 2, . . . , n}

where N is the set of items; cj , the profit j ∈ N ; M , the set of knapsack
constraints; bi, the capacity of knapsack i ∈ M ; and aij , the consumption of
resource i ∈ M when item j is selected. All data - cj , bi and aij - are non-
negative integers. Without loss of generality, we can assume that cj > 0, j ∈ N ,
bi > 0, i ∈ M , and maxj∈Naij ≤ bi ≤

∑
j∈N aij , for i ∈ M . We use the

following shortcut notation for the problem:

(MKP) max{cT x : Ax ≤ b, x ∈ {0; 1}n}. (2)

We use aj to denote the j-th column of the matrix A, namely aj = (a1j , a2j ,
..., amj). Throughout the remainder of this paper, z(P ) denotes the optimal
value of the optimization problem (P ). MKP is known to be NP-hard, but not
strongly NP-hard (Fréville, Hanafi, 2005). MKP has been widely discussed in
the literature, and efficient exact and approximate algorithms have been devel-
oped for obtaining optimal and near-optimal solutions (see Fréville, 2004, for
a comprehensive annotated bibliography). In particular, MKP has been shown
to become significantly harder to solve as m increases. For m = 1, some very
efficient algorithms (Kellerer, Pferschy, Pisinger, 2004; Martello, Toth, 1990)
do exist, but as m increases, exact methods (e.g., the last versions of CPLEX,
Osorio, Glover, Hammer, 2000) usually fail to provide an optimal solution for
even moderate-size instances.

Dynamic programming (DP), Bellman (1957), is one of the seminal methods
proposed in the literature for solving knapsack problems. Generally, dynamic
programming-based algorithms are easy to implement and very efficient for
small- and medium-sized instances. However, dynamic programming does not
address all types of combinatorial optimization problems and fails on large-scale
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instances due to prohibitive computational time and memory requirements. Sev-
eral algorithms based on dynamic programming have been developed for both
the simple knapsack problem, Toth (1980), and the multidimensional knapsack
problem, Fréville (2004), with more or less conclusive results. In cases involving
a single constraint, the recent approaches using dynamic programming hybrids
and other techniques (Plateau, Elkihel, 1985; Viader, 1998) have proved very
efficient for solving large-scale instances. The situation is not so idyllic when
multiple constraints are involved, mainly because the amount of information
that must be stored during the process increases sharply with m (see Bersti-
mas, Demir, 2002, for an example of such an algorithm).

In the past 30 years, many researchers have studied heuristics and meta-
heuristics devoted to the MKP (Fréville, Hanafi, 2005). Tabu search (TS ),
introduced by Glover (1986) and Hansen (1986), is acknowledged to be well
suited to solving large-scale MKP instances. The main concepts were devel-
oped by Glover (1989, 1990), and many efficient implementations and hybrids
based on other suitable heuristics and metaheuristics have been proposed over
the intervening years.

This paper is organized as follows. Section 2 describes the dynamic program-
ming method applied to the first subset of variables, which yields an improved
solution and fixes variables at their optimal values. Section 3 presents the tabu
search procedure that is applied to the remaining subset of variables in order to
improve the best current feasible solution. The global intensification procedure
is explained in Section 4 and illustrated with a simple example. In Section 5,
computational results are provided for various sets of problems, and Section 6
presents our conclusions and offers suggestions for future research.

2. Dynamic programming with reduction

In this section we first formulate the DP functional equation for MKP . Then
we show how the dynamic programming, combined with the LP-relaxation in-
formation and the best-known solution, allows us either to prove that the best
feasible solution obtained is optimal, or to fix a subset of variables at their
optimal values.

2.1. Dynamic programming phase

Let us consider the family of sub-problems MKP [k, β] which involves k variables,
k ∈ [0; n], according to residual capacities β, with 0 ≤ β ≤ b:

f(k, β) := max
∑

j∈{1,...,k} cjxj

s.t.
∑

j∈{1,...,k} aijxj ≤ βi i ∈ M = {1, 2, . . . , m} (3)

xj ∈ {0, 1} j ∈ {1, 2, . . . , k}.
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As f(k, β) (respectively f(n, b)) denotes the value of the sub-problem MKP [k, β]
(resp. MKP), the following recurrence relations hold:

f(k, β) =max{f(k − 1, β), ck + f(k − 1, β − ak)}, ifak ≤ β (4)

f(k, β) =f(k − 1, β), ifak � β (5)

for k = 1, 2, ..., n, with the initial conditions f(0, β) = 0, 0 ≤ β ≤ b. In the worst
case, this approach requires a total memory space in O(n×b1×b2 . . .×bm). Even
given a single constraint, this memory requirement becomes too demanding as
soon as the size n, and/or the second member b, increases. To save memory
space, we use a sparse representation based on the step-wise growth feature of
the function f(k, β). This sparse representation has already been used for the
knapsack problem (Viader, 1998), and has been generalized to the MKP . The
main idea is to maintain a list L of (m+2)-tuples, in which each element of L
represents a state (v, β′, k), where v denotes the objective function value; β′,
the amount of resource available for the remaining n − k variables; and k, the
number of the step. The last component k of each element in the list is used in
the backtracking phase to restore an optimal solution.

In the continuation, elements of L are denoted (v, β′, k), or simply by (v, β′)
when specifying k does not facilitate comprehension. In spite of the sparse rep-
resentation, the DP application is not able to solve large instances of MKP due
to its spatial and temporal requirements. However, the initial steps are very
fast and can provide information that can be used to set variables (see Section
2.2). So, for a given MKP instance, the DP algorithm is only performed on a
limited number of steps, noted n′. This parameter n′ is determined experimen-
tally in terms of the machine capacities and the size of the instance being solved
(typically, the number of constraints), with the main goal being to apply dy-
namic programming to the maximum number of variables, while still respecting
memory and computational requirements.

The algorithm proves fast enough when the memory needed to store the list
L does not exceed a threshold of Mem units, where Mem reflects the charac-
teristics of the computer used for running the code. In fact, during the forward
phase, the number of elements in the list doubles at each iteration in the worst
case. So, after the first n′ iterations, the list L has at most 2n′

elements, since
each tuple of L corresponds to a feasible solution and since, for small value of
n′, almost all solutions are feasible. Dynamic Programming is used here to enu-
merate the search space {0, 1}n′

. Because each element is composed of m + 2
values, the size of L is, at most, 2n′

×(m+2) after n′ iterations. For this reason,
the value n′ = log2(Mem)− log2(m+2) would seem to be a good choice. In our
experiments, the value of n′ is small compared to n - between 0.3% and 15%
(see Section 5 for more details). The choice of the first n′ variables solved using
DP is guided by a reduction technique logic.

The DP algorithm could be enhanced by integrating dominance techniques,
which would eliminate some elements in the list L during the forward process.
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Such enhancement has been shown to be very efficient for single-constraint knap-
sack problem. Unfortunately, this is not true for MKP ; when m > 1, detecting
dominance is very time consuming. In addition, dominance occurs very rarely
in the solution process, since for a set of 270 instances (described in Section
5), the percentage of dominated elements in the list at the end of the forward
process varies between 0% and 3%, with an average of 0.04%. Thus, the high
price paid to detect dominance is not compensated by the elimination of a large
number of elements in L. For these reasons, we chose not to use the dominance
principle.

2.2. Reduction technique

Preprocessing techniques play a fundamental role in developing efficient integer
programming approaches. The basic tools involve setting variables, identifying
infeasibility and constraint redundancy, and tightening the LP-relaxation by
modifying coefficients and by generating strong valid inequalities (see Savels-
berg, 1994, for a framework of basic techniques). In our method, the reduction
technique is only used to set variables to their optimal values.

Given a feasible solution x0 and a subset J ⊆ N , the reduced problem
denoted by MKP(x0, J) is extracted from the original problem MKP by fixing
each xj for j ∈ J to its value in x0 (i.e. xj = x0

j , j ∈ J). Obviously, MKP (x0,⊘)

corresponds to the initial MKP , and its value is equal to cT x0. As soon as the
size of set J decreases, the reduced problem MKP(x0, J) becomes more difficult
to solve. Thus, for any subset J ′ ⊆ J , we have:

z(MKP(x0, J ′)) ≥ z(MKP(x0, J)). (6)

In the following, shortcut notations are used: MKP(x0
j ) for the reduced problem

MKP(x0, {j}) and MKP(1 − x0
j) for MKP(e − x0, {j}), where e is the vector

whose components are all set at 1. The common variable fixation techniques
are based on knowing a good lower bound associated with a feasible solution
x0, and rely on the following property:

Lemma 2.1 For any j ∈ N , and for any feasible solution x0 ∈ {0, 1}n, if
z(MKP(1 − x0

j )) ≤ cT x0 then either xj = x0
j in any optimal solution, or x0 is

optimal.

Although the problem MKP(1 − x0
j ) is as difficult to solve as the original

MKP , the above property remains valid if z(MKP(1 − x0
j )) is replaced by any

upper bound from the problem MKP(1 − x0
j ) (refined upper bounds are pro-

posed in Fréville, Plateau, 1994). In the following, we propose an alternative
approach based on dynamic programming and LP upper bounds that relies
on the interdependence between two upper bound {uj}j∈N and lower bound
{lj}j∈N sequences. For convenience, we recall the main results given in An-
donov et al. (2001) (note that the proofs for the propositions referred to below
are also given in Andonov et al., 2001).
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Let x0 be a feasible solution of MKP . Let uj , j ∈ N , be an upper bound
of z(MKP(1 − x0

j )) (i.e. uj ≥ z(MKP(1 − x0
j )), ∀j ∈ N). Throughout the

remainder of this paper, we assume that the decision variables xj are sorted in
decreasing order according to the upper bounds uj:

u1 ≥ u2 ≥ . . . ≥ un . (7)

Proposition 2.1 Let x0 be a feasible solution to MKP and define

lj = z(MKP(x0, {j + 1, . . . , n})), j ∈ N (8)

If lk ≥ uk+1 for some k ∈ {1, 2, . . . , n − 1} then z(MKP) = lk.

In our experiments, the upper bounds uj correspond to the value of the LP-
relaxation of the reduced problem MKP(1−x0

j ). The next proposition explains
the mechanism for setting the variables, using the upper and lower bounds
sequences.

Proposition 2.2 Assume that there exists a pair of indices (h, k) such that
h < k and lh ≥ uk. Then there exists an optimal solution x∗, such that x∗

j = x0
j

for j = k, k + 1, . . . , n.

Let N ′ = {1, . . . , n′}. The lower bounds associated to N ′ (i.e. {lk}k∈N ′) are
calculated during the dynamic programming process as follows:

lk =

n∑

j=k+1

cjx
0
j + max{v|β′ ≥

n∑

j=k+1

ajx
0
j , (v, β′) ∈ L} . (9)

The value lk is optimal according to the initial feasible solution x0 in that
it achieves the best feasible completion of the partial solution (x0

k+1, . . . , x
0
n).

In fact, each element (v, β′) ∈ L (for the first k iterations) corresponds to a

feasible solution, such that v =
∑k

j=1
cjxj and β′ = b −

∑k

j=1
ajxj . Since

β′ ≥
∑n

j=k+1
ajx

0
j holds, all the solutions are feasible and (8) ensures that the

value of lk is optimal.
The results of the previous propositions are embedded in Algorithm 1. It is

not necessary to know the lower bounds lk at each iteration, which reduces the
computational time required by the algorithm. In fact, in large instances, the
probability of fixing variables during the early iterations is small, so our method
computes the lower bound only at the last iteration, n′. The process is repeated
on the reduced problem until all the variables are set, or until no variable can
be set.

3. Tabu search

TS is primarily designed to overcome local optimality by implementing intelli-
gent and reactive tools during a neighborhood search approach. TS has aroused
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Algorithm 1 Sparse dynamic programming algorithm with reduction

Procedure DP(MKP)

STEP 1: Pre-processing phase
Compute an initial feasible solution x0 of MKP and the sequence {uj}j∈N

Sort the sequence {uj}j∈N according to (7)
Compute n′ and let N ′={1,...,n′}
Set L = {(0, b, 0)} and k = 1;

STEP 2: Construct the Dynamic Programming List
while k ≤ n′ do

Set L1 = ⊘;
for all (v, β′) ∈ L do

if β′ ≥ ak then

L1 = L1 ∪ {(v + ck, β′ − ak, k)};
L = L ∪ L1; k = k + 1;

end if

end for

end while

STEP 3: Compute the lower bound
Compute ln′ according to (9)

STEP 4: Reduction and optimality test
if ln′ ≥ un′+1 then

stop (all the variables are fixed and ln′ is the optimal value of MKP)
else

let k be an index such that uk−1 > ln′ ≥ uk

if k exists then

Add the constraints xj = x0
j for j = k, . . . , n to MKP

Repeat the process by calling DP(MKP)
else

stop (no more fixation is possible)
end if

end if
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great interest in the research community over the last two decades and has
proven highly successful at solving hard, large-scale combinatorial optimization
problems (See Glover, Laguna, 1997, for a state-of-the art of the TS method
and its applications1).

3.1. Global intensification

The set of decision variables N is partitioned into two subsets, N ′ and N ′′ (i.e.
N = N ′ ∪ N ′′ and N ′ ∩ N ′′ = ⊘). The subset N ′ defines the sub-problem
solved by using dynamic programming (N ′ = {1, 2, . . . , n′}, where n′ = |N ′|
and N ′′ = N −N ′ = {n′ + 1, . . . , n} with n′′ = |N ′′| = n− n′). Let x = (x′, x′′)
be a partition of the vector solution x, where x′ = (xj)j∈N ′ and x′′ = (xj)j∈N ′′ .
Similarly, let A = (A′, A′′) and c = (c′, c′′).

The main new feature of our TS method is to involve a global intensification
mechanism. Because of this mechanism, the tabu search focuses only on the
region of the search space defined by the subset N ′′, each partial solution gener-
ated during the process being completed by the solution of a reduced problem.
The integration of DP in the tabu search process is justified by exploiting the
list L generated during the forward phase of DP . In fact, each partial solution
x′′ in {0, 1}n′′

visited by TS is completed to obtain a feasible solution of the
original MKP x in {0, 1}n (see Algorithm 2). It corresponds to the backtracking
phase of DP .

Algorithm 2 Global intensification mechanism for completing the solutions
in tabu search

Procedure Complete(MKP,L,x′′)

STEP 1: Search Phase
Find (v∗, β′∗, k∗) in L such that v∗ = max{v : (v, β′, k) ∈ L and β′ ≥ A′′x′′}

STEP 2: Construction Phase
x′ = 0;
while k∗ > 0 do

x′
k∗ = 1;

find (v′, γ′, k′) ∈ L such that v′ = v∗ − ck∗ , γ′ = β′∗ − ak∗

(v∗, β′∗, k∗) = (v′, γ′, k′);
end while

Let x′′ be a partial solution in {0, 1}n′′

, the procedure complete generates a
solution x′ in {0, 1}n′

such that:

c′T x′ = max{c′T y : A′y ≤ b − A′′x′′, y ∈ {0, 1}n′

}. (10)

1see also special issue of Control and Cybernetics, “Tabu Search for Combinatorial Opti-

mization”, 29, 3, 2000, Guest Edited by R.V.V. Vidal and Z. Nahorski.
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Note that x′ is an optimal solution of MKP once x′′ is set. The list L is
ordered to accelerate the backtracking process (the sort is realized during the
forward phase, more precisely when the two lists merge).

Although infeasibility during the process has proved interesting in other cir-
cumstances (Glover, Kochenberger, 1996; Hanafi, Fréville, 1998), this approach
only takes feasible solutions into account in order to complete each partial solu-
tion. Thus, to maintain feasibility, an adding or dropping move flips one variable
to obtain its neighbor. Specifically, the neighborhood V (x′′) of a current solu-
tion x′′ on N ′′ is defined such that:

V (x′′) = {y ∈ {0, 1}n′′

|
∑

j∈N ′′

ajyj ≤ b,
∑

j∈N ′′

|x′′
j − yj | = 1}. (11)

The size of the neighborhood in (11) is equal to |N ′′|. The value of any neighbor
y in V (x′′) is given by:

cT y =
∑

j∈N ′′

cjyj + max{v : β′ ≥
∑

j∈N ′′

ajyj , (v, β′) ∈ L}. (12)

The value of the second term in (12) is obtained by the application of the
Complete procedure.

3.2. Initial solution

The initial feasible solution x0 used in our approach is generated using an LP-
based heuristic with local search. Our procedure is the first step of the method
proposed by Soyster, Lev, Slivka (1978). Starting with the LP-relaxation solu-
tion, non-basic variables are set to the values 0 or 1, and the remaining sub-
problem corresponding to the fractional variables is solved to produce a feasible
solution x0. Both the LP-relaxation and the reduced problem are solved with
CPLEX. Note that the number of constraints m is such that the reduced MKP
can be solved exactly with enhanced versions of CPLEX; at worst, good quality
lower bounds are generated.

A local search, called complement heuristic, is applied to improve the feasible
solution x0 that was generated by the LP-based heuristic. The variables set at 1
in x0, except k of them, define a partial solution that is completed by a greedy
heuristic working only with the remaining “free” variables. The procedure is
repeated for each subset with a cardinality equal to k, and the best complete
solution x0 is selected (in our experiments, the value k = 2 was selected).
The tabu search procedure starts with the final solution provided by the dynamic
programming phase.

3.3. Other TS ingredients

The tabu list is designed to prevent the search from short term cycling. In our
method, since a move consists of flipping a single variable at each iteration,
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the index of the flipped variable, denoted j, is classified tabu for the next t
iterations. The tabu tenure t is determined empirically. Our computational
results show that a value t equal to m is a suitable choice.

Generally, TS becomes significantly more efficient when long-term memory
is incorporated into its two main components: intensification and diversification.
Although the moves of our TS are defined for the search space {0, 1}n′′

of the
reduced problem on N ′′, the intensification and diversification strategies are
defined for the search space {0, 1}n of the original problem MKP . The long-
term frequency information, a collection of all the local optima visited during
the search space exploration, is stored in a vector, denoted Elite. Frequency
memory was introduced in order to influence the direction of the search. A
penalty term is associated with the frequency information Fj associated with
variable xj (corresponding to the number of times the variables has been set
to ’1’ during the search process) when evaluating the ratio cj/µaj for each
variable xj where µ is a multiplier. In fact, variables are sorted according to
the (δcj/µaj + (1 − δ)Fj) value with δ parameter.

Intensification strategies record and exploit elite solutions, or specific fea-
tures of such solutions. The intensification procedure starts when the best
solution is improved, or when no improvement has occurred during n/m con-
secutive iterations. Choice rules can be modified in many ways so that they
intensify the area around attractive regions, where good elite solutions have
historically been found. The intensification procedure tries to improve one of
the K best solutions stored in Elite during the search through the use of the
modified complement heuristic described in Section 3.2.

Diversification strategies, on the other hand, are used to drive the search
towards unexplored regions by periodically introducing infrequently used at-
tributes into the solution. Our diversification algorithm considers the variables
in terms of a frequency value associated with the number of times the variable
has been set to ’1’ during the search process. This technique diversifies the
search by favoring variables with the smallest values. Starting with an initial
null solution, variables are added according to the increased frequency value as
long as the solution is feasible. If the frequency does not really evolve between
two iterations, this kind of diversification runs the risk of producing identical
solutions at each iteration. However, it is easy to avoid this situation by, for
example, modifying a random number of bits in the solution. A diversification
phase is activated as soon as K consecutive intensification phases do not im-
prove the incumbent solution, where K denotes the number of best solutions
recorded.

To evaluate the positive impact of the global intensification mechanism, we
also developed a “pure tabu search” algorithm without dynamic programming.
The pure tabu search process has the same characteristics as the TS hybrid;
however, the set of decision variables associated is N , and the neighborhood of
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the current solution x is defined as follows:

V (x) = {y ∈ {0, 1}n|
∑

j∈N

ajyj ≤ b,
∑

j∈N

|xj − yj | = 1} (13)

where the size of V (x) is |N |. The intensification phase applies the local search
heuristic. The diversification phase follows the principles described above. The
initial solution of the tabu search algorithm is determined using the LP-based
heuristic.

4. Tabu search using dynamic programming

This section presents our hybrid approach, combining dynamic programming
with tabu search. The hybrid consists of three inter-connected phases:

Phase 1 - Initialization: An initial feasible solution is generated and further
improved using heuristic procedures. The set of decision variables N is parti-
tioned into two subsets, N ′ and N ′′.

Phase 2 - Dynamic programming: A sparse dynamic programming algorithm
solves all the sub-problems associated with the subset N ′. During the process,
reduction rules are applied to set variables to their optimal values, and a list L
containing all the optimal values of the sub-problems is stored. The process is
repeated in order to set as many variables as possible.

Phase 3 - Tabu search: Tabu search is performed on the search space defined
by the subset N ′′, and uses the list L to complete each partial solution.

Both phases 2 and 3 are repeated until no improvement is possible. This
method can be applied to any combinatorial optimisation problems for which an
efficient dynamic programming approach exists. The execution of this algorithm
is illustrated using the following example MKP(n = 10, m = 3).

max 20x1 + 18x2 + 15x3 + 14x4 + 12x5 + 9x6 + 7x7 + 5x8 + 3x9 + 2x10

s.t. 15x1 + 16x2 + 12x3 + 12x4 + 10x5 + 10x6 + 8x7 + 5x8 + 4x9 + 3x10 ≤ 45

22x1 + 21x2 + 16x3 + 14x4 + 15x5 + 7x6 + 5x7 + 2x8 + 4x9 + 4x10 ≤ 50

18x1 + 20x2 + 15x3 + 10x4 + 9x5 + 8x6 + 2x7 + 6x8 + 2x9 + 5x10 ≤ 40

xj ∈ {0, 1}, j ∈ N

Phase 1 - Initialization:

The value of the LP-relaxation is z(LP ) = 51.60 that corresponds to the
LP-solution: x̄ = (0.90, 0, 0, 1, 0.58, 0.07, 1, 1, 0, 0).

According to x̄, the LP-based heuristic solves the following reduced problem
MKP1:



590 Ch. WILBAUT, S. HANAFI, A. FRÉVILLE, S. BALEV

max 20x1 + 12x5 + 9x6

s.t. 15x1 + 10x5 + 10x6 ≤ 20

22x1 + 15x5 + 7x6 ≤ 29

18x1 + 9x5 + 8x6 ≤ 22

xj ∈ {0, 1}, j = 1, 5, 6.

The value z(MKP1) is equal to 21 with the solution (0,1,1). Thus, we obtain
the first initial feasible solution:
x0 = (0, 0, 0, 1, 1, 1, 1, 1, 0, 0) with cT x0 = 47. The complement heuristic is
used to improve x0, producing a new feasible solution x0:
x0 = (0, 0, 1, 0, 1, 1, 1, 1, 0, 0) with cT x0 = 48. Then, the variables xj are
sorted in the decreasing order of the upper bounds uj, where uj is the optimal
value of the LP-relaxation of MKP(1 − x0

j).

u3 u4 u1 u6 u5 u8 u9 u7 u10 u2

51.60 51.60 51.60 51.50 51.36 51.11 50.82 49.13 49.06 48.65

Phase 2 - Dynamic programming:

In our experiments we fix n′ =4, with N ′ = {3, 4, 1, 6}. The following table
gives the list L generated during the fourth iteration of the DP procedure (recall
that v denotes the objective value and bi − aix the slack of the i-th constraint).
To simplify the description we omit the element ”k” in the list entries.

k L = (v; b1 − a1x, b2 − a2x, b3 − a3x)

1 (0; 45, 50, 40), (15; 33, 34, 25)

2 (0; 45, 50, 40), (14; 33, 36, 30), (15; 33, 34, 25), (29; 21, 20, 15)

3 (0; 45, 50, 40), (14; 33, 36, 30), (15; 33, 34, 25), (20; 30, 28, 22), (29; 21, 20,
15), (34; 18, 14, 12), (35; 18, 12, 7)

4 (0; 45, 50, 40), (9; 35, 43, 32), (14; 33, 36, 30), (15; 33, 34, 25), (20; 30, 28,
22),(23; 23, 29, 22), (24; 23, 27, 17),(29; 20, 21, 14), (29; 21, 20, 15), (34; 18,
14, 12), (35; 18, 12, 7), (38; 11, 13, 7), (43; 8, 7, 4)

The lower bound l4 on the value of MKP is calculated according to (9):
l4 = 12x0

5+5x0
8+3x0

9+7x0
7+2x0

10+18x0
2+max{v|β′ ≥

∑
j∈N ′′ ajx

0
j , (v, β′) ∈ L}

l4 = 24 + max{v|β′ ≥ (23, 22, 17), (v, β′) ∈ L} = 24 + 24 = 48,
since max{v|β′ ≥ (23, 22, 17), (v, β′) ∈ L} corresponds to the tuple (24; 23, 27,
17). Moreover, since l4 = 48 ≥ ⌊u10⌋ = 48, the variable x2 is set to 0 (x0

2 = 0).
When the DP algorithm is recalled on the reduced problem, there is no change.
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Phase 3 - Tabu search:

The tabu search algorithm is launched on the subset N ′′ = N − N ′ =
{5, 7, 8, 9, 10} and provides the following feasible solution in {0, 1}n obtained in
four moves:

x∗ = (1, 0, 0, 1, 0, 1, 1, 0, 0, 0) with cT x∗ = 50.
To illustrate the complete procedure, described in Algorithm 2, let x′′ =

(x5, x7, x8, x9, x10) = (1, 1, 1, 0, 0) be the current partial solution. After the
drop move x′′

5 = 0, x′′ becomes (0, 1, 1, 0, 0). This move releases the capacities
(10, 15, 9). Step 1 of the complete procedure yields the element (29; 21, 20, 15)
in the list L, and step 2 generates the optimal solution x′ = (x3, x4, x1, x6) =
(1, 1, 0, 0). Thus the complete solution visited is

x = (x1, x3, . . . , x10) = (0, 1, 1, 0, 0, 1, 1, 0, 0)
where cT x = 41 (= 29 + c′′T x′′).

Phase 2 - Dynamic programming:

As the solution has been improved by the TS phase, the process is re-
launched, with x∗ as the initial solution and N := N - {2} since the variable x2

is set to 0. The upper bounds uj are now:

u8 u6 u5 u9 u3 u1 u4 u7 u10

51.60 51.50 50.96 50.82 50.82 50.80 50.31 49.13 49.06

The DP algorithm is called on the subset N ′ = {8, 6, 5, 9}, where the lower
bound l4 is equal to 50. Since l4 ≥ ⌊u5⌋ (where u5 is associated to the variable
x3 of the original problem), the algorithm ends as stipulated in Proposition 2.1,
and x∗ is optimal.

The "pure tabu search" process described in Section 3.3 yields the optimal
solution for this small problem in 35 iterations.

5. Computational results

All the implementations were coded in C language, then compiled with gcc
option -03, and linked to the CPLEX 6.6 callable library, mainly the simplex
and branch-and-bound subroutines. The tests were carried out on three sets of
MKP instances, using a 300 MHz UltraSparc Solaris 2.6 Work Station with 128
Mo Ram.

The first set is a collection of 270 correlated and thus difficult instances that
were generated using the procedure proposed by Fréville and Plateau (1996)
(also available in the OR-library). In these instances the coefficients aij are
integer numbers uniformly generated in U(0, 1000). The right-hand side coeffi-
cients (bi’s) are set using the formula, bi = α

∑
j∈N aij where α is the tightness

ratio. The objective function coefficients (cj ’s) are correlated to aij as follows:
cj =

∑
i∈M ai/m + 500δj, j ∈ N where δj is a real number uniformly generated

in U(0, 1).
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The 270 instances were generated by varying combinations of constraints
(m = 5, 10, 30), variables (n = 100, 250, 500), and tightness ratios (α =
0.25, 0.5, 0.75), and ten instances have been generated for each of n − m − α
combinations (thirty instances for each value of m).

The second set contains 360 large MKP instances, randomly generated with a
fixed number of constraints (m = 5). This data set allows instances with a large
number of variables (n = 500 up to 5000) and different tightness ratios (α =0.25,
0.50, 0.75). Ten instances were generated for each of n − α combinations. The
coefficients aij are integer numbers uniformly generated in U(0, 1000) and the
objective function coefficients (cj ’s) were correlated to aij as follows:

• uncorrelated (A): cj ∈ U(0, 1000)

• weakly correlated (B): cj = 1/m
∑m

i=1
aij + ξ with ξ ∈ U(−100, 100)

• strongly correlated (C): cj = 1/m
∑m

i=1
aij + 100.

Thirty instances were generated for each (n-correlation degree) combination.
The last experiments concern a set of 18 instances proposed by Glover and

Kochenberger (1996), with n = 100 up to 2500 and m = 15 up to 100. These
problems are known to be very hard to solve by branch and bound methods. The
maximum number of iterations of the TS algorithm in the global intensification
process is determined in relation to the size of |N ′′| with a lower and an upper
bound (typically between 1000 and 5000 iterations). We compare our solutions
to those obtained using CPLEX and those obtained using the “pure” tabu search
for the same CPU time as our method. For example, for the instances with n =
100 and m = 5 presented in Table 1, the time limit for CPLEX and the “pure”
tabu search was fixed at 25 seconds.

Table 1 presents the results obtained using our approach on the first two
sets of instances. The first nine lines represent the results for the OR-Library
instances, and the last twelve lines represent the results for the randomly gener-
ated instances. Each line is an average for 30 problems regrouped by categories.
The characteristics of each class of problem (n, m, cj correlation: or-library for
the OR-Library instances, non, weakly or strongly for the randomly generated
ones), and the size of the subset N ′ are given.

The performance of each phase of our method is specified: the initial heuris-
tic phase (Initial), the dynamic programming phase (Dynamic) and the whole
procedure (Tabu Search). The results of the reduction procedure (Reduction)
are also provided. Column %F1 (respectively %F2 ) presents the average per-
centage of reduction after the first application of the DP process (respectively
after the whole procedure). Columns %G1, %G2 and %G3 show the relative
quality gap between the value of the solution obtained by CPLEX and the value
of the objective function found at the end of each phase (i.e. Quality_Value =
(CPLEX value - our value)*100/(CPLEX value)). Column %G4 presents the
relative gap for the “pure” tabu search algorithm.

The results indicate that the quality of the initial solution is interesting with
a reasonable computational effort. This solution is sometimes even better than
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the final CPLEX solution for the larger randomly generated instances and the
strongly correlated instances. The computational effort associated with each
phase (1 and 2) increases with m and the degree of correlation of the instances.
The total computational time of our approach increases logically with n, m, and
also with the correlation of the data. However, the number of times that the
TS process is applied influences the total running times of the algorithm, and
it depends on the type of instance. On average, TS is applied 1.7 times for the
OR-Library instances, and 2.1 times for the randomly generated problems. The
DP process with the reduction technique improves the initial solution (from
0.1% to 0.06%), with an average reduction near 35% of the initial problem.
The reduction technique is, however, clearly inefficient for the most correlated
instances and for those instances when m increases. The performance of the
reduction technique also increases with n for these sets of problems, as well as
with the value of α for the OR-Library instances. The same conclusions can be
drawn for the quality of our solutions at each step of the approach.

Overall, the solution quality increases from 0.1% at the end of the initial
heuristic phase to 0.01% at the end of the tabu search. This underlines the
positive impact of the global intensification on solution quality. Solutions ob-
tained using CPLEX are better those obtained with TS when n is small, but
TS provides better solutions when the size of instances increases. In fact, when
the size of the problems grows, CPLEX has memory problems. The reduction
process is also very efficient for some classes of problems (sometimes higher than
80%) which allows the tabu search algorithm to explore a small search space.
Generally, for the 270 OR-Library instances, we obtain the same solution as
CPLEX 99 times, and we improve the CPLEX solution for 26 problems (i.e. for
46.3% of the instances). For the 360 randomly generated instances, we obtain
268 solutions at least as good as the CPLEX solutions (about 74%). On aver-
age, the quality of our final solutions is very near the CPLEX solutions (0.01%),
and the approach appears to be robust given the results obtained for the large
instances. These results clearly show that our approach is very efficient for large
instances, particularly when m << n.

The “pure” tabu search algorithm obtained generally worse solutions than
the global intensification mechanism, except for 21 OR-Library instances (7.8%)
and 38 randomly generated instances (10.6%). These 59 instances represent a
small part of the data sets. Moreover, the results on the randomly generated
instances were less robust than those obtained using the global intensification
process.

Table 2 presents the computational results obtained on the last 18 instances,
proposed by Glover et Kochenberger (1996). This set can be divided into two
groups, the first one containing seven problems from GK18 to GK24 and the
second containing eleven instances from MK_GK01 to MK_GK11. For all these
instances, the reduction process is completely ineffective since no variable could
be fixed. This confirms previous conclusions about the reduction process. The
first three columns of Table 2 present the characteristics of each problem: name,
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Initial solution
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Reduction Tabu search Pure Tabu

n m correlation %G1 T1 %G2 T2 %F1 %F2 %G3 T3 %G4

100 5

or−library

15 0.34 0 0.08 0.06 25.53 32.30 0 22.5 0.01

100 10 15 0.55 0.02 0.27 0.08 5.10 8.57 0.01 38.9 0.02

100 30 13 0.27 0.87 0.26 0.92 0.17 0.27 0.06 31.07 0.02

250 5 15 0.15 0 0.1 0.07 30.20 49.87 0.01 65.17 0.03

250 10 15 0.24 0.02 0.17 0.09 4.70 11.87 0.06 113.7 0.09

250 30 13 0.10 2.76 0.10 2.82 0.03 0.03 0.07 109.7 0.09

500 5 15 0.06 0.02 0.04 0.09 39.20 57.80 0.01 138.37 0.05

500 10 15 0.11 0.05 0.08 0.11 5.87 13.50 0.03 414.77 0.12

500 30 13 0.04 6.01 0.04 6.35 0 0 0.03 339.4 0.04

500 5

non

15

0.05 0.02 0.03 0.56 74.67 81.33 0.002 39.33 0.02

weakly 0.06 0.03 0.06 0.91 17.33 37.33 0.01 244.33 0.06

strongly 0.06 0.03 0.02 1.10 1 5.33 -0.002 307.67 0.02

1000 5

non 0.02 0.05 0.01 1.66 79.33 84 0.001 79.33 0.02

weakly 0.02 0.08 0.01 2.65 22 46 -0.001 829 0.04

strongly 0.02 0.09 0.001 3.80 1 4.67 -0.01 1463 -0.005

2000 5

non 0.01 0.16 0.007 6.00 81.00 87.33 0.000 211.67 0.01

weakly 0 0.25 0.004 9.62 33.00 51.67 -0.002 1813.33 0.02

strongly 0.01 0.28 -0.001 14.51 2.33 7.33 -0.006 1605 -0.006

5000 5

non 0.002 0.97 0.002 35.38 83.33 89 -0.02 803.67 0.005

weakly -0.002 1.53 -0.002 47.26 47 55.33 -0.003 1612 0.002

strongly -0.002 1.78 -0.003 86.86 2.67 4 -0.005 1428.67 -0.005

Average 0.1 0.7 0.061 10.5 26.45 34.64 0.012 557.6 0.031

Worst case 0.547 6.0 0.270 86.9 0 0 0.07 1813.3 0.117
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number of variables and number of constraints. Then, the size of N ′, the value
obtained by CPLEX (cx∗) and the results of our approach (Initial Solution,
Dynamic Programming and Tabu Search) are presented, as in Table 1. The last
column presents the solution quality of the “pure” tabu search algorithm.

The initial solution quality for these 18 instances varies quite clearly, ranging
from far from the best solution (for example MK_GK001) to very close (for
example MK_GK006). The total time needed to obtain this initial solution
increases greatly with m (in particular for MK_GK010 and MK_GK011), so
much so that we had to stop the process before the end. We chose to limit this
process to 200 seconds since it is not the most important phase in the global
intensification mechanism.

The dynamic programming phase is able to improve the initial solution for
part of these problems and the time needed is not excessive, except for the
last instance in which it became prohibitive due to the number of constraints.
However, the DP process was clearly efficient in terms of computational time
for instances with few constraints.

The quality of the final solution is good; it is better than CPLEX in eight
instances, the same in one instance, and worse in the eight last instances. This
confirms the idea that for the instances with high n values, the approach is
more effective than CPLEX. The “pure” tabu search process was less effective
than the global intensification mechanism, except for problem GK18 for which
a better solution was obtained than with CPLEX. For problems MK_GK04
and MK_GK06, the “pure” tabu search obtained the same solutions as TS , and
comes quite near for the larger problems.

In addition to the experimental results related above, we also applied our
algorithm to randomly generated problems with other numbers of variables and
constraints in order to study the evolution of our results. The results obtained
tend to confirm those discussed above. We also compared our results to those
of Vasquez and Hao (2001) for the last set of 18 instances. The average gap
value is equal to 0.05%. However, the comparison is difficult to make given that
the same computer was not used, and the computational times were not of the
same order (their days compared to our hours) for the larger instances.

6. Conclusion

We have proposed a hybrid approach combining dynamic programming with
tabu search to solve the zero-one multidimensional knapsack problem. Starting
with a bi-partition of the variables, dynamic programming was applied to solve a
family of sub-problems associated with the first subset of these partitions, using
only the forward phase of the dynamic programming. Next, a tabu search was
performed in the subspace associated to the remaining set of variables, where
each partial feasible solution encountered is completed by calling the backtrack-
ing phase of dynamic programming. Reduction techniques were incorporated to
enhance the dynamic prgramming phase. The overall process was repeated until
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|N ′|

Cplex Initial phase
Dynamic

Programming
Tabu search Pure tabu

Name n m cx∗ %G1 T1 %G2 T2 %G3 T3 %G4

MK_GK01 100 15 14 3766 0.35 0.1 0.19 0.2 0.13 11.9 0.19

GK18 100 25 14 4522 0.04 0.9 0.04 1.5 0.02 16.2 -0.04

GK19 100 25 14 3867 0.18 0.5 0.18 0.7 0.10 15.1 0.18

GK20 100 25 14 5177 0.04 0.8 0.04 0.9 0.02 13.2 0.02

GK21 100 25 14 3199 0.16 0.6 0.16 0.8 0.13 14.0 0.16

GK22 100 25 14 2521 0.16 0.3 0.16 0.4 0.12 13.4 0.16

MK_GK02 100 25 14 3957 0.20 0.5 0.05 0.4 -0.03 11.2 0.20

MK_GK03 150 25 14 5649 0.16 1.4 0.14 0.7 0.00 23.3 0.16

MK_GK04 150 50 13 5763 -0.02 59.3 -0.02 1.9 -0.02 14.3 -0.02

GK23 200 15 14 9233 0.08 0.2 0.08 1.1 0.03 24.2 0.08

MK_GK05 200 25 14 7558 0.07 1.1 0.07 1.0 0.04 29.3 0.07

MK_GK06 200 50 13 7666 -0.07 177.4 -0.07 3.2 -0.07 21.1 -0.07

GK24 500 25 14 9064 0.08 0.8 0.08 2.5 0.07 139.7 0.11

MK_GK07 500 25 14 19209 0.02 0.6 0.02 5.3 -0.02 137.9 0.02

MK_GK08 500 50 13 18789 0.09 200 0.07 15.8 -0.05 111.9 -0.04

MK_GK09 1500 25 14 58080 0.01 1.5 0.00 36.1 -0.01 900.8 0.01

MK_GK10 1500 50 13 57277 0.24 200 0.24 126.4 -0.02 908.5 -0.01

MK_GK11 2500 100 12 95209 0.05 200 0.05 1943.3 -0.01 929.2 -0.01
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no improvement is obtained. In the context of tabu search, this hybrid approach
can be seen as a global intensification strategy, since each move involves solving
a reduced problem. The effectiveness of the proposed approach was demon-
strated through numerical experiments, and the results were compared to those
obtained with a “pure tabu search” and CPLEX. These numerical experiments
show that our approach is robust and able to produce high-quality solutions
for large-scale instances in a reasonable amount of CPU time, particularly for
problems with few constraints. This method seems to be appropriate for a
class of combinatorial optimization problems, whose the structure is adapted
to dynamic programming treatment. The tabu search algorithm could also be
improved by introducing a Reverse Elimination Method strategy for tabu list
management, for example.
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