Control and Cybernetics

vol. 35 (2006) No. 3

Adaptive resource allocation to stochastic
multimodal projects:
a distributed platform implementation in Java

by
Anabela P. Tereso, Joao Ricardo M. Mota and Rui Jorge T. Lameiro

Universidade do Minho, Dep. de Produgao e Sistemas
4800-058 Guimaraes, Portugal

e-mail: anabelat@dps.uminho.pt, joao mota@fastmail.fm, rjl@eurotux.com

Abstract: This paper presents the implementation of the dy-
namic programming model (introduced in a previous paper) for the
resolution of the adaptive resource allocation problem in stochastic
multimodal project networks. A distributed platform using an Ob-
ject Oriented language, Java, is used in order to take advantage of
the available computational resources.

Keywords: cluster, distributed platform, activity networks,
resource allocation, dynamic programming.

1. Introduction

The problem addressed in this paper may be stated as follows: Given a multi-
modal activity network with stochastic work contents, the goal is to determine
the optimal resource allocation to all the activities of the network, in order to
minimize cost.

The cost is composed of two parts: (i) the resource cost, which is assumed to
be proportional to the square of the intensity of resource usage for the duration
of the activity, and a tardiness cost, which is proportional to the amount of
tardiness from a specified Due Date (T), with the proportionality constant equal
to the Unit Delay Cost (cr) (representing the marginal cost per period).

This problem was first treated using a dynamic programming model and
was implemented in Matlab (see Tereso et al., 2004). The results obtained (see
Tereso and Aratjo, 2003) demonstrated the need for further study, particularly
concerning the implementation language and paradigms used. In this paper
we explain how the problem was redefined, using an Object Oriented (OO)
programming language, Java, and parallel programming to take advantage of a
network of computers.

662 A.P. TERESO, J.R.M. MOTA, R.J.T. LAMEIRO

2. Review of prior work

Before introducing the new implementation and results obtained, we shall briefly
define the problem and describe how it first was implemented in Matlab.

2.1. Problem definition

Given a multimodal activity network (‘multimodal’ means that each activity
can be performed at any number of levels of resource intensity applied to it,
with resulting shorter or longer duration), with a stochastic work content (W,),
we wish to decide on the amount of resource to apply to each activity (z,), so
that the total cost is minimized. This cost includes the resource cost and the
delay cost. The duration of an activity depends on its work content and on the
amount of resource allocated to it. To evaluate the delay cost, a due date must
be specified (T'), as well as the unit cost per period tardy (cr). To the best
of our knowledge this problem has never been treated before. Contributions
to the classical ‘resource constrained project scheduling problem’ (RCPSP) and
its variants are numerous; the interested reader may wish to consult the two
most recent books on the subject by Demeulemeester and Herroelen (2002) and
Neumann, Schwindt, and Zimmermann (2002), and the references cited therein,
to gain a complete picture of developments in that aspect of project scheduling.
We imposed the following assumptions:
e The work content of each activity is a random variable (r.v.) exponentially
distributed.
e The amount of resource applied to any activity is bounded from below
and from above; x, € [l4, uq], with I, < u,, for all activities a.
e The availability of the resource is unlimited, so it does not impose any
limitations on the problem: any number of activities may run simultane-
ously.

The model developed to solve this problem will be reviewed, using a simple
example with only three activities (see Fig. [I).

udc 1

udc 2

Figure 1. Example network with its uniformly directed cutsets

Adaptive resource allocation: a distributed implementation 663

The due date of the project is T'= 16, and the unit cost per period tardy is
cr, = 2. The resource allocation to each activity is denoted by z; for i = 1,2, 3;
with lower limit I; = 0.5 and upper limit u; = 1.5 for all . The z;’s are the
decision variables of this problem. The parameters {)\;} of the distributions of
the work content of the activities are as shown in Table [l

Table 1. Parameters for the simple example

Activity 7 : || 1 2 3
Ai: |l 0.2 0.1 0.07

At any point in time the manager must cope with a subset of activities
that lie on a uniformly directed cutset (udc) (a udc represents a set of possible
‘active’ activities during the life of the project). In this simple example there
are only two udc’s: Cp = {1,3} and Cy = {2,3}. At the start the project
manager is concerned with activities 1 and 3, which lie on C. Then, depending
on the progress in these two activities, he may eventually be concerned with
activities 2 and 3 (if activity 1 completes before activity 3) which lie on Cs, or
with activity 2 alone if activity 3 completes before activity 1. If the resource
allocation to activity 3 is (temporarily) fixed at, say, &3, the problem reduces to
the optimal determination of the resource allocation to activities 1 and 2, which
can be readily resolved by standard DP recursion. The set of ‘fixed’ activities
is denoted by F; in this example F = {3}. Finally, searching over the values
of x5 with repeated optimization at each value would yield the (unconditional)
optimal allocation to all three activities. In general, our procedure determines
the udc’s of the network (which define the stages of the DP iterative scheme),
and the cutset intersection index (cii), which represents the variables to be
(temporarily) fixed (see Tereso et al., 2004, for details).

The expected resource cost of the fixed variables is denoted by rcf, which in
this case, is the expected cost of activity 3

z3

— 1
0.07’ (1)
where W3 is the work content of activity 3, £ (W3) denotes its expected value,
and 3 the amount of resource allocated to it. Reverse numbering of the DP
stages yields

ref =d3-&(Ws) =

filta | F={3}) =ref + xzer[rt},i&,s]g{%WQ +2£(U)}, (2)
where

U =max{0,Ts — T}, (3)
and

T3 = max{ts + Wa Ws). (4)

1’273753

664 A.P. TERESO, J.R.M. MOTA, R.J.T. LAMEIRO

The second and last stage would be defined as follows:

falt =01 F = {8) = min _&{a, Wi+ Elfa(Ta)]))

where

Wi
X1 ’

Yo

The solution for this network, obtained in 0.094 seconds, was:

{z7,25} = {1.0,1.0}
with an expected cost of 43.32. (7)

The optimal value of x5 depends on the state of node 2, when it is reached,
and can be obtained by the previously developed optimal policy for stage 1, as
defined in equation (). The time necessary to get results in this example is
quite small, but for larger networks, this time increases exponentially, taking
hours and even days to achieve (see the order of complexity of this problem in
the paper by Tereso et Araujo, 2003).

2.2. Matlab implementation

This model was first implemented in Matlab. The pseudo-code can be ac-
cessed on the internet (fwww.dps.uminho.pt/pessoais/anabelaty Topic: research),
or upon request by e-mail (anabelat@dps.uminho.pt). Details of the develop-
ment of this application can be found in Tereso et Aratjo (2003). Here, we will
only refer to the more important aspects of this implementation. One of the
main problems was that the code necessary to implement the DP iterations was
dependent on the network topology and the derived number of stages of the DP
iterations. To solve this problem we decided to compose the code dynamically,
after the network was imputed. This was accomplished by using the procedures
generateMainCode, generateDps1Code and generateDpsNCode.

For the example network introduced above with only three activities, the
generated code (main, dpsl, dps2) can be seen on the first author’s web page.

After the code generation, the main program is called, which in turn calls
dpsl1, to optimize stage 1 and dps2 to optimize stage 2. The result is then
displayed.

For a larger network, the number of dps procedures and the number of nested
cycles inside them increases, rendering the program very slow.

3. Application development

In this section, we discuss the main issues that arose during the new development
using Java.

file:anabelat@dps.uminho.pt

Adaptive resource allocation: a distributed implementation 665

3.1. The choice of a programming language

From the beginning, we wanted an OO language and the possibility to easily
create applications for different architectures (ia32, ppc, etc.) and different
Operating Systems (OSs) so that the doors are kept open to future developers.
Nowadays, there are two powerful languages that fit these requirements, Java
and C++, which means we had to choose between a quicker development time
and a faster runtime, respectively.

Another important requirement is the existence of open source platforms to
develop applications, which is true for both languages. Among other software,
in the GNU Project (http://www.gnu.org), we can find open source implemen-
tations of a Java Virtual Machine (JVM) and a Java and C++ compiler.

At a first glance C++ appears to be the right choice because this algorithm
is an approach to solve NP-Hard problems, and it is important to choose a lan-
guage that generates fast applications. But there are other factors to consider,
such as the deadline for the project completion and our experience with each
technology. We chose Java and Sun Microsystems’ JVM (http://java.sun.com)
(which is not open source but is free of charge).

3.2. From Matlab to Java

The first step was the conversion of the existing implementation in Matlab to
Java, taking advantage of the OO-model, keeping the code as clean as possible,
and easy to read and understand.

3.2.1. Data structures and input parameters

The complexity of the code usually grows if we use simple data structures, so we
replaced the list of activities containing five fields per activity (the source node,
the target node, the parameter A, the lower bound, and the upper bound on the
resource allocation), Tereso and Aratdjo (2003), by a more complex structure.

To represent the ‘list of activities’, we defined three Classes in Java (which
are our main data structures):

e Node - to represent each node of the graph with information about im-
mediately preceding and immediately succeeding nodes and the activities
that connect to the node;

e Activity - to represent one activity with information about the parameter
A, the lower and upper bounds on the resource allocation; and

o Network - which contains a list of activities and a list of nodes.

Another important Class is ResourceCombination. This object is passed to
the algorithm in order to calculate the optimum expected value of that combina-
tion. At each stage this object is cloned. There is a clone for every combination
of the node time values belonging to that Uniformly Directed Cutset (UDC).

http://www.gnu.org
http://java.sun.com

666 A.P. TERESO, J.R.M. MOTA, R.J.T. LAMEIRO

The number of resource combinations for a specific problem is determined
by the following expression:

Resource Combinations = ky™" (8)

where ko is the number of discretized points used for the fixed activities and
#F is the number of fixed activities (see Sections B2Z2 and B23J)).

At the end of each stage, the clones will contain all the possible time values
of the nodes in the current UDC. Each clone will also contain the optimal value
of the decision variable and the expected value of the cost for that stage. This
list is implemented through another class (BestResults) in order to allow a fast
method of search for time values (see section B3l).

When the program finishes testing all the resource combinations (for the
fixed activities), the BestResults of all stages are shown for the best combination
found. The class ResourceCombination implements methods to generate the next
combination of:

e Resources for the fixed activities,
e Resources for the decision activities and
e Time values for the nodes.

This way the nested cycles for the implementation of the combinations
present in the Matlab version are eliminated as well as the need for problem
specific code generation.

Finally, there is the Class Problem which joins all data and metadata to
represent our problem.

Fig. Bl shows the relations between these classes in a simplified model. Not
all the classes are presented and some fields along with all the methods have
been removed due to space limitations.

Appendix [Al contains an extract of the most relevant code of the Java im-
plementation. The first section [Al) shows a simplified version of the main
program, and how the tasks are distributed between the threads. Each thread
evaluates the cost of a combination (see code in section [A2) and returns its
value. After that a new thread is started to evaluate the next combination.
This process is repeated until there are no more resource combinations. At this
point, the main program chooses the best result and the associated combination.

3.2.2. The stages of the dynamic program

The number of stages of the Dynamic Program (DP) iterations is the same as
the number of decision variables. This is determined by evaluating the longest
path (by the number of activities) in the network. This is easier to do in Java
with the previously summarized data structure. The variables along this path
define the set D of decision variables, and the complementary set of activities
defines the set F of ‘fixed’ variables.

Adaptive resource allocation: a distributed implementation

667

Network

- activities: Vector

- nodes: Vector

- initialNode: Node
- finalNode: Node

A 4
Node
- maxTimeLimit: double

A

A

UniformelyDirectedCutSet

- nodes: Vector

- activityOnThelLongestPath; Activity

- hodeOnThelLongestPath: Node

- nextUDC: UniformelyDirectedCutSet

- fixedActivities: Vector

- nodesOutTheNextUDC: Vector

- nodesinTheNextUDC: Vector

- activitiesToNodeFromNextUDC: Hashtable

- initial: boolean

- minTimeLimit: double

- times: double

AA

- timesStep: double

- previousNodesFromNextUDC: Hashtable

- previousNodes: Vector
- succNodes: Vector
-1D: int

- initial: boolean

BestCombination

- combinations: Hashtable
- problem: Problem

Problem

- net: Network

- unitDelayCost: double

- workContentAcumulatedProbability: double[]
- workContentProbability: double[]

- udcs: Vector

- combinations: long

- done: double

ResouceCombination

- timeValues: Hashtable

- fixedActivitiesResources: Hashtable

- fixedActivitiesResourcesindex: Hashtable
- longestPathActivity: Activity

- longestPathActivityResources: double

Activity

-ID:int

- source: Node

- target: Node

- lambda: double

- minResource: double
- maxResource: double
| - minDuration: double

- longestPathActivityResourcesIndex: int
- problem: Problem

- expectedValue: double

- definedEexpectedValue: boolean

- maxDuration: double

- workContent; double[]

- expectedVWorkContent: double[]
- resourcePoints: double][]

Figure 2. Simplified class diagram

668 A.P. TERESO, J.R.M. MOTA, R.J.T. LAMEIRO

To accomplish this, we constructed a set of methods associated with the
Class Network; they are: getNodesOnlLongestPath() and getActivitiesOnLongest-
Path(). With the first we retrieve the topology of the longest path and, with
the second, we can populate the set D.

3.2.3. The discretization of the work content

For the sake of computational feasibility, it is necessary to discretize the work
content of each activity, using a finite number (k) of values of equal probabil-
ity. These values represent the exponential distribution, all having the same
probability (of +). The mean of these values is equal to ; (the mean of the
distribution).

For the decision activities, we used k; = 5. For the fixed activities we used
a variable ky. The previous Matlab implementation used ks = 3 or ko = 2
depending on the size of the network. In the Java implementation we used
ko = 3 and for the cluster version also ks = 5.

3.3. Code optimization

The search method, used to find the closest combination of node due times
(from the next UDC), was the most important code optimization of this new
implementation. In Matlab this was performed applying the command ‘find’ to
the ‘best-result’ matrix. This led to a full sequential search of this matrix. In
our new approach, we used a hash table to accomplish faster access times. The
hash function is as follows:

Hash Function: Combination — Integer

N
hash(combination) = Z T; x MTV? 9)

=1

where

o MTV = maximum size of ‘Time Values’,

e T; = index value of ‘Time Values’ of the node i, and

e N = number of nodes.

In order to search a similar combination we first have to calculate the ap-
proximate T;’s of the one being searched. This is done by choosing the nearest
‘Time Value’ to the one being searched for each node. After this we use the
same hash function to retrieve the right combination calculated in the following
stage.

This optimization drastically reduced computation time (the application
became =& 10 times faster) but the search method is still the largest Central
Processing Unit (CPU) consumer of the entire program, accounting for about
one half of the total CPU time consumed.

Adaptive resource allocation: a distributed implementation 669

3.4. Cluster

The distributed application works in the client/server model. The philosophy
is similar to the SETI at Home (http://setiathome.ssl.berkeley.edu/) project.
The server divides the problem into small parts or chunks (sets of 250 resource
combinations by default) to be processed by the clients. As the server has more
sets of resource combinations to process, each client asks for a set, processes it,
and returns the result to the server. In the end, the server joins everything and
returns the best solution found.

Besides the network related code, the algorithm for the cluster version is
similar to the single machine code, presented in Appendix [Al The main differ-
ence is the number of combinations processed by each thread, or, in this case,
by each cluster node.

All communication between the server and each client is made using TCP /TP
sockets, so we are not restricted to a Local Area Network (LAN) but we can use
the Internet to establish a client/server connection. If the computers are not
on the same LAN and there is a slow connection (over the Internet) between
them, it is a good idea to increase the number of resource combinations per set
to decrease the overhead introduced by the network.

3.4.1. Example

Let us consider the network of Fig. 1 In this case, we only have one fixed
activity (x3) with three possible values: 0.5, 1.0 and 1.5. Since we used 250 re-
source combinations per chunk, and in this network we only have three resource
combinations, only one cluster node will process this problem.

Since this is a very small network, we did not use a cluster to solve the
problem. A computer with a single processor sequentially evaluates all the
combinations in a fraction of a second.

To better illustrate this issue, we are going to present an example where we
have three fixed activities discretized in three points (0.5, 1.0, 1.5). We will
have 33 = 27 combinations. Consider that the time unit is the time needed to
process each combination.

In the Matlab implementation, the combinations would be processed sequen-
tially (see Table).

In the Java implementation, we use two threads in parallel computation
to process the resource combinations. In this case we would have the work
distribution described in Table

Finally, for the cluster version, let us consider that we have three cluster
clients (A, B and C') and that A has two times the computation power of B, and
four times the computational power of C. A takes 1 second to process each chunk
(assume the time lost between process communications to be negligible). When
the clients connect to the server, they ask for chunks (sequential combinations
of the fixed activities). When each node finalizes processing a chunk, it returns

http://setiathome.ssl.berkeley.edu/

670 A.P. TERESO, J.R.M. MOTA, R.J.T. LAMEIRO

the result and asks for a new one. Suppose they all connect at the same time.
The sequence of chunk requests would be in Table Bl

Table 2. Work distribution in the sequential version

| t | Resource Combination |
0 0.5, 0.5, 0.5)
1 (0.5, 0.5, 1.0)
2 (0.5, 0.5, 1.5)
26 (1.5, 1.5, 1.5)

Table 3. Work distribution in the dual thread version

Resource Combinations
t Thread 1 | Thread 2
0 | (0.5,0.5,0.5) | (0.5,0.5, 1.0)
1 (0.5, 0.5, 1.5) | (0.5, 1.0, 0.5)
13 | (1.5, 1.5, 1.0) | (1.5, 1.5, 1.0)

Table 4. Work distribution in the cluster version

[t (s)] Chunk | Client |

0 {(0.5, 0.5, 0.5), (0.5, 0.5, 1.0), (0.5, 0.5, 1.5)} A
{(0.5, 1.0, 0.5), (0.5, 1.0, 1.0), (0.5, 1.0, 1.5)} B
{(0.5, 1.5, 0.5), (0.5, 1.5, 1.0), (0.5, 1.5, 1.5)} C
1 | {(1.0,05,05), (1.0, 0.5, 1.0), (1.0, 0.5, 1.5)} A
2 {(1.0, 1.0, 0.5), (1.0, 1.0, 1.0), (1.0, 1.0, 1.5)} A
{(1.0, 1.5, 0.5), (1.0, 1.5, 1.0), (1.0, 1.5, 1.5)} B
3 {(1.5, 0.5, 0.5), (1.5, 0.5, 1.0), (1.5, 0.5, 1.5)} A
4 [{(15,1.0,05), (15, 1.0, 1.0), (1.5, 1.0, 1.5)} A
{(1.5,1.5,0.5), (1.5, 1.5, 1.0), (1.5, 1.5, 1.5)} B
{no more chunks} C

5 process concluded.

In this simple example, there is an under-utilization of client C (in t=4). In
order to solve this problem, we would have to configure the faster nodes to ask for
bigger chunks, or define a smaller chunk size (this would decrease the processing
time for each chunk). For larger networks (from network 7 onwards in our
experiments) this phenomenon represents a negligible difference in processing
time (<0.1% of the total time), even with the chunk size used in the benchmark
(250 combinations).

Adaptive resource allocation: a distributed implementation 671

3.4.2. Differences between cluster and a single station

The non distributed version in JAVA is similar to the distributed one (cluster
version). The only difference is that for the single station version, there is no
need for the use of network protocols, even if using more than one thread. For
more than one thread, the work division is made in the same way (see section
above).

Figs. Bland Bl show, in an illustrative scheme, the difference between the work
flow on a single station and on a cluster. Apart from the existence of threads,
in the single machine application, the evaluation of each resource combination
is made sequentially. For the cluster, this computation is made in parallel.

G
e B W
| b

Better "'k
combinations Better {43
. - combinations -
T—. t 2 Combination
=g r-,i:; [with tetal cost
——/1uDncz |..— [EaB

F combinations

Figure 4. Cluster work flow

672 A.P. TERESO, J.R.M. MOTA, R.J.T. LAMEIRO

4. Results

The program outlined above was tested on a set of eleven projects that range
in size from 3 to 18 activities (see Appendix [Bl for details).

4.1. Benchmark results

The values relative to a single machine in Table Bl were obtained using an Intel
Pentium IV E 3.0GHz with 1GB of RAM under Microsoft Windows XP Pro-
fessional SP2. The cluster was formed by 13 computers (one of them acting as
server and client at the same time) with an Intel Celeron 2.4GHz with 512MB
of RAM using Fedora Core 2 running a 2.4 kernel version on the same LAN
connected at 100Mbps. In both cases we used Sun Microsystems’ Java Virtual
Machine (JVM) version 1.4.2.

This application was design, from the beginning, to take advantage of Intel’s
HyperThreading Technology (http://www.intel.com/technology/hyperthread/),
common to today’s computers. Even in a computer without support for the ex-
ecution of instructions in parallel, this application would run without problems.

Table 5. Benchmark results

DP DP Time DP Time DP Time
Net| n T «cL Time Java Java Java
Matlab dual thread cluster cluster
ko =3 ko =3 ko =3 ko =5
1|3 16 2 0.094s 0.015s * *
2 |5 120 8 1.188s 0.140s * *
3 |7 66 5 4.078s 0.188s * *
4 19 105 4 5m 39s 5.218s * *
5 [11 28 8 10m 08s 22.422s * *
6 |11 65 5 |1h 03m 06s 2m 33s 29s 9m 11s
7 (12 47 4 | 7h 43m 09s 19m 10s 2m 14s 1h 48m 06s
8 |14 37 3| 38h45m t 1h 36m 17s 9m 45s 25h 31m 20s
9 |14 188 6 |441h 30m t 18h 16m 56s 1h 54m 12s 314h 46m f
10 |17 49 7 |117h 40m t 4h 52m 23s 29m 26s 135h 13m f
11 |18 110 10| 5285h t 218h 50m t 24h 19m 27s 11174h {

* Same results as with the single machine tests. The network is too small for a
cluster;
1 Estimated.

Looking at the DP processing time results of networks 1 to 7 on a single
machine, especially for those that need more than a second to be processed
in our Java application, we can say that our Java implementation is about 25
times faster. Fig. B shows graphically the gain of Java ws. Matlab, for the

http://www.intel.com/technology/hyperthread/

Adaptive resource allocation: a distributed implementation 673

example networks. This improvement is due to the search method referred in
Section B33 the use of two threads (approximately duplicates the speed) and
other code optimizations.

Java vs Matlab

70
60
50
40 + Calculated
30 . = Estimated
20 *
10 (3

Gain over Matlab

1 2 3 4 5 6 7 8 9 10 11

Network Number

Figure 5. Gain from Java over Matlab

For the cluster version, we gave special consideration to the application
performance when all the machines in our cluster were equal, just for testing
purposes. In a real case, we can use all the machines to which we have access
to create a cluster as large as possible. There is no need for the machines
to be similar. We can even use computers with different OSs and different
architectures on the same cluster.

4.2. Accuracy of the achieved solutions

Note that Table Bl does not contain the exact optimal solution to the problems
studied, and the solution achieved could be different for the same network de-
pending on the ko value. If we choose a larger ko, we would get a better solution
but the DP processing time will be drastically increased (see Table H). Table @
shows the solutions for the different ko values. For network 6, for example, a
1800% increase of the CPU time only resulted in a 2% improvement of the Best
Cost Value.

5. Conclusions and future research

This implementation in Java is much faster than the previous one in Matlab but
it is not fast enough unless one has many computers available to make a large
cluster.

Even for a single machine version, there is a considerable improvement, com-
pared with the Matlab implementation. In the first place, Java is a compiled

674 A.P. TERESO, J.R.M. MOTA, R.J.T. LAMEIRO

Table 6. Different solutions for the problem depending on ko

DP
Net | ko Best Set of best allocations to the first UDC and F;
Cost
{@1, 22,23, 75, 76, T8, T9, T10 }
6 3 | 272.298 {1.25,0.5,1.5,0.5,1.0,1.0,1.5,1.0}
5 | 266.498 {1.5,0.5,1.25,0.5,1.25,1.0,1.5,1.0}
{xla T2,T3,T4,T6,T7, T8, T10, z/L‘IQ}
7 | 3 |182.914 {1.25,1.0,1.0,0.5,1.0,1.0,0.5,1.0, 1.5}
5 | 172.251 {1.5,1.0,0.75,0.5,0.75, .75,0.5,0.75, 1.5}
{xla T2, X3, L4, T6,L7,T8, L9, L10,L12, x14}
8 3 | 120.335 {1.5,1.5,0.5,0.5,1.0,0.5,0.5,1.0,1.0,1.0,1.0}
5 114.163 {1.5,1.25,1.25,0.5,0.75,0.5,0.75,1.0,0.75,1.0,0.75}

language while Matlab is interpreted. But this represents no relevant improve-
ment, considering that Java is a much more complex and powerful language
than Matlab and so having more objects created in its environment. The main
reason has to do with the changing of the search method, using an hash table
instead of an array. This represents up to 90% saving in running time. Finally,
the possibility to use hiperthreading and clusters gives the Java implementation
a theoretically infinite possibility to improve performance, depending on the size
of the cluster available. But it is a fact that, with the resources of a lab, it was
possible to solve a problem (network 11 in Table [l in less than 25 hours, that
would take more than seven months, for the Matlab implementation.

In order to use a cluster on an everyday basis using computers with other
light tasks running (such as office applications), a simpler client program, in-
visible to the common user, should be written. Besides that, the chunk (set of
resource combinations) size should be dynamically adapted to each client based
on his processing speed and round trip time (‘network distance’).

The code could be improved by using a small ks and successively finer mesh.
Consider network number 6 and its lower and upper bounds on the resource
allocation (0.5 and 1.5 respectively for all activities). If k2 = 3 we use both
extremes (0.5 and 1.5) and a third point in the middle (1.0); if ko = 5, we use
the two boundary values plus three more points in the middle (0.75, 1.0, 1.25).
The idea is to use ko = 3 and when this first iteration finishes we will get

{Il, T2,x3,x5,T6, 1’8,1'9,1'1()} = {15, 05, 15, 05, 10, 10, 15, 10}

Then we need to refine the upper and lower bounds on the resource allocation
before the next iteration, reducing the range between the lower and the upper
bound to one half and centering the interval on the results of the previous iter-
ation, never forgetting the original limits. In this case we would get the pairs

Adaptive resource allocation: a distributed implementation 675

(1.25,1.5), (0.5,0.75), (1.25,1.5), (0.5,0.75), (0.75,1.25), (0.75,1.25), (1.25, 1.5)
and (0.75,1.25) for activities x1, za, x3, =5, e, Ts, Tg and x1g respectively.
Theoretically, we should get the same or a better result as running this appli-
cation once with ke = 5, taking twice the time needed to run the application
with ks = 3. Looking to the cluster times to this network (see Table H), within
less than a minute, we would reach the same result that now takes more than
nine minutes.

We have only used networks with Activity on Arc (AoA) representation
and never with Activity on Node (AoN) representation of activities. In the
future it could be useful to implement an algorithm to convert either mode of
representation into the other. If we can convert networks from AoN to AoA
easily (that is, in polynomial time), then we can use this application to solve
the problem.

References

TERESO, A.P., ARAUJO, M.M. and ELMAGHRABY, S.E. (2004) Adaptive Re-
source Allocation in Multimodal Activity Networks. International Journal
of Production Economics 92, 1-10.

TERESO, A.P. and ArRAUJO, M.M. (2003) Experimental Results of an Adap-
tive Resource Allocation Technique to Stochastic Multimodal Projects.
International Conference on Industrial Engineering and Production Man-
agement (IEPM’03), Porto, Portugal, 26-28 May 2003.

DEMEULEMEESTER, E.L. and HERROELEN, W.S. (2002) Project Scheduling:
A Research Handbook. Kluwer Academic Publishers, Boston.

NEUMANN, K., SCHWINDT, C. and ZIMMERMANN, J. (2002) Project Schedul-
ing with Time Windows and Scarce Resources. Springer-Verlag, Berlin.

A. Java Code
A.1. Problem Class

public class Problem {

public ResourceCombination solve() {
/* Variable initialization */

// Create RunDPS objects with null Combinations
Runable runablel = new RunDPS(null, this);
Runable runable2 = new RunDPS(null, this);

while (!presentFixedCombination.isTheLast()) {

676

A.P. TERESO, J.R.M. MOTA, R.J.T. LAMEIRO

}

3

((RunDPS) runablel).setCombination(presentFixedCombination) ;
threadl = new Thread(runablel);

threadl.start();
presentFixedCombination = presentFixedCombination.next() ;

if (!presentFixedCombination.isTheLast()) {
((RunDPS) runable2).setCombination(presentFixedCombination);
thread2 = new Thread(runable2);
thread2.start();
presentFixedCombination = presentFixedCombination.next();
} else
thread2 = null;

try {
threadl. join();
ResourceCombination resultl =
((RunDPS) runablel) .getResult();
if (resultl.getExpectedValue()
< bestResult.getExpectedValue())) {
bestResult = resultl;
}
if (!presentFixedCombination.isTheLast()) {
thread2. join();
ResourceCombination result2 =
((RunDPS) runable?2).getResultado();
if (result2.getExpectedValue()
< bestResult.getExpectedValue()) {
bestResult = result2;
}
}

}
catch (InterruptedException ex) {

X
}

return bestResult;

Adaptive resource allocation: a distributed implementation 677

A.2. RunDPS Class

public class CorrerDPS implements Runnable {

public void run() {

Vector udcs = this.problem.getUdcs();

BestCombinations results;

UniformelyDirectedCutSet presentUDC=((UniformelyDirectedCutSet)
udcs.elementAt (0));

UniformelyDirectedCutSet previousUDC;

// DP 1st stage
results =
this.problem.dynamicProgrammingFirstStage (combination,
presentUDC) ;

// DP stage 2 to n
int i;
for (i = 1; i < udcs.size(); it++) {
presentUDC = (UniformelyDirectedCutSet) udcs.elementAt(i);
previousUDC = (UniformelyDirectedCutSet) udcs.elementAt(i-1);
results = this.problem.dynamicProgramming(combination,
presentUDC, previousUDC, results);

this.result = (ResourcesCombination)
result.toVector() .firstElement();

B. Example Networks
B.1. Network 1

The first network tested is represented in Fig. [l It is a very simple network, with
only three activities. The due date of this network, T, is 16 and the tardiness
penalty, cr,, is two per unit time. The remaining parameters are represented
in Table [These parameters are the origin and target node of each activity,
the parameter (A) of the exponential distribution, that represents the Work
Content of each activity, and the minimal and maximal amount of resource to
allocate to each activity (Xmin and Xmax). The expected duration of activity 1 is

678 A.P. TERESO, J.R.M. MOTA, R.J.T. LAMEIRO

Figure 6. Network 1

1/A=1/0.2 = 5, and for activity 2 and 3, 10 and 14.29 respectively. In this way,
the PERT expected duration for this network is 15. The due date of the project
is selected to be a value above the PERT expected duration (approximately 5%
more).

Table 7. Parameters for network 1

Activity [1 [2 [3

Origin 1 2 1
Target 2 3 3

A 0.2 | 0.1 | 0.07
Xmin 05| 05| 0.5
Xmax 1.5 | 1.5 | 1.5

The solution for this network was {z},2%} = {1.0,1.0}, with an expected
cost of 43.32.

B.2. Network 2

This network has five activities. The due date is T' = 120 and the tardiness cost
is ¢, = 8. In Table § there are the remaining parameters. The PERT expected
duration for this network is 115.

Figure 7. Network 2

Adaptive resource allocation: a distributed implementation

679

Table 8. Parameters for network 2

Activity 1 2 [3 |4 [5
Origin 1 1 2 2 3
Target 2 3 3 4 4

A 0.02 | 0.03 | 0.04 | 0.024 | 0.025
Xmin 0.5 0.5 0.5 0.5 0.5
Xmax 1.5 1.5 1.5 1.5 1.5

The solution for this network was {z7,z3,z}} = {1.0,1.0,1.5} with an ex-

pected cost of 304.62.

B.3. Network 3

Figure 8. Network 3

This network has seven activities (see Fig. B). The due date is T' = 66 and
the tardiness cost ¢ = 5. The remaining parameters are given in Table[@ The
PERT expected duration for this network is 62.9.

Table 9. Parameters for network 3

Activity 1 [2 [3 4 [5 [6 |7
Origin 1 1 2 2 3 3 4
Target 2 3 3 4 4 5 5
A 0.08 | 0.06 | 0.09 | 0.05 | 0.07 | 0.03 | 0.04
Xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5

The solution for this network was {z7, x5, 2}, x§} = {1.25,1.0,1.5,1.5}, with
the expected cost of 193.99.

B.4. Network 4

This network has 9 activities.

For this network, T" = 105 and c¢;, = 4. See

Table [for the remainig parameters. The PERT expected duration for this

network is 100.

680 A.P. TERESO, J.R.M. MOTA, R.J.T. LAMEIRO

@
(5] Lel
6
o
3 €
Figure 9. Network 4
Table 10. Parameters for network 4

Activity 1 [2 [3 4 [5 |6 [7 [8 [9
Origin 1 1 1 2 2 3 3 4 5
Target 2 6 3 4 3 4 5 6 6
A 0.04 | 0.01 | 0.07 | 0.035 | 0.05 | 0.06 | 0.045 | 0.06 | 0.039
Xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

The solution for this network was {7, x5, 2%, 2}, 2%, 2§} =
{1.0,1.5,0.5,1.0,1.0,1.0}, with the expected cost of 399.52.
B.5. Network 5

Network 5 (see Fig. [[) is of larger dimension (11 activities). For this network,
T = 28 (due date) and ¢, = 8 (tardiness cost). The remaining parameters are
presented in Table Il The PERT expected duration for this network is 26.67.

Table 11. Parameters for network 5

Activity 1 [2 [3 [4 [5 [6 [7 [8 [9 [10]11
Origin 1 1 1 2 3 2 3 4 3 5 4
Target 2 3 4 3 4 5 5 5 6 6 6
A 0.1 (009 |04|02]03]008]|04]02]|01]|03]0.3
Xmin 0.5 | 05 0.5 05| 05| 0.5 05|05 |05 |05] 0.5
Xmax 1.5 | 1.5 1.5 (15| 15| 1.5 15 (15|15 |15]| 15

Adaptive resource allocation: a distributed implementation 681

Figure 10. Network 5

The solution for this network was {7, z3, x5, xf, 235, x§, 25, } =
{1.25,1.0,0.5,1.0,0.5,1.5,1.0}, with the expected cost of 130.23.

B.6. Network 6

Figure 11. Network 6

This network has 11 activities. The due date is T' = 65 and the cost of
tardiness is ¢, = 5. See Table for the information. The PERT expected
duration for this network is 62.08.

682

A.P. TERESO, J.R.M. MOTA, R.J.T. LAMEIRO

Table 12. Parameters for network 6

Activity [T [2 [3 [4 [5 [6 [7 [8 [9 J1 [11
Origm [T |1 1 2 2 |2 3 4 1 5 6
Target | 2 |3 4 3 5 |6 6 5 7 7 7
A 0.1 | 0.12 [0.05 | 0.08 | 0.2 | 0.04 | 0.03 | 0.04 | 0.024 | 0.15 | 0.16
Trmin 05|05 [05 |05 [05|05 |05 [05 |05 |05 |05
Tmax 1515 [15 |15 [1515 |15 |15 |15 |15 |15

The solution for this network was {a7, x5, 2%, af, af, 2§, 2§, 270} =
{1.25,0.5,1.5,0.5,1.0,1.0,1.5,1.0}, with the expected cost of 272.30.

B.7. Network 7

Network 7 has one more activity than the last one (see Fig. [[Z), and different
topology. The due date is T' = 47 and the tardiness cost ¢y, = 4. The remaining
parameters are presented in Table The PERT expected duration for this
network is 44.72.

Figure 12. Network 7

Table 13. Parameters for network 7

Activity [1 [2 [3 T[4 [5 [6 7 [8 [9 J10[11 J12
Origim [[1 [1 1 I]2 2 3 |3 4 5 6 7
Target 2 3 4 5 4 7 5 7 6 7 8 8
A 0.1 | 0.09 | 0.08 | 0.1 | 0.09 | 0.08 | 0.1 | 0.09 | 0.08 | 0.1 | 0.09 | 0.1
Tmin 05|05 |05 |05[05 |05 [05]|05 [05 |05|05 |0.5
Tmax 15|15 |15 |15[15 |15 |15]15 |15 [15]15 |15

Adaptive resource allocation: a distributed implementation 683

The solution for this network was {7}, x5, a3, 3, ©f, a%, 2, 23, 275} =
{1.25,1.0,1.0,0.5,1.0,1.0,0.5,1.0, 1.5}, with the expected cost of 182.91.

B.8. Network 8

Figure 13. Network 8

This network has 14 activities. T is 37 and ¢, is 3. The remaining parameters
are presented in Table[[dl The PERT expected duration for this network is 35.5.

Table 14. Parameters for network 8

Activity [1 2 [3 [4 [5 [6 [7 [8 9 J10 [11 J12 13 14

Origin 1 1 1 1 2 2 3 3 3 4 2 6 5 4
Target 2 3 4 6 4 6 6 5 4 5 7 7 7 7
A 0.2]0.25|0.16 | 0.2 0.1 |0.16 | 0.5 0.25 | 0.2 | 0.08 | 0.09 | 0.1 0.125 0.1
Tmin 0.5{05 |05 |05(05]|05 |05|05 |05(05 |05 |05 0.5 0.5
Tmax 15115 |15 151515 |15|15 |15|15 |15 [1.5 1.5 1.5

The solution for this network was {«7, x5, %, x5, xf, %, 2§, xd, x5, 235, 27, =
{1.5,1.5,0.5,0.5,1.0,0.5,0.5,1.0,1.0, 1.0, 1.0}, with the expected cost of 120.34.

B.9. Network 9

Network 9 has the same number of activities as the previous one (14 activities).
Its due date is 188 and its tardiness cost is 6. The other parameters can be seen
in Table[[@ The PERT expected duration for this network is 178.57.

684 A.P. TERESO, J.R.M. MOTA, R.J.T. LAMEIRO

Figure 14. Network 9

Table 15. Parameters for network 9

Activity 1 J2 [3 T[4 [5 [6 [7
Origin 1 1 1 2 2 3 3
Target 2 3 4 5 6 5 6
A 0.02 | 0.03 | 0.04 | 0.025 | 0.035 | 0.045 | 0.05
Tmin 05 | 05 |05 |05 0.5 0.5 0.5
Tmax 1.5 |15 |15 |15 1.5 1.5 1.5
Activity [8 J9 [10 [11 12 [13 14
Origin 4 4 5 6 7 8 9
Target 7 8 9 9 10 10 10
A 0.06 | 0.03 | 0.02 | 0.015 | 0.02 | 0.025 | 0.03
Tmin 05 |05 |05 |05 0.5 0.5 0.5
Tmax 1.5 |15 |15 |15 1.5 1.5 1.5

The solution for this network was {«7, x5, x5, o, of, o5, «f, ©f, x5, 275, 255} =
{1.0,0.5,1.5,0.5,0.5,0.5,0.5,1.5,0.5,0.5, 1.5}, with the expected cost of 1275.97.

B.10. Network 10

o0 Lep—[2l @
AN
o] @9 @— sl ®
O =m0

Figure 15. Network 10

Adaptive resource allocation: a distributed implementation 685

Network 10 has 17 activities. For this network, T" = 49 and ¢y, = 7. The
remaining parameters are shown in Table [6l The PERT expected duration for
this network is 44.98.

Table 16. Parameters for network 10

Activity JJ 1 [2 [3 [4 [5 [6 [7 [8 [9
Origin 1 1 2 3 2 3 4 4 5
Target 2 3 4 4 6 5 5 7 6
A 0.167 | 0.1 | 0.2 0.1 0.25 | 0.2 0.1 0.333 | 0.333
Xmin 0.5 0.5 | 0.5 0.5 05 | 05 0.5 0.5 0.5
Xmax 1.5 1.5 | 15 1.5 1.5 | 15 1.5 1.5 1.5
Activity 10 [11 [12 [13 J14 [15 [16 |17 |
Origin 5 5 6 7 7 7 8 9

Target 7 9 |8 8 9 10 10 10

A 0.25 | 0.5 | 0.167 | 0.143 | 0.5 | 0.125 | 0.167 | 0.11

Xmin 0.5 0.5 | 05 0.5 05 | 0.5 0.5 0.5

Xmax 1.5 1.5 | 15 1.5 1.5 | 15 1.5 1.5

The solution for this network was {x7, 23, 3, ¥, xf, x§, 230, 251, T35, 14, 35,
xiz} = {1.25,1.5,1.5,0.5,0.5,0.5,0.5,0.5,1.0,0.5,0.5, 1.5}, with the expected
cost of 141.34.

B.11. Network 11

Network 11 can be seen in Fig.[[0 It is composed of 18 activities. Here, T'= 110
and ¢y = 10. The remaining parameters are presented in Table [l The PERT
expected duration for this network is 106.11.

Figure 16. Network 11

686

A.P. TERESO, J.R.M. MOTA, R.J.T. LAMEIRO

Table 17. Parameters for network 11

Activity T1 [2 [3 J[4 [5 [6 [7 [8 [9
Origin 1 1 1 2 3 3 4 4 5
Target 2 3 4 5 5 6 7 8 9
A 0.06 | 0.04 | 0.1 | 0.07 | 0.08 | 0.04 | 0.08 | 0.2 | 0.07
Xmin 05 |05 |05 |05 |05 [05 |05 |05 |05
Xmax 1.5 |15 |15 |15 |15 |15 |15 [15 |15
Activity [10 [11 [12 [13 [14 [15 [16 [17 [18
Origin 6 7 8 9 11 10 10 12 13
Target 11 13 10 1 12 12 13 14 14
A 0.05 | 0.08 | 0.07 | 0.09 | 0.09 | 0.05 | 0.09 | 0.04 | 0.06
Xmin 05 |05 |05 |05 |05 [05 |05 |05 |05
Xmax 1.5 |15 |15 |15 |15 |15 |15 [15 |15

The solution for this network was {x7, 3, 25, x¥, xf, %, x§, x50, 231, 235, 235,
xig, s} = {1.25,1.5,1.5,1.5,1.0,1.0,1.0,1.0,1.5,1.5,1.0, 1.5, 1.0}, with the ex-
pected cost of 357.86.

	Introduction
	Review of prior work
	Problem definition
	Matlab implementation

	Application development
	The choice of a programming language
	From Matlab to Java
	Data structures and input parameters
	The stages of the dynamic program
	The discretization of the work content

	Code optimization
	Cluster
	Example
	Differences between cluster and a single station

	Results
	Benchmark results
	Accuracy of the achieved solutions

	Conclusions and future research
	Java Code
	Problem Class
	RunDPS Class

	Example Networks
	Network 1
	Network 2
	Network 3
	Network 4
	Network 5
	Network 6
	Network 7
	Network 8
	Network 9
	Network 10
	Network 11

