
Control and Cybernetics

vol. 35 (2006) No. 3

A timed Petri net framework to find

optimal IRIS schedules

by

Matthias Werner

TU Berlin, Communication and Operating Systems Group
Einsteinufer 17, 10587 Berlin, Germany.

e-mail: mwerner@cs.tu-berlin.de

Abstract: IRIS (increasing reward with increasing service) real-
time scheduling appears frequently in real-time control applications
such as heuristic control. IRIS requires not only meeting deadlines,
but also finding the schedule with the best result (highest reward).
In this paper, a framework is presented that uses Timed Petri nets
(TPN) to transform an IRIS problem into a dynamic programming
(DP) problem, allowing the application of known TPN and DP tech-
niques. In the presented approach, an IRIS problem with tasks
having discrete-time optimal parts is transformed into a (possibly
unbounded) TPN. Then, the critical path problem of the TPN state
graph can be tackled with DP. This approach allows for the IRIS
problem multiple constraints and negative rewards.

Keywords: IRIS, increasing reward with increasing service,
scheduling, Timed Petri nets, critical path, real time.

1. Introduction

1.1. IRIS scheduling

In real-time computing, the value of a computation does not only depend on
a correct outcome, but on the time the outcome is computed. Thus, when
computation operations in that domain are scheduled, timing constraints have to
be considered. These timing constraints are usually given in terms of deadlines.

There exists a number of computation problems, where a longer run of the
computation provides better result. Consider for example the computation of
the value of π: there are several iterative approaches that provide a more pre-
cise result when running more iterations, i.e. with increasing run time. Other
examples, where longer run time provides better results, are search problems
(e.g., chess game) and several heuristic algorithms.

The problem domain described here is called imprecise computing or in-
creased reward with increased service, short IRIS. In this paper, we introduce a

704 M. WERNER

class of IRIS problems that is based on a set of assumptions, which are frequently
met in real computing systems. We present a framework to model problems of
this class with Timed Petri net, and we discuss how to apply known methods
of dynamic programming.

1.2. Related work

Publications about Petri nets (Petri, 1962) are legion, even if one restricts the
area of interest to time-dependent Petri nets or even Timed Petri nets (Ram-
chandani, 1974). A good overview can be gained by using the Petri net Bibli-
ography maintained by the University of Hamburg (Rölke, Heitmann, no date).
Applications of Petri nets in scheduling are numerous. Targeted problems are,
among others, deadlock avoidance, performance evaluation, or feasibility of real-
time and non-real-time problem. We are not aware of any Petri net application
in IRIS scheduling.

In comparison with Petri nets or general scheduling, publications on IRIS
scheduling (Dey et al., 1998; Krishna, Shin, 1997) or imprecise computing (Liu
et al., 1991, 1994; Shih and Liu, 1995) are rather infrequent. Krishna and Shin
(1997) gives a good overview. Yee and Ventura (1999) use dynamic program-
ming to solve an assembly line scheduling problem described by Petri nets. In
Popova-Zeugmann and Werner (2005) the shortest/longest path problems are
used to find optimal real-time schedules, where the task systems are modeled by
Time Petri nets. The problems targeted in both papers differ from the problem
here: there are no optional task parts as in our approach (see Section 2.1).

1.3. Paper structure

The rest of this paper is organized as follows: Section 2 discusses the IRIS prob-
lem and introduces assumption for an IRIS scheduling in a realistic environment.
Section 3 defines Timed Petri nets. In Section 4, the modeling elements of the
framework will be introduced. The spawning of a modified state space and the
application of critical path (longest path) algorithm to find the optimal solu-
tion of the IRIS problem is discussed in Section 5. In Section 6 a demonstation
of the approach is presented, using an simple example system and a modified
Bellman-Ford algorithm as critical path algorithm. The paper concludes with
a short summary in Section 7.

2. The IRIS problem

2.1. General problem

IRIS task scheduling is a problem, which appears in certain real-time systems.
Real time system in a general sense are systems that have to deal with

(external) timing constraints. Usually, the units of executions in a computer
systems are tasks. Then, the timing constraints exist for the task set, and the

A TPN framework for IRIS schedules 705

constraints are expressed in form of deadlines. It is possible that every task
have its own deadline, but frequently, there is the same deadline for any task in
the task set. After the deadline, no task execution is allowed any more.

Beside the time constraints, there are other constraints that may limit the
execution of tasks: a task needs resources during its execution. The most im-
portant resource is a CPU that executes the tasks. If there is one CPU only,
only one task can be executed at any instance of time. In turn, during its actual
execution, a task occupies the whole CPU. (In a time sharing system, not all
time between the start and the end of a task belongs to task execution time:
the task execution may be suspended, e.g., to allow another task to run). Other
resources, e.g., sections of memory or input/output devices, are merely needed
for a short time during task execution. It is also possible that the computation
of a task requires the results of other tasks. Then, one says that this task de-
pends on the other tasks, and its execution can not be started before the other
task executions end.

Beside the external constraints, there are conditions that characterize the
task execution itself. First, it may be possible that a task execution may be
interrupted or not. If the first is true, task execution will continue until it is
finished, once started. Most Real-time systems allow interrupting and resuming
the execution of tasks.

If a system has more than one CPU and interruption is possible, a task may
migrate during interruption and resume its execution on another CPU. However,
there are only very few systems that support task migration, and almost none
of them is real-time.

Until this point, we have talked about real-time systems in general. Now we
want to discuss how IRIS systems differ.

Beside a deadline, for each task in an IRIS system there exists a reward
function. This reward function gives for a task Ti the reward that is gained
when the Ti is executed for a time ∆t. Typically, the reward function is of a
form

fi(t) =











−∞ if t < tm

r(t) if tm ≤ t < tm + to

r(tm + to) if tm + to ≤ t

. (1)

The part of the task that is executed after the task start until tm time units
have passed is called the mandatory part of the task. (This refers to task time,
not to wall clock time, i.e., if the task execution can be interrupted, the task
time ceases to progress during an interruption). The part of the task after the
mandatory part, i.e., within the interval [tm, tm + to], is called the optional part.

Frequently, the reward of the mandatory part of (1) is given as 0. However,
since real-time systems often fail, when any mandatory part of a task miss the
task deadline, it makes sense to give a penalty, so that optional parts of other
tasks can not compensate. Other cases that occur are that tm is zero or to is

706 M. WERNER

infinite. The first case means that the task has no mandatory part, i.e., skipping
the task is not critical. In the second case, each increment of the task runtime
has an impact on the reward. To illustrate this second case, please consider the
example from the introduction of calculating the value of π. If an algorithm
like the one described in Press et al. (1992) is used, each round of calculation
provides a more precise result (with an assumed higher reward).

If there are more than one task in an IRIS system, the total reward is
assumed to be the sum of the single rewards. It is possible to use a weighted
sum, but we assume that the weights are already considered within the task
reward functions.

Now, we are ready to form the IRIS scheduling problem:

Definition 2.1 (IRIS scheduling problem)
For a set of IRIS tasks {T1, T2, . . . , Tn} and a set of constraints {C1, C2, . . . , Cm}
find a schedule that meets all constraints Cj and provides a maximal reward.

Obviously, the IRIS problem is an optimization problem. It is easy to see
that the general IRIS problem is NP-hard. However, there exist a range of
special instances of the problem that are solvable in polynomial time; for some
of them exist even on-line algorithms. Examples are IRIS tasks sets with linear
reward functions or task sets with identical concave reward functions, both at
single processor systems with no task interdependencies.

2.2. Real environments

If we take a closer look at the “real” real-time systems, we will find a number
of properties that are often neglected by IRIS approaches.
R.1 discrete scheduling quantums. In real environments, tasks will neither

be interrupted at arbitrary times, nor they will run for arbitrary short time
intervals. Rather, there is a minimal time quantum of execution depending
on the actual system.

R.2 discrete reward steps. In real environments, the optional parts of a
task consist of discrete subparts. Only if such a subpart is successfully ex-
ecuted, one gains a reward. This is at least due to the minimal scheduling
quantum. Moreover, an IRIS task usually works round-based, where only
a finished round contributes to the reward.

R.3 task interdependencies. In real environments, tasks frequently share
resources or depend on results of other tasks.

R.4 partly decreasing reward functions. It is not very common, but it
is possible that a reward function is not (as always assumed) monotoni-
cally nondecreasing over the time. Sometimes, starting a new round may
consume reward (e.g., if external resources are consumed); thus only a
successful computation round provides a positive reward.

The approach described in this paper assumes R.1 and R.2 and allows R.3 and
R.4. In addition, we assume a common deadline for the whole task system. This

A TPN framework for IRIS schedules 707

condition is frequently met in real systems, since the different tasks of a task
set contribute to the same problem. However, the presented approach can be
extended by additional instrumentation that lift this condition.

Other conditions of real environments, such as context switch times or com-
munication overhead are neglected in our framework. However, extensions to
consider these conditions seem to be easily implementable.

Considering R.1 and R.2, a task reward function has the following form:

fi(t) =







−∞ iff t < ti,1
ni
∑

j=1

ri,jH(t − ti,j) else
(2)

with ∀j = 1 . . . ni − 1, ti,j < ti,j+1. H(t) is the Heaviside function, defined here
as:

H(t) =

{

0 if t < 0

1 if t ≥ 0
.

If the task has no mandatory part, the first case of (2) is not applicable. It is
easy to see that without any loss of generality, it is sufficient to consider integer
rewards and time quantums that are natural numbers, i.e., ∀j, ri,j ∈ Z and
∀j, ti,j ∈ N.

It seems that R.1 – R.4 makes the IRIS problem harder to describe and
to tackle. However, this is not the case. Respecting R.1 and R.2 allow us to
model an IRIS problem with the help of time-dependent Petri nets. (Actually,
there exist several classes of Fluid Petri nets, that allows to model continuous
reward functions. However, this approach would hardly reduce the problem’s
complexity.) In turn, Petri nets allow to model dependencies and sharing of
resources, as R.3 requests.

Using Petri nets to model the problem is–of course–a detour: Assuming R.1
and R.2 allows us already to describe the IRIS problem as a dynamic program-
ming problem. However, using Petri nets provides some advantages:

– Petri nets are an easy and well-known method, including both system
designers and system analyzers.

– There exists a wide range of methods that can be applied to Petri nets,
whose correctness is proven; thus additional correctness proofs may be
skipped.

3. Timed Petri nets

Petri nets, Petri (1962), are a method to model non-deterministic dynamic sys-
tems with discrete states. Petri nets are frequently used to describe scheduling
problems, e.g., deadlock recognition.

The original Petri nets do not include a notion of time, which is needed for
real-time scheduling problems. There exist a number of extensions to Petri nets

708 M. WERNER

to enable them to deal with time. The most famous approaches are Time Petri
nets (Merlin, 1974) and Timed Petri nets (Ramchandani, 1974). In this paper,
we use the latter one.

Definition 3.1 (Timed Petri net (TPN))
The structure Z = (P, T, F, V, D, m, h, m0, h0) is called a Timed Petri net (PN)
iff

1. P, T, F are finite sets with P ∩ T = ∅, P ∪ T 6= ∅, F ⊆ (P × T)∪ (T × P)
and dom(F)∪ cod(F) = P ∪ T , where the elements of P are called places,
the elements of T are called transitions, and the elements of F are called
arcs.

2. V : F → N (weight of the arcs)
3. D : T → Q (duration function) so that D(τ) denotes the delay of the

transition τ .
4. m : P → N (marking)
5. h : T → Q (transition clock vector)
6. m0 : P → N (initial marking)
7. h0 : T → Q (initial clock vector marking).

It is easy to see that considering TPN with D : T → N will not result in a
loss of generality. Thus, only such duration functions (and accordingly, clock
vectors with h, h0 : T → N) will be considered in the rest of the paper.

The marking of a TPN is a function m : P → N, such that m(p) denotes
a number of tokens at the place p ∈ P . To any transition τ ∈ T belongs a
pre-set •τ and a post-set τ•, that are given as •τ = {p | p ∈ P ∧ (p, τ) ∈ F},
and τ• = {p | p ∈ P ∧ (τ, p) ∈ F}, respectively. Each transition τ ∈ T

induces the markings τ+ and τ−, which are defined as follows: τ− = V (p, τ)
and τ+ = V (τ, p). Here, an arc that is not an element of F is assumed to have
zero weight.

With the progress of time, the clock vector of a TPN changes. When a time
∆t elapses, each clock hi of the vector h is changed in the following way:

Definition 3.2 (time elapsing) Given a TPN Z with a transition clock vector
h. When a time ∆t elapses, each clock hi of the vector h is changed in the
following way:

h′
i = max(hi − ∆t, 0).

A transition τ is enabled at marking m iff τ− ≤ m (i.e., τ−(p) ≤ m(p) for
all places p ∈ P).

Definition 3.3 (maximal step) Let Z be an TPN. B ⊂ T is called a maximal
step at the marking m with the transition clock vector h iff

1.
∑

τ∈B

τ− ≤ m

2. ∀τ(τ ∈ B ⇒ h(τ) = 0)
3. ¬∃B∗ ((B∗ ⊃ B) ∧ (B satisfies 1. and 2.))

A TPN framework for IRIS schedules 709

If at least one enabled transition exists, transitions of the TPN must fire.
This is a difference with respect to classic Petri nets: there, the net may fire, if
there is at least one enabled transition. Only maximal steps may fire in a TPN.
If there is more than one maximal step that may fire, one of them is selected
arbitrarily.

Definition 3.4 (firing) A TPN Z with the marking m and with a maximal step
B that becomes enabled at time t will change its state the following way:

1. At time t:

– ∀τ ∈ B, p ∈ •τ, m′(p) = m(p) − τ−

– ∀τ ∈ B, h′(τ) = D(τ)

2. at each time, a clock h(τ ∈ B) changes from a non-zero value to zero:

– ∀p ∈ τ•, m′(p) = m(p) + τ+.

Frequently, one finds in the literature the firing to happen in zero time: the
tokens of the transition pre-set disappear in the same instance the new token
appears at the post-set. However, since the decision about conflicts is made
when a transitions becomes enabled, both approaches do not really differ.

An advantage of using Petri nets to model systems is that there exist graph-
ical representations for nets. For TPN, places are represented by circles, tran-
sitions are represented by rectangles, where a number denotes the delay, and
arcs are represented by arrows, where a number denotes the weight. An actual
marking of a Petri net is represented by small filled circles (tokens) inside the
marked places.

4. Modeling

In this section, we are discussing different elements of the IRIS problem as
described in Section 2. Together, these elements allow for modeling all IRIS
problems that meet R.1–R.4.

4.1. A simple task

Let us consider a simple, non-interruptable task with a binary reward function:

fi(t) =

{

0 if t < t1

ai if t ≥ t1
. (3)

Using the alternative form of (3), the parameters are: ni = 1, ri,1 = ai, ti,1 = t1.
Please, keep in mind that time t here is not the general (wall clock) time, but
the fraction of time the task is actually executed. Fig. 1 shows a model of such
a simple task.

There, the actual execution is represented by Transition τ1. A token at
places p1 and p3 denotes different states of the task, more precisely, “ready to
run” and “finished”, respectively.

710 M. WERNER

p1

p2

ri

τ1

τ2

p3

pR

<t1>

<1>

Figure 1. A simple task. Transition delays are marked by sharp brackets.

Place p2 models a resource needed for execution, e.g., CPUs. Here, the
tokens have a different function than at p1 and p3: the number of tokens rep-
resent the number of resource instances that are available. Finally, the number
of tokens at pR show the reward gained.

A TPN with an enabled transition is forced to fire, but we want to allow an
arbitrary delay for the task starts, after they became ready. For this reason,
transition τ1 is added, releasing t2 from the force to fire instantaneously.

To model a general task with a reward function with the form of (2) but
without mandantory part (for tasks with mandantory parts, i.e., rewards of −∞,
see discussion in Section 4.3) it is sufficient to compose the more complicated
task out of a number of simple tasks, as shown in Fig. 2.

p1

p2

r i,1

r i,2

r i,n

1

2

τ

n+1

p3

p4

pn+2

<t i,1>

<ti,2>

<t i,n>

<1>

.
.
.

.
.
.

.
.
. .

.

.

pR

τ

τ

3

τ

Figure 2. Non-interruptable IRIS task with reward function according to (2)
without a mandantory part.

A TPN framework for IRIS schedules 711

4.2. Interruptable task

To model an interruptable task it would be sufficient to combine a number
of simple task elements from Fig. 1 directly, where every computation step
represents the minimal computation quantum according R.1. Unlike as shown in
Fig. 2, every computation stage returns the consumed resource token (especially
the CPU).

However, if all (or at least a number of successive) quantum computation
stages gain the same reward (e.g., none), there is a more effective way to model,
as shown in the example of Fig. 3.

Firing Transition τ3 represents the execution of a computation time quan-
tum. The number of such quantums is given by the weight t1 of the arc (τ2, p3).
At the beginning of the execution, i.e., after firing of τ2, place p3 contains t1
tokens which are processed step by step. Thus, in this case, a token repre-
sents an execution-time quantum. We used this quantum time model already
in non-IRIS scheduling, compare, e.g., Richling, Popova-Zeugmann and Werner
(2002).

p1

p2

1

3

4

2

p3

p4

p5

t1

t1

<1>

<1>

<0>

<0>

r i

pRτ

τ

τ

τ

Figure 3. Tokens represent time quantums.

4.3. Rewards

Modeling the reward is straightforward, as already shown in Section 4.1. Every
system to model includes exactly one place pR that displays the reward: the

712 M. WERNER

marking, or more precisely, the number of tokens at a certain time corresponds
to the reward gained until this time.

Since firing of transitions models executions of tasks or task parts, changes in
reward are assigned to these transitions. I.e., for each transition τ that produces
a reward r, r > 0, there exists an arc (τ, pR) with V (τ, pR) = r. In turn, for
each transition τ that produces a reward r, r < 0, there exists an arc (pR, τ)
with V (pR, τ) = −r.

If there exists at least one reward ri < 0, it could be possible that the
execution of an action with a negative reward is blocked in the model by an
empty reward place, which does not follow the model semantic. To avoid a
blocking, the reward place is modelled with an initial marking.

For a system with an overall deadline Do and where Tn is the set of trans-
actions that are negatively rewarded, τni

∈ Tn, the following formula gives an
upper bound for the initial marking of pR:

m0(pR) =
∑

τni
∈Tn

⌈

D0

D(τni
)

⌉

· V (pR, τni
). (4)

It is not necessary (and feasible) to model the −∞ reward. If tasks have manda-
tory parts, it can be modeled by rewards and side conditions for the optimiza-
tion problem. Each mandatory part has to provide a reward value that is
large enough to not be compensated by execution of optional parts prior to the
deadline. Let Tm be the set of transitions that represent mandatory parts and
Tp = {vi} the set of transitions with V (τi, pR) > 0 (note that a mandatory part
never has a negative reward, i.e., Tm ∩ Tn = ∅).

The following formula gives an upper bound for the rewards of part in Tp:

rm =
∑

τi∈Tp

⌈

D0

D(τi)

⌉

· V (τi, pR). (5)

Thus, for the transitions that represent mandantory parts, the following must
hold:

∀τ ∈ Tm, V (τ, pR) ≥ rm. (6)

In addition, only solutions of the IRIS problem will be accepted where the total
reward rt meets the the following inequality:

rt ≥
∑

τ∈Tm

V (τ, pR) + m0(pR). (7)

Note that only transitions τ with a delay D(τ) > 0 contribute to changes in
the reward. In addition, there are no two or more places, that form a ring with
zero-delay transitions. Thus, the state graph (see Section 5) will not include
any loops.

A TPN framework for IRIS schedules 713

4.4. Putting together

The elements introduced in this section allow for modeling arbitrary Petri nets
according to the IRIS problem from Section 2.2. An arbitrary task with a reward
function of the form of (2) is simply constructed of a sequence of simple task,
which are constructed in either of the ways seen in Figs. 1–3.

Dependencies among tasks can be modeled by Petri net pre-conditions, i.e.,
drawing arcs from the “ready” place of a predecessor task to the first action
(transition) of the successor task. Other dependencies, i.e., shared ressources,
can be handled in the same way as CPUs.

5. Path problem

After constructing the model, the problem of an optimal IRIS schedule can now
be mapped to a critical path problem (also known as longest path problem),
which is solvable with the known method of dynamic programming, see, e.g.,
Cormen, Leiserson, Rivest (1990).

The straightforward solution is to spawn the timeless Petri net state space,
seek the state with the highest m(pr) that meets the side conditions, and finally
use DP to find the path to this state and check, whether this path meets the
deadline. A similar approach is followed, e.g., in Popova-Zeugmann, Werner
(2005). However, the state space of IRIS task models constructed as described
in Section 4 may be infinite (although the Petri net itself is finite) since infinite
increases of rewards are allowed. And even if the state space is finite, frequently
many of the found states will not meet the deadline constraint. (Considering
found states only does not allow for checking the side condition: Timed Petri
net states do not include global time).

We suggest to use a modified state space that is augmented by a global time
but reduced by the marking of pr. Instead, gain and loss of reward serve as
weights in the state graph. Then, the relaxing operation of a path algorithm
can be applied to m(pr).

By removing pr from the Petri net, it becomes bounded, and thus, its state
space becames finite. However, adding an absolute time, makes the state space
infinite, again. But not all of this state space is of interest. Only states with an
absolute time smaller than the deadline have to be considered.

Our approach is to spawn the state space graph (or, more precisely: a part
of it) and to solve the critical path problem at the same time. The modified
state space is developed from the initial state. The initial modified state S′

0

consists of the initial timeless Petri net state without pr, i.e., m−

0 , augmented
with the absolute initial time ta = 0. I.e., S′

0 = (m−

0 , 0).
To calculate future marking, the state equation from Popova-Zeugmenn,

Werner and Richling (2003) may be used. Here, the marking is not a vector,
but a matrix of the dimension |P | × dmax (timed marking) where dmax is the
largest delay in the Petri net plus one. C is the corresponding incidence matrix,

714 M. WERNER

Ψ the Parikh matrix describing the (sequence of) step(s), and R a progress
matrix of the form

R =















1 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
0 0 · · · 1 0















.

The (timed) marking after ∆t time units is calculated by:

mi+∆t = mi · R
∆t + C · Ψ. (8)

The time component increases simply with time:

tai+∆t
= tai

+ ∆t. (9)

States in the modified state space are identical, iff the reduced Petri net state
is the same and the absolute time is the same. The arcs of the state graph are
labeled with the changes of mpr

.
To increase efficiency, it is possible to execute parts of the critical path

algorithm (initialization and first round of relaxing) together with spawning of
the state space. After the termination of the critical path algorithm, all path
weights to the states with t = Do are known as well as the critical path that
corresponds with the highest reward.

The complexity of this algorithm is polynomial with the number of states
in the modified state space. This number, however, may be exponential in the

worst case, bounded by |T |
D

tmax . Yet, in many realistic cases, this number is
polynomial to |T | · |P |.

6. An example

As an example consider the following simple system: two IRIS task J1, J2 have
to share one processor, and J2 depends on the result of J1. The reward functions
of each task are given in the form of sets of (ti,j , ri,j):

J1: {(ta, ra), (2ta, ra), (3ta, ra), (4ta, ra)}
J2: {(ta, 0), (4ta, 3ra)}.

Fig. 4 shows the graphs for these reward functions. The problem is oversim-
plified: One can easily see that, if the deadline is at least 4ta, any execution is
optimal that includes both parts of J2, the mandatory part of J1, and as many
as possible of the optional parts of J1. If the deadline is shorter than 4ta, but
larger than 2ta, any execution is optimal that includes both mandatory parts
and as many as possible optional parts of J1. For a deadline shorter than 2ta,
no solution exists. For the example, let us assume a deadline of 5ta.

A TPN framework for IRIS schedules 715

t

r

t

r

ta

1

2

3

-1

1

2

3

-1

2 3 4 5 2 3 4 5

[ta] [ta]

Figure 4. Reward functions for example system

The corresponding Petri Net is presented in Fig. 5. Please note that the arc
(τ2, P2) has a multiplicity of 3, allowing to fold the three optional parts of J1.
Place P3 belongs to both, J1 and J2: for J1 a marking signals that a result is
reached, and for J2 it marks the task as ready to run. It is sufficient to set the
rewards of the mandatory parts to 6ra. Thus, no solution is accepted, if the
gained reward is not at least 12ra.

<ta>

τ1

<2ta>

pR

<ta>

<ta>

<ta>

<ta>

p1

p2

p3

p4

τ2

τ3
τ4

τ5

τ6

task J1

task J2

3

6ra

ra

6ra

3ra

Figure 5. Petri net of the example system

Since all delays are multiplicities of ta, it makes sense to declare ta as the
time unit of the net. The net incidence matrix and initial time marking are as

716 M. WERNER

follows:

C =













−1 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 −1 1 0 −1 1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0
0 0 0 0 6 0 0 1 0 0 0 0 0 1 0 0 0 2













m0 =













1 0 0
0 0 0
0 0 0
0 0 0
0 0 0













Fig. 6 shows the modified state graph of the Petri net, where the edges are
labled with the marking changes of the reward place (see Section 5). The initial
state is denoted by a double border. The spawning of the state graph is cut
where a state includes a time greater or equal to the deadline. States with times
grater than the deadline (marked with dashed borders) must not be a part of
the solution.

To calculate the optimal schedule, a critical path alogrithm will be applied to
the modified state graph. There exist quite a number of critical path algorithms.
Without loss of generality we use the Bellman-Ford algorithm (Bellman, 1958;
Ford and Fulkerson, 1962). The Bellman-Ford algorithm is a shortest path al-
gorithm; however, it is easy to modify it to a critical path algorithm. Denote
the state graph as G = (S, E), where S is the set of states s ∈ S, E is the set
of directed edges eij ∈ E, eij = (si, sj); s0 is the initial state and w : E → Z is
the weight function of the edges (i.e. the corresponding marking changes of the
reward places). The critical path algorithm is as follows (the original Bellman-
Ford algorithm contains a check if there exist negative cycles; however, since
our state graph is an acyclic graph, this check is not needed):

for all s ∈ S do

d(s) ⇐ −∞
n(s) ⇐ nil

end for

d(s0) ⇐ 0
for i ⇐ 1 to |V | − 1 do

for all eij ∈ E do

if d(sj) < d(si) − w(ei,j) then

d(sj) ⇐ d(si) − w(eij)
n(s2) = s1

end if

end for

end for

After the algorithm terminates, the path (s0, n(s0), n(n(s0)), . . .) describes the
schedule with the highest reward. In our example, this is the sequence {τ2, τ3, τ5, τ6},
i.e., the execution of task J1 has to end and task J2 has to start, after the first

A TPN framework for IRIS schedules 717

optional part of J1 is executed, and no idle times are allowed. In Fig. 6, this
path is marked with gray edges.

(

(m(p1,p2,p3,p4))
time

)

Legend:

((1,0,0,0)
0) ((1,0,0,0)

1) ((1,0,0,0)
2) ((1,0,0,0)

3) ((1,0,0,0)
4) ((1,0,0,0)

5)

((0,3,1,0)
5)

((0,3,1,0)
4) ((0,3,0,1)

5)

((0,2,1,0)
5)

((0,3,1,0)
3) ((0,2,1,0)

4)

((0,1,1,0)
5)

((0,2,0,1)
5)

((0,3,0,1)
4) ((0,3,0,0)

6)

((0,3,1,0)
2) ((0,2,1,0)

3) ((0,1,1,0)
4)

((0,0,1,0)
5)

((0,1,0,1)
5)

((0,2,0,1)
4) ((0,2,0,0)

6)

((0,3,0,1)
3) ((0,3,0,0)

5)

((0,3,1,0)
1) ((0,2,1,0)

2) ((0,1,1,0)
3) ((0,0,1,0)

4) ((0,0,0,1)
5)

((0,1,0,1)
4) ((0,1,0,0)

6)

((0,2,0,1)
3) ((0,2,0,0)

5)

((0,3,0,1)
2) ((0,3,0,0)

4) ((0,3,0,0)
5)

0 0 0 0 0
6

6

6

6

6

6
0

1
0

1

6
1
6
0

3

1 1 6

0

6
6

0
0

1

3

3

1

6

1

6

1
6

6

0

0
0 0

3

3

3 0

Figure 6. Modified state graph of the example system

718 M. WERNER

7. Conclusion

Within this paper, we stated a number of realistic assumption for IRIS schedul-
ing problems, allowing us to describe such problems with Timed Petri nets. We
presented the different components to model these IRIS problems and discussed
the finding of an optimal solution with the help of critical path algorithms.

References

Bellman, R. (1958) On a routing problem. Quarterly of Applied Mathematics
16 (1), 87–90.

Cormen, T.H., Leiserson, C.E. and Rivest, R.L. (1990) Introduction to
Algorithms. MIT Press/McGraw-Hill, Cambridge, MA.

Dey, J.K. Kurose, J.F. Towsley, D.F. Krishna, C.M. and Girkar, M.
(1993) Efficient on-line processor scheduling for a class of IRIS (increas-
ing reward with increasing service) real-time tasks. In: Measurement and
Modeling of Computer Systems, 217–228.

Ford, L.R. and Fulkerson, D.R. (1962) Flows in Networks. Princeton Uni-
versity Press, Princeton, New Jersey.

Krishna, C.M. and Shin, K.G. (1997) Real-Time Systems. McGraw Hill,
New York, NY.

Liu, J.W.S., Shih, W.-K., Lin, K.-W., Bettati, R. and Chung, J.-Y.
(1994) Imprecise computations. Proc. of the IEEE, January, 82 (1), 83–
94 .

Liu, J.W.S., Lin, K.-J., Yu, A.C.-S., Chung, J.-Y. and Zhao, W. (1991)
Algorithms for scheduling imprecise computations. IEEE Computer 24

(5).
Merlin, P. (1974) A Study of the Recoverability of Communikation Protocols.

PhD thesis, Irvine.
Petri, C.A. (1962) Kommunikation mit Automaten. Schriften des IIM 2,

Institut für Instrumentelle Mathematik, Bonn.
Popova-Zeugmann, L. and Werner, M. (2005) Extreme runtimes of sched-

ules modelled by time petri nets. Fundamenta Informaticae 67 (1–3),
163–174.

Popova-Zeugmann, L., Werner, M. and Richling, J. (2003) Using state-
equation to prove non-reachability in timed petrinets. Fundamenta Infor-
maticae 55 (3), 187–202.

Press, W.H. Teukolsky, S.A. Vetterling, W.T. and Flannery, B.P.
(1992) Numerical Recipies in FORTRAN. Cambridge University Press,
Cambridge.

Ramchandani, C. (1974) Analysis of asynchronous concurrent systems by
Timed Petri Nets. Project MAC, Technical Report 120, MIT.

A TPN framework for IRIS schedules 719

Richling, J., Popova-Zeugmann, L. and Werner, M. (2002) Verification
of non-functional properties of a composable architecture with petrinets.
Fundamenta Informaticae 51 (2), 185–200.

Rölke, H. and Heitmann, F. Petri Nets World. Web site.
http://www.informatik.uni-hamburg.de/TGI/PetriNets

/bibliographies.
Shih, W.-K. and Liu, J.W.S. (1995) Algorithms for scheduling imprecise com-

putations with timing constraints to minimize maximum error. IEEE
Trans. on Computers, 44 (3), 466–471.

Yee, S.T. and Ventura, J.A. 1999 A dynamic programming algorithm to
determine optimal assembly sequences using petri nets. International
Journal of Industrial Engineering - Theory, Applications and Practice 6

(1), 27–37.

