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Abstract: We consider two semidynamical systems, (T̃t)t>0 and
(Tt)t>0, generated by different partial differential equations of von
Foerster-Lasota type. We investigate some of their common prop-
erties in the integrable space with the p-exponent. We show that
their chaotic or stable behaviour depends on the common value of
the parameter γ = λ(0).
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1. Introduction

We investigate von Foerster-Lasota equations which are a part of mathematical
description of the reproduction of a population of red blood cells. Such descrip-
tion appeared in Ważewska-Czyżewska, Lasota (1976), and found application
in research on anemia (Lasota, Mackey, Ważewska-Czyżewska, 1981). There
was a high degree of matching between this mathematical theory and medical
experience. The chaotic behaviour of this equation is still the matter of interest
of many mathematicians: Lasota, Pianigiani (1977), Rudnicki (1985),  Loskot
(1985), Lasota, Szarek (2004), as well as Dawidowicz (1982, 1983), Dawidowicz,
Poskrobko (2006), or Brzeźniak, Dawidowicz (2006). Research of the periodic
or chaotic solutions of the Lasota equation is interesting from the medical point
of view. So, we fix our attention on the existence of such solutions, the problem
of chaos and stability of the equation in L̂p space, i.e. the space of functions,
which are close to zero in a neighbourhood of zero point.
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2. Formulation of the problem

We consider two semidynamical systems, (T̃t)t>0 and (Tt)t>0. They are con-
nected with two partial differential equations. We wish to investigate some
common properties of these systems.

Definition 1 A function v0 ∈ V is a periodic point of the semigroup (Tt)t>0

with a period t0 > 0 if and only if Tt0v0 = v0. A number t0 > 0 is called a
principal period of a periodic point v0 if and only if the set of all periods of v0

is equal Nt0.

Definition 2 The semigroup (Tt)t>0 is strongly stable in V iff for every v ∈ V ,

lim
t→∞

Ttv = 0 in V.

Definition 3 The semigroup (Tt)t>0 is exponentially stable on V iff there exists
D < ∞ and ω > 0 such that

‖Tt‖ 6 De−ωt, for t > 0

where ‖.‖ is the norm of V .

First, we consider the partial differential equation

∂u

∂t
+ x

∂u

∂x
= γu, t > 0, 0 6 x 6 1 (1)

with the initial condition

u(0, x) = v(x), 0 6 x 6 1 (2)

where v belongs to some normed vector space V of functions defined on [0, 1].

The function T̃t is given by the formula

(T̃tv)(x) = ũ(t, x) = eγtv(xe−t), x ∈ [0, 1] (3)

where ũ is the unique solution of (1) and (2).
The second considered partial differential equation is

∂u

∂t
+ x

∂u

∂x
= λ(x)u, t > 0, 0 6 x 6 1 (4)

with the initial condition

u(0, x) = v(x), 0 6 x 6 1 (5)

where v belongs to some normed vector space V of functions defined on [0, 1]
and λ : [0, 1] → R is given continuous function. Let a semidynamical system

Tt : V → V
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be given by the formula

(Ttv)(x) = u(t, x).

It is clear that the unique solution of (4), (5) is given by the formula

(Ttv)(x) = u(t, x) = eg(x)e−g(xe−t)v(xe−t), x ∈ [0, 1] (6)

where

g(x) = −

∫ 1

x

λ(s)

s
ds

with the condition

∫ 1

0

λ(s)

s
ds = ∞. (7)

This can be found in Dawidowicz, Poskrobko (2006). There exists a connection
between these two equations. It is easy to check that if u and ũ are the solutions
of the equations (4) and (1), respectively, we have the equality

ũ(t, x) = κ(x)u(t, x), (8)

where

κ(x) = e
R

x

0
λ(0)−λ(s)

s
ds and γ = λ(0). (9)

All properties of the systems (T̃t)t>0 and (Tt)t>0 depend on the value of the
constant γ = λ(0). In Brzeźniak, Dawidowicz (2006), Dawidowicz, Poskrobko
(2006) the chaotic and stable behaviour of these systems in Vα (the subspace of
Hölder continuous functions) and Lp space was described. The main results of
this paper are theorems relating to similar behaviour (chaos and stability), but

in spaces L̃p and L̂p.
Let v be a continuous function on [0, 1] such that v(0) = 0. For any interval
A ⊂ (0, 1] define

SA(v) = sup
x∈A

(
1

x

∫ x

0

|v(s)|pds

) 1
p

.

Definition 4 Denote by L̃p the space of all functions v ∈ Lp(0, 1) (1 6 p < ∞)
satisfying the following condition: S(0,1](v) < ∞.

Proposition 1 The space L̃p with the norm S(0,1] is a Banach space.
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Proof. Let {vn} be a Cauchy sequence in L̃p space, so for any ǫ > 0 there is

n0 such that for all numbers n, m > n0

(
1
x

∫ x

0
|vn(s) − vm(s)|pds

) 1
p < ǫ for all

x ∈ (0, 1]. {vn} is also a Cauchy sequence in Lp, according to the standard norm
‖.‖. Because Lp is a Banach space, so there exists v0 ∈ Lp such that vn → v0

in Lp. For any x ∈ (0, 1] we have from Fatou’s lemma

(
1

x

∫ x

0

|vn(s) − v0(s)|pds

) 1
p

6 lim inf
m→∞

(
1

x

∫ x

0

|vn(s) − vm(s)|pds

) 1
p

< ǫ.

Therefore vn → v0, as n → ∞. Similarly, using Fatou’s lemma we can prove
that v0 ∈ L̃p.

Proposition 2 If 0 < a < b < c 6 1, then

S(a,c] 6 S(a,b] + S(b,c].

Proof. It is sufficient to prove that for a continuous function v defined on the
interval [0, 1] and x ∈ (a, c]

(
1

x

∫ x

0

|v(s)|pds

) 1
p

6 S(a,b](v) + S(b,c](v).

For x ∈ (a, b] we have

(
1

x

∫ x

0

|v(s)|pds

) 1
p

6 S(a,b](v) 6 S(a,b](v) + S(b,c](v).

An analogous inequality is true for x ∈ (b, c].

Remark 1 If 1 6 p1 < p2 < ∞, then

L̃p2 ⊂ L̃p1

and

sup
x∈(0,1]

(
1

x

∫ x

0

|v(s)|p1ds

) 1
p1

6 sup
x∈(0,1]

(
1

x

∫ x

0

|v(s)|p2ds

) 1
p2

.

Definition 5 Denote by L̂p the space of all functions v ∈ L̃p (1 6 p < ∞),
satisfying the following condition

lim
a→0

S(0,a](v) = 0.

Proposition 3 The space L̂p with the norm S(0,1] is a Banach space.
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Proof. The space L̃p with the norm S(0,1] is a Banach space. Since L̂p is its

linear subspace, it is sufficient to show that L̂p is its closed subspace. Let {vn}

be the sequence of functions belonging to L̂p such that vn → v0, as n → ∞.
We need to show that v0 ∈ L̂p. Let ǫ > 0. There exists n0 such that for every
n > n0,

sup
x∈(0,1]

(
1

x

∫ x

0

|vn(s) − v0(s)|pds

) 1
p

<
ǫ

2
.

Since vn0 ∈ L̂p, there exists x0 such that, for every x < x0,

(
1

x

∫ x

0

|vn0(s)|pds

) 1
p

<
ǫ

2
.

For every x < x0, we have

(
1

x

∫ x

0

|v0(s)|pds

) 1
p

6 sup
x<x0

(
1

x

∫ x

0

|v0(s)|pds

) 1
p

6 sup
x<x0

(
1

x

∫ x

0

|v0(s) − vn0(s)|pds

) 1
p

+ sup
x<x0

(
1

x

∫ x

0

|vn0(s)|pds

) 1
p

< ǫ.

Therefore, for sufficiently small x0

S(0,x0](v0) < ǫ.

This is our claim.

3. Chaos and stability of dynamical system (T̃t)t>0

Theorem 1 If γ > 0, then for any t0 there exists v0 ∈ L̂p such that

T̃t0v0 = v0. (10)

Moreover,

T̃tv0 = v0 if and only if t = nt0 for some positive integer n. (11)

Proof. Let w be an arbitrary continuous function such that |w(x)| 6 Cxγ , where
C > 0 and x ∈ [0, 1]. Let w satisfy the following conditions:

eγt0w(e−t0) = w(1), (12)

eγtw(e−t) 6= w(1) ∀t ∈ (0, t0). (13)
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The function w, defined in such way, belongs to L̂p space because

S(0,a](w) = sup
x∈(0,a]

(
1

x

∫ x

0

|w(s)|pds

) 1
p

6 C sup
x∈(0,a]

(
1

x

∫ x

0

sγpds

) 1
p

= C sup
x∈(0,a]

(
xγp

γp + 1

) 1
p

6 C
aγ

(γp + 1)
1
p

.

This leads to lima→0 S(0,a](w) = 0, as γ > 0. Since (0, 1] =
⋃∞

n=0(e−(n+1)t0 ,
e−nt0 ] we can define a function v on the interval (0, 1] by squeezing the graph
of the function w into intervals (e−(n+1)t0 , e−nt0 ]. We put

v(x) = e−nγt0w(xent0) for x ∈ [e−(n+1)t0 , e−nt0 ]. (14)

For such function we have

|v(x)| = |e−nγt0w(xent0)| = e−nγt0 |w(xent0)| 6 e−nγt0C(xent0)γ = Cxγ .

So, v(0) = 0 and we obtain the continuous function v defined on the whole inter-
val [0, 1]. The properties (10) and (11) follow from (12) and (13), respectively.
As we showed above the function which fulfils the condition |v(x)| 6 Cxγ for

x ∈ [0, 1] belongs to L̂p space. This finishes the proof.

Theorem 2 If γ > 0 the set of periodic points of (1) is dense in L̂p.

Proof. Let w ∈ L̂p be an arbitrary function. Define a new function

wC(x) =

{
w(x) for |w(x)| 6 Cxγ

sgn(w(x)) · Cxγ for |w(x)| > Cxγ

where C > 0. It is obvious that wC ∈ L̂p. At first we claim that for such
functions limC→∞ S(e−t0 ,1](wC − w) = 0.

S(e−t0 ,1](wC − w) = sup
x∈(e−t0 ,1]

(
1

x

∫ x

0

|wC(s) − w(s)|pds

) 1
p

6 sup
x∈(e−t0 ,1]

(
1

x

∫

{s∈[0,1]:w(s)>Csγ}

|wC(s) − w(s)|pds

) 1
p

6 sup
x∈(e−t0 ,1]

(
1

x

∫

{s∈[0,1]:w(s)>Csγ}

|w(s)|pds

) 1
p

6 e
1
p

t0

(∫

{s∈[0,1]:w(s)>Csγ}

|w(s)|pds

) 1
p

.
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We know that for arbitrary η > 0

(∫ 1

0

|w(s)|pds

) 1
p

>

(∫

{s∈[0,1]:w(s)>Cηγ}

|w(s)|pds

) 1
p

> (µ ({s ∈ [0, 1] : w(s) > Cηγ}))
1
p (Cηγ)

where µ is the measure in R. We will show that the measure of the interval
{s ∈ [0, 1] : w(s) > Csγ} tends to zero when C → ∞. Using the above
estimation we have for any η > 0

µ ({s ∈ [0, 1] : w(s) > Csγ}) 6 η + µ ({s ∈ [0, 1] : s > η ∧ w(s) > Cηγ})

6 η +
1

Cηγ

(∫ 1

0

|w(s)|pds

) 1
p

.

Since η is arbitrary, it follows that µ({s ∈ [0, 1] : w(s) > Csγ}) → 0 when
C → ∞. This completes our claim. Fix t0 and the constant C such that

S(e−t0 ,1](wC − w) 6 e
1
p

t0

(∫

{s∈[0,1]:w(s)>Csγ}

|w(s)|pds

) 1
p

<
ε

4
.

We are going to define periodic point by formula v(x) = e−nγt0wC(xent0), x ∈
[e−(n+1)t0 , e−nt0 ] for a good choice of the parameter t0. Both functions wC

and v belong to L̂p so e
t0
p ‖v1(0,e−t0 ]‖Lp(0,1) < ǫ

8 and e
t0
p ‖wC1(0,e−t0 ]‖Lp(0,1) <

ǫ
8 , where 1A denotes the indicator of the set A. Moreover fix t0 such that
S(0,e−t0 ](w) < ǫ

4 and S(0,e−t0 ](v) < ǫ
4 . Since for x ∈ (e−t0 , 1] v(x) = wC(x) and

so

S(e−t0 ,1](v − wC) = sup
x∈(e−t0 ,1]

(
1

x

∫ x

0

|v(s) − wC(s)|pds

) 1
p

= sup
x∈(e−t0 ,1]

(
1

x

∫ e−t0

0

|v(s) − wC(s)|pds

) 1
p

6 e
1
p

t0

(∫ e−t0

0

|v(s) − wC(s)|pds

) 1
p

<
ǫ

4
.

Finally,

S(0,1](v − w) 6 S(0,e−t0 ](v − w) + S(e−t0 ,1](v − w)

6 S(0,e−t0 ](v) + S(0,e−t0 ](w) + S(e−t0 ,1](v − wC)

+ S(e−t0 ,1](wC − w) < ǫ.

Theorem 3 If γ 6 0, then the semigroup (T̃t)t>0 is strongly stable. If γ < 0,

(T̃t)t>0 is exponentially stable.
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Proof. Let v ∈ L̂p be an arbitrary function.

Sp

(0,1](T̃tv) = sup
x∈(0,1]

(
1

x

∫ x

0

|T̃tv(s)|pds

)
= sup

x∈(0,1]

(
1

x

∫ x

0

|eγtv(se−t)|pds

)

= e(γp+1)t sup
x∈(0,1]

(
1

x

∫ xe−t

0

|v(s)|pds

)

= eγpt sup
x∈(0,e−t]

(
1

x

∫ x

0

|v(s)|pds

)
= eγpt Sp

(0,e−t](v),

since eγp 6 1 and by definition S(0,e−t](v) → 0 as t → ∞, we obtain strong

stability of the system (T̃t)t>0 in L̂p. The second part of the proof follows
from the above inequality, too. We gain exponential stability with D = 1 and
ω = −γ.

The stability of the system in Lp space implies the stability in L̂p, but not

conversely. It is enough to choose γ from the interval
(
− 1

p
, 0
]
, then we have the

stability of the semigroup (T̃t)t>0 in L̂p subspace, but not in Lp space.

4. Properties of dynamical system (Tt)t>0

Theorem 4 Assume that

∃C, q > 0 ∀x ∈ [0, 1] |λ(0) − λ(x)| 6 Cxq (15)

holds, then we have the equivalence: the function u belongs to the space L̂p if
and only if ũ ∈ L̂p.

Proof. By (15), u ∈ Lp iff ũ ∈ Lp. This can be found in Dawidowicz, Poskrobko

(2006). Assuming that u ∈ L̂p we have

S(0,a](ũ) = sup
x∈(0,a]

(
1

x

∫ x

0

|ũ(t, s)|pds

) 1
p

= sup
x∈(0,a]

(
1

x

∫ x

0

|κ(s)u(t, s)|pds

) 1
p

6 sup
x∈(0,a]

(
1

x

∫ x

0

ep
R

s

0
|λ(0)−λ(σ)|

σ
dσ|u(t, s)|pds

) 1
p

6 sup
x∈(0,a]

(
1

x

∫ x

0

e
Cp
q

sq

|u(t, s)|pds

) 1
p

6 e
Caq

q S(0,a](u),

so

lim
a→0

S(0,a](ũ) = 0.

In the same manner we can establish the inverse implication.

For convenience, we assume, once and for all, that (15) is satisfied.
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Theorem 5 If λ(0) > 0, then for any t0 there exists such v0 ∈ L̂p that

Tt0v0 = v0. (16)

Moreover,

Ttv0 = v0 if and only if t = nt0 for some positive integer n. (17)

Proof. Let w be an arbitrary function belonging to Lp, defined on the interval
[e−t0 , 1] and satisfying the following conditions:

e−g(e−t0 )w(e−t0) = w(1), (18)

e−g(e−t)w(e−t) 6= w(1) ∀t ∈ (0, t0). (19)

Consider the function v on the interval (0, 1]

v(x) = eg(x)e−g(xent0)w(xent0) for x ∈ [e−(n+1)t0 , e−nt0 ].

The function v is defining on the whole interval (0, 1] =
⋃∞

n=0(e−(n+1)t0 , e−nt0 ]
and comes into being by squeezing the graph of the function w into each of the
intervals (e−(n+1)t0 , e−nt0 ].
By assumption of the continuity of w on [e−t0 , 1] follows its boundedness, i.e.
∃M > 0 such that |w(x)| 6 M for each x ∈ [e−t0 , 1]. By the above for x ∈
[e−(n+1)t0 , e−nt0 ] we have the estimation:

|v(x)| = eg(x)e−g(xent0 )|w(xent0)| 6 Meg(x) · sup
x∈[e−t0 ,1]

e−g(x)
6 M1eg(x)

where M1 = M · supx∈[e−t0 ,1] e−g(x). From the assumption (7) limx→0 eg(x) = 0
so we deduce that v(0) = 0. We obtain the continuous function v defined on the
whole interval [0, 1]. The property (16) follows from (18), while the property

(17) from (19). Our next goal is to show that v ∈ L̂p. Under Theorem 1, we

know that ṽ ∈ L̂p for γ > 0, where ṽ is the solution of the equation (1). It
clearly forces the same conclusion for the function v by Theorem 4.

Theorem 6 If λ(0) > 0 then the set of periodic points of (4) is dense in L̂p.

Proof. Let ǫ > 0 and let w ∈ L̂p. Let v be a periodic solution of (4) defined

by the formula (6). Since v and w belong to L̂p there exists such t0 that

S(0,e−t0 ](v) < ǫ
4 and S(0,e−t0 ](w) < ǫ

4 . We know that v(x) = ev(x)
κ(x) , where ṽ is

the periodic solution of (1). The assumption λ(0) > 0 guarantees the density of
the set of periodic points of (1), so S(0,1](v − ṽ) < ǫ

4 and S(0,1](w − ṽ) < ǫ
4 .

Thus

S(0,1](v − w) 6 S(0,e−t0 ](v − w) + S(e−t0 ,1](v − w)

6 S(0,e−t0 ](v) + S(0,e−t0 ](w) + S(0,1](v − ṽ) + S(0,1](ṽ − w) < ǫ.

This is the desired conclusion.
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Theorem 7 If λ(0) 6 0 then for every v ∈ L̂p

lim
t→∞

S(0,1](Ttv) = 0.

Moreover, if λ(0) < 0, the semigroup (Tt)t>0 is exponentially stable.

Proof. Take any v ∈ L̂p. Then we have

S(0,1](Ttv) = sup
x∈(0,1]

(
1

x

∫ x

0

|u(t, s)|pds

) 1
p

= sup
x∈(0,1]

(
1

x

∫ x

0

∣∣∣∣
ũ(t, s)

κ(s)

∣∣∣∣
p

ds

) 1
p

= sup
x∈(0,1]

(
1

x

∫ x

0

∣∣∣∣
1

κ(s)
(Ttṽ)(s)

∣∣∣∣
p

ds

) 1
p

6 e
C
q S(0,1](Ttṽ).

Applying Theorem 3 we can assert that S(0,1](Ttv) → 0, as t → ∞. This proves
the first part of the Theorem. The second one follows immediately from the

same above inequality and Theorem 3 with D = e
C
q and ω = −λ(0).
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spect to Ważewska partial differential equation. J. Differential Equations
196 (2), 448–465.



Asymptotic behaviour of dynamical systems generated by von Foerster-Lasota equations 813

 Loskot, K. (1985) Turbulent solutions of first order partial differential equa-
tion. J. Differential Equations 58 (1), 1–14.

Rudnicki, R. (1985) Invariant measures for the flow of a first order partial
differential equation. Ergodic Theory and Dynamical Systems 5 (3), 437–
443.
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