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Abstract: Necessary and sufficient conditions for a set-valued
map K : R ։ R

n to be GDQ-differentiable are given. It is shown
that K is GDQ differentiable at t0 if and only if it has a local mul-
tiselection that is Cellina continuously approximable and Lipschitz
at t0. It is also shown that any minimal GDQ of K at (t0, y0) is a
subset of the contingent derivative of K at (t0, y0), evaluated at 1.
Then this fact is used to prove a viability theorem that asserts exis-
tence of a solution to the initial value problem ẏ(t) ∈ F (t, y(t)), with
y(t0) = y0, where F : Gr(K) ։ R

n is an orientor field (i.e. multival-
ued vector field) defined only on the graph of K and K : T ։ R

n is
a time-varying constraint multifunction. One of the assumptions is
GDQ differentiability of K.

Keywords: viability, differential inclusion, generalized differ-
ential quotient (GDQ), contingent derivative, Cellina continuous ap-
proximability (CCA).

1. Introduction

Viability problems are related to existence of global solutions to differential
equations or differential inclusions whose dynamics are restricted to closed sub-
sets of the state space. The first result in this area is due to Nagumo, who
formulated necessary and sufficient conditions, under which all trajectories of a
vector field starting at points of a closed set K0 stay in this set. If we replace
the differential equation by a differential inclusion, uniqueness of trajectories is
lost and one may be interested in two different possibilities: either all trajecto-
ries starting from all points of K0 stay in K0 (forward invariance) or for each

1This work was partially supported by a European Community Marie Curie Fel-
lowship in the framework of the CTS and partially by Bialystok Technical University
grant W/IMF/1/04.
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point of K0 at least one trajectory starting at this point stays in K0 (viabil-
ity). Another extension of the problem leads to a differential inclusion with the
right-hand side depending on time and the closed set changing in time as well.

Let T = [0, b] and for each t ∈ T , let K(t) be a subset of R
n. Thus,

K is a multifunction (set-valued map) whose graph GrK consists of points
(t, y) ∈ R × R

n such that t ∈ T and y ∈ K(t). A time-dependent orientor field
restricted by K is a multifunction F defined on GrK whose values are subsets
of R

n. Now, the multivalued Cauchy problem is defined as follows:

{

ẏ(t) ∈ F (t, y(t)), a.e. on T
y(t0) = y0.

We are interested in conditions under which there exists y : T → R
n that

solves the Cauchy problem. As F is defined only on GrK, y has to satisfy the
condition y(t) ∈ K(t) for all t ∈ T .

There are many results concerning this problem. It seems that the the-
ory achieved its maturity in the works of Bothe (1992), Frankowska, Plaskacz,
Rzeżuchowski (1995) and Hu, Papageorgiou (1997) (see there for more refer-
ences).

Our main result on viability follows Theorem 4.11 in Hu, Papageorgiou
(1997b). But, instead of contingent derivatives used there (and also in many
other sources) we exploit generalized differential quotients (GDQs) introduced
recently by Sussmann (2000, 2002). We replace the assumption about exis-
tence of continuous half-selections of K made in Hu, Papageorgiou (1997b),
which seems to be very technical, by a more natural assumption about GDQ-
differentiablity of K. GDQ of K is also used instead of the contingent derivative
in the main assumption needed for viability, which says that GDQ of K at (t, y)
has a nonempty intersection with F (t, y) for almost every t ∈ T and all y ∈ K(t).

Contrary to the contingent derivatives, GDQs are not unique, so we are in-
terested in minimal ones (in the sense of inclusion of sets). They contain the
essential information on the (multi)function. SGDQ is the closure of the sum
of all minimal GDQs. It appears as one of the main tools in the last section.
Earlier, we show some properties of GDQs and study their connections with
contingent derivatives. In most of the results we assume that multifunctions
are defined on the real line, as we want to apply the theory to the restriction
multifunction K that appears in the viability problem. In particular, we show
that K is GDQ differentiable at t0 if and only if it has a local multiselection that
is Cellina continuously approximable and Lipschitz at t0. The former property,
denoted by CCA, was introduced by Cellina and recently rediscovered by Suss-
mann (in earlier papers under the name of ‘regularity’). This concept is one of
the key ingredients of the idea of GDQ and we present it in detail, showing some
new facts. We also prove that any minimal GDQ of K at (t0, y0) is a subset of
the contingent derivative of K at (t0, y0) evaluated at 1.
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2. Basic notations and definitions

We follow, to some extent, the notation used in Sussmann (2002). By a set-
valued map (multifunction) we mean a triple F = (A, B, G) such that A and
B are sets and G is a subset of A × B. The sets A, B, G are, respectively,
the source, target and graph of F , and we write A = So(F ), B = Ta(F ),
G = Gr(F ). For x ∈ So(F ) we write F (x) = {y : (x, y) ∈ Gr(F )} (it can happen
that F (x) = ∅ for x ∈ So(F )). The sets Do(F ) = {x ∈ So(F ) : F (x) 6= ∅},
Im(F ) =

⋃

x∈So(F ) F (x), are, respectively, the domain and the image of F . If

F = (A, B, G) is a set-valued map, we say that F is a set-valued map from A to
B, and write F : A ։ B. We use SV M(A, B) to denote the set of all set-valued
maps from A to B. We reserve capital letters for set-valued maps and small
ones for ordinary (single-valued and everywhere defined) maps.

If X is a metric space supplied with a distance d, K ⊆ X , then we denote the
distance from x to K by dist(x, K) := infy∈K d(x, y), where we set dist(x, ∅) :=
+∞. The ball of radius ǫ > 0 around K in X is denoted by B(K, ǫ) := Kǫ :=
{x ∈ X : dist(x, K) < ǫ}. If K = {x̄}, then we write B(K, ǫ) = B(x̄, ǫ). If
X is also a linear space, the unit ball, denoted by B, is just B(0, 1). The balls
B(K, ǫ) are neighborhoods of K. When K is compact, each neighborhood of K
contains such a ball around K.

Let X and Y be metric spaces. We say that a set-valued map F : X ։ Y
is upper semicontinuous (abbreviated as u.s.c.) at x̄ ∈ Do(F ) if and only if for
any neighborhood U of F (x̄) there exists δ > 0 such that for every x ∈ B(x̄, δ),

F (x) ⊂ U . We say that Fn graph converges to F , and write Fn
gr−→ F , if

limn→∞△(Gr(Fn), Gr(F )) = 0

where

△(A, B) = sup{dist(q, B) : q ∈ A}.

Let T be a metric space and {Aτ}τ∈T be a family of subsets of a metric
space X . The upper limit Limsup and the lower limit Liminf of Aτ at τ0 are
closed sets defined by

Limsupτ→τ0
Aτ =

{

v ∈ X | lim inf
τ→τ0

dist(v, Aτ ) = 0

}

Liminfτ→τ0Aτ =

{

v ∈ X | lim sup
τ→τ0

dist(v, Aτ ) = 0

}

.

A subset A ⊂ X is said to be the limit of Aτ if

A = Limsupτ→τ0
Aτ = Liminfτ→τ0Aτ =: Limτ→τ0Aτ .

A set C ⊆ R
n is called a cone if rx ∈ C for all x ∈ C and r ≥ 0. For

F ∈ SV M(Rn, Rm) we define ||F (x)|| := sup{||y|| : y ∈ F (x)} if F (x) 6= ∅ and
set ||∅|| = −∞.
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3. Properties of CCA set-valued maps

Definition 1 Sussmann (2002) Let X and Y be metric spaces. A set-valued
map F : X ։ Y is Cellina continuously approximable (abbreviated ‘CCA’) if
for every compact subset K of X
(1) Gr(F |K) is compact;
(2) there exists a sequence {fj}∞j=1 of single-valued continuous maps fj : K → Y

such that fj
gr−→ F |K .

We use CCA(X, Y ) to denote the set of all CCA set-valued maps from
X to Y .

When f : X → Y is a single-valued map, then f belongs to CCA(X, Y ) if
and only if f is continuous.

An important class of examples of CCA maps is provided by the following
results.

Theorem 1 Sussmann (2002) Assume that K is a compact metric space, Y
is a normed space, and C is a convex subset of Y. Let F ∈ SV M(K, C) be
a set-valued map such that the graph of F is compact and the value F (x) is a
nonempty convex set for every x ∈ K. Then F is CCA as a map from K to C.

We can relax the assumption of compact graph by imposing compactness of
the values of F and adding upper semicontinuity of F .

Theorem 2 Sussmann (2002) Assume that X is a metric space, Y is a normed
space, and C is a convex subset of Y. Let F ∈ SV M(X, C) be an upper semi-
continuous set-valued map with nonempty compact convex values. Then F ∈
CCA(X, C).

Theorem 3 Sussmann (2002) Assume that X, Y, Z are metric spaces. Let
F ∈ CCA(X, Y ), G ∈ CCA(Y, Z). Then the composite map G ◦ F belongs to
CCA(X ; Z).

Example 1 Consider F : R ։ R such that

F (x) =











−1 if x < 0

[−1, 1] if x = 0.

1 if x > 0

Then F is upper semicontinuous and has compact convex nonempty values. By
Theorem 2 we conclude that F is CCA.

Remark 1 Let F : X ։ Y be a CCA set-valued map. If A is a closed subset
of X , then F |A is also a CCA set-valued map.
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Definition 2 Let X and Y be normed spaces. We say that a set-valued map
F : X ։ Y is Lipschitz at the point x0 if there exists L ≥ 0 and a neighborhood
N(x0) of x0 such that

∀x ∈ N(x0), F (x) ⊆ F (x0) + L||x − x0||B

where B is a unit ball in Y .

Definition 3 We say that a set-valued map F̃ : X ։ Y is a multiselection of
a set-valued map F : X ։ Y if for every x ∈ X, F̃ (x) ⊆ F (x).

We need the following technical lemma to prove the next proposition.

Lemma 1 Let U, U1, U2 be closed subsets of R
n such that U = U1 ∪ U2. Let

F1, F2 : U ։ R
m. Then for every a > 0

△(Gr(F1 |U1), Gr(F2 |U1)) < a and △(Gr(F1 |U2), Gr(F2 |U2)) < a

⇒ △(Gr(F1), Gr(F2)) < a.
(1)

Proof. Assume that

∀x ∈ U1, ∀y ∈ F1(x), (x, y) ∈ (Gr(F2 |U1))a

and

∀x ∈ U2, ∀y ∈ F1(x), (x, y) ∈ (Gr(F2 |U2))
a
.

We know that Gr(F2) = Gr(F2 |U1) ∪ Gr(F2 |U2). Thus, we have

(Gr(F2 |U1))
a ⊆ (Gr(F2))a

and

(Gr(F2 |U2))
a ⊆ (Gr(F2))a.

As any (x, y) ∈ Gr(F1) belongs either to (Gr(F2 |U1))a or to (Gr(F2 |U2))a, we
get that (x, y) ∈ (Gr(F2))a.

Proposition 1 Let U ⊂ R be a compact neighborhood of 0 and G : U ։ R
n,

Do(G) = U , be a set-valued map such that G(0) = B̺ and G(x) ⊆ B̺ for some
̺ > 0 and for x ∈ U . Let G |U\(−b,b) be CCA for any b > 0. Then G is a CCA
set-valued map on U .

Proof. Let Gn = G |U\(− 1
n

, 1
n

), n ∈ N. Since Gn is a CCA set-valued map, there

exists a sequence (fn,k)k∈N, of continuous functions fn,k : U\(− 1
n
, 1

n
) → R, such

that △(Gr(fn,k), Gr(Gn)) → 0 when k → ∞. It implies that

∀n ∃ k = k(n),△(Gr(fn,k(n)), Gr(Gn)) <
1

n
.
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We can define a new sequence of continuous functions as follows

fn(x) =

{

fn,k(n)(x), x ∈ U\(− 1
n
, 1

n
)

n(x+ 1
n

)fn,k(n)(
1
n

)

2 − n(x− 1
n

)fn,k(n)(−
1
n

)

2 , x ∈ [− 1
n
, 1

n
] .

We will show that △(Gr(fn), Gr(G)) tends to 0 with n → ∞. Since fn ≡ fn,k(n)

on the set U\
(

− 1
n
, 1

n

)

, we can write

△
(

Gr
(

fn |
U\(− 1

n
, 1

n )

)

, Gr
(

G |
U\(− 1

n
, 1

n )

))

<
1

n
. (2)

Thus, in particular,

(

1

n
, fn

(

1

n

))

∈ (Gr(Gn))
1
n (3)

and
(

− 1

n
, fn

(

− 1

n

))

∈ (Gr(Gn))
1
n . (4)

Since fn is a linear function on [− 1
n
, 1

n
], ||fn

(

1
n

)

|| or ||fn

(

− 1
n

)

|| is the maximal
value of ||fn|| on [− 1

n
, 1

n
].

We want to estimate the following distance

△(Gr(fn |[− 1
n

, 1
n

]), Gr(G |[− 1
n

, 1
n

])).

We know that for every x ∈ U , G(x) ⊆ B̺. Thus, Gr(G) ⊆ U × B̺ and
then

(Gr(G))δ ⊆ (U × B̺)δ (5)

for every δ > 0. From (3), (4) and (5) it follows that

fn

(

+
−

1

n

)

∈ (B̺)
1
n . (6)

If fn( 1
n

) and fn(− 1
n

) are in B̺, then

△
(

Gr
(

fn |[− 1
n

, 1
n

]

)

, Gr
(

G |[− 1
n

, 1
n

]

))

<
1

n
.

Otherwise, from (6), dist(fn( 1
n

), B̺) < 1
n

and dist(fn(− 1
n

), B̺) < 1
n

, so

△
(

Gr
(

fn |[− 1
n

, 1
n

]

)

, Gr
(

G |[− 1
n

, 1
n

]

))

<

√

1

n2
+

1

n2
=

√
2

n
.
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Now we have to show that

△(Gr(fn), Gr(G)) → 0

on the whole set U as n → ∞. But this follows from Lemma 1, where we put
F1 = f , F2 = G, U1 =

[

− 1
n
, 1

n

]

, U2 = U\
(

− 1
n
, 1

n

)

.

Slightly changing the proof of Proposition 1 we get the following:

Corollary 1 If G is defined on [0, c], G(0) = B̺, G(x) ⊆ B̺ ⊂ R
n for

x ∈ [0, c] and G |[b,c] is CCA for every 0 < b < c, then G is CCA.

The following lemma is used in Section 5 in order to prove an important
relation between minimal GDQs and the contingent derivative.

Lemma 2 Let G : [0, a] ։ R
n be a CCA set-valued map on [0, a] ∈ R. Then

the set-valued map G̃ : [0, a] ։ R
n defined as follows Gr(G̃) := Gr(G) |(0,a] is

CCA.

Proof. First let us notice that the set Gr(G̃) is compact, because we take the
closure of a bounded set Gr(G) |(0,a]. This implies, in particular, that G̃ is u.s.c.
at x = 0. Thus, we can write

∀ε > 0 ∃ δ > 0 ∀x ∈ (0, δ] : G̃(x) = G(x) ⊆ G̃(0) +
ε

2
B. (7)

By Remark 1, G |[ δ
2 ,a] is CCA. Thus, by putting δ′ < min

{

δ
2 , ε

2

}

, we can

find a continuous map f : [ δ
2 , a] → R

n such that Gr(f) ⊆
(

GrG |[ δ
2 ,a]

)δ′

. This

implies that for x ∈
[

δ
2 , δ − δ′

]

we get

f(x) ∈ (G̃(0))
ε
2+δ′

. (8)

Indeed, we have

Gr(f) ⊆
(

GrG |[ δ
2 ,a]

)δ′

⊆
[

δ

2
, δ − δ′

]

× G̃(0)
ε
2+δ′ ∪ [δ − δ′, a] × MB,

where M := max ||G(x)||. Finally we can write

f(
δ

2
) ∈ (G̃(0))ε. (9)

Then we can extend the map f to the interval [0, δ] in the following way

f̃(x) =

{

f(x), x ∈ [ δ
2 , a];

f
(

δ
2

)

, x ∈ [0, δ
2 ].

Hence, by ( 8) and ( 9), Gr(f̃ ) ⊆ (GrG̃)ε. Therefore G̃ is CCA and the proof is
finished.
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4. GDQ-differentiability and minimal GDQs

Let us start with the definition of directional generalized differential quotient.

Definition 4 Sussmann (2002) Let m, n ∈ N, F : R
m

։ R
n be a set-valued

map, x ∈ R
m, y ∈ R

n, y ∈ F (x) and let Λ be a nonempty compact subset of
R

n×m (then an element of Λ is an n×m matrix). Let S be a subset of R
m. We

say that Λ is a generalized differential quotient (GDQ) of F at (x ,y ) in the
direction of S, and write Λ ∈ GDQ(F ; x, y; S) if for every positive real number
δ there exist U, G such that
1. U is a compact neighborhood of 0 in R

m and U ∩ S is compact;
2. G is a CCA set-valued map from x + U ∩S to the δ-neighborhood Λδ of Λ in
R

n×m;
3. G(x) · (x − x) ⊆ F (x) − y for every x − x ∈ U ∩ S.
For S = R

m we write Λ ∈ GDQ(F ; x, y) and say that Λ is a generalized differ-
ential quotient of F at (x, y).

Observe that GDQs are not unique. If Λ ∈ GDQ(F ; x, y; S), then for any
compact overset Λ′ of Λ also Λ′ ∈ GDQ(F ; x, y; S).

We say that F : R
m

։ R
n is GDQ-differentiable at (x, y) in the direction of

S if there exists at least one Λ ∈ GDQ(F ; x, y; S).

Definition 5 Let F be GDQ-differentiable at (x, y) in the direction of S. A
minimal GDQ of F at (x, y) in the direction S is a minimal element of the set
of all GDQs of F at this point in the same direction (minimal in the sense of
inclusions of sets).

Lemma 3 Let F ∈ SV M(Rn, Rm) and Λk ∈ GDQ(F ; x, y; S) for k ∈ N. Let us
assume that Λ1 ⊃ Λ2 ⊃ ... and

⋂

k

Λk = Λ. Then

Λ ∈ GDQ(F ; x, y; S) .

Proof. One can find the proof of this lemma in Girejko (2005).

Theorem 4 (Minimality Theorem) If the set of all GDQs of a set-valued map
F at (x, y) in the direction of S is not empty, then there exists in this set at
least one minimal GDQ at the same point and in the same direction.

Proof. From the Kuratowski-Zorn Lemma, a family of sets with the property
that descending sequences have a lower bound, possesses a minimal element. By
Lemma 3, such a sequence (Λk) of GDQs has a lower bound – their intersection
Λ. Thus in the family of all GDQs there exists a minimal element.

Corollary 2 Every element Λ of GDQ(F ; x, y; S) contains a minimal element
of GDQ(F ; x, y; S) in the sense of inclusion of sets.
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We use minGDQ(F ; x, y; S) to denote the collection of all minimal GDQs of F
at (x, y) in the direction of S.

Example 2 Consider the function f : R → R defined by f(x) = |x|. Then
one can show that [−1, 1] ∈ GDQ(f ; 0, 0) and that this is the minimal GDQ.
This interval is also the Clarke generalized gradient of f at 0. However, for
f(x) = x2 sin 1

x
when x 6= 0 and f(0) = 0 the same interval is again the Clarke

generalized gradient of f at 0, while the minimal GDQ is just the ordinary
derivative at 0, equal 0.

Example 3 Let F : R ։ R be a set-valued map such that

F (x) =

{

[−|x|, |x|] if x 6= 0

{0} if x = 0 .

Then any singleton {a} for a ∈ [−1, 1] is a minimal GDQ of F at (0, 0).

Theorem 5 Let F : R ։ R
n be a set-valued map. Then, F is GDQ-differentiable

at (x0, y0) if and only if there is a compact neighborhood U of x0 such that F |U
has a CCA multiselection F̃ that is Lipschitz at the point x0 and F̃ (x0) = y0.

Proof. Without loss of generality, we can take (x0, y0) = (0, 0). If we assume
that F is GDQ-differentiable at (0, 0), then directly from the definition of GDQ-
differentiability it follows that F has a CCA and Lipschitz at 0 multiselection
F̃ such that F̃ (0) = 0. It is enough to take F̃ (x) := G(x) · x.

Assume now that F has a CCA multiselection F̃ , Lipschitz at the point 0
and such that F̃ (0) = 0. Then we have

∃Ũ ⊂ U ∃L > 0 ∀x ∈ Ũ , F̃ (x) ⊆ L · B|x|

which implies that

F̃ (x)

x
⊆ L · B

for x 6= 0. Let us define

G(x) =

{

F̃ (x)
x

, x 6= 0

L · B, x = 0 .
(10)

We want to show that G defined in (10) is CCA. But this follows from Propo-

sition 1, if we put G̃(x) = F̃ (x)
x

, L = ̺ and show that F̃ (x)
x

is CCA on U\(−b, b)
for any b > 0. Indeed, we can write

F̃ (x)
1

x
= M(F̃ (x),

1

x
) = (M ◦ (F̃ , f))(x)
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where M(z, x) = z · x, M : R
n+1 → R

n for z ∈ R
n, x ∈ R and f(x) = 1

x
.

We have (F̃ , f) : R ։ R
n × R. In order to use a product of CCA maps

(F̃ × f)(x, y) = (F̃ (x), f(y)) we define a continuous map P : R → R × R as
follows P (x) = (x, x). Then we can compose (F̃ , f) = (F̃ × f) ◦ P . Since the

product and composition of CCA maps is a CCA map, we get that F̃ (x)
x

is CCA.
Therefore, from Proposition 1 we conclude that G is a CCA set-valued map on
U . It is clear that G(x)x ⊆ F (x) for every x ∈ Ũ . Thus the proof is finished.

Corollary 3 F : R ։ R
n is GDQ-differentiable at (0, 0) in the direction

S = [0, +∞) iff there is U = [0, c] such that F |U has a CCA multiselection,
Lipschitz at 0 and equal 0 at 0.

5. Relations between GDQs and the contingent derivative

First let us recall the definition of the contingent derivative.

Definition 6 (Aubin, Frankowska, 1990) Let X and Y be normed spaces. A
set-valued map F : K ։ Y , where K ⊂ X and Do(F ) = K, has the contingent
derivative DF (x0, y0) at x0 ∈ K and y0 ∈ F (x0) if DF (x0, y0) is a set-valued
map from X to Y whose graph is the contingent cone TGr(F )(x0, y0) to the graph
of F at (x0, y0). In other words,

v0 ∈ DF (x0, y0)(u0) ⇔ (u0, v0) ∈ TGr(F )(x0, y0),

where the contingent cone (the ‘Bouligand cone’) to C at x is defined by

TC(x) =

{

w ∈ X : lim inf
t↓0

dist(x + tw, C)

t
= 0

}

.

Equivalently, we can write:

v0 ∈ DF (x0, y0)(u0) ⇔ lim inf
h→0+u→u0

dist

(

v0,
F (x0 + hu) − y0

h

)

= 0.

When F is a locally Lipschitz set-valued map, the definition of the contingent
derivative reduces to the following (see, e.g., Aubin, Cellina, 1984)

v0 ∈ DF (x0, y0)(u0) ⇔ lim inf
h→0+

dist

(

v0,
F (x0 + hu0) − y0

h

)

= 0.

Theorem 6 Let F : R ։ R
n, Do(F ) = T ⊆ R, be a set-valued map and

y ∈ F (t). Then

Λ ∈ minGDQ(F ; t, y; R+) ⇒ Λ ⊆ DF (t, y)(1).
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Proof. Without loss of generality we can assume that (t, y) = (0, 0). Let Λ ∈
minGDQ(F ; 0, 0; R+). Then for ε = 1

n
there exist δn > 0 and a CCA set-valued

map Gn : [0, δn] → Λ
1
n such that Gn(t)t ⊆ F (t) for t ∈ [0, δn]. Then Gn(t) ⊆

F (t)
t

. Let us assume that δn → 0 with n → ∞. Define Wk := GrGk |(0,δk]

and Vn =
⋃

k≥n Wk. Hence, (Vn) is a descending sequence. Therefore, we get
⋂

n Vn = {0}×Ω, for some Ω ⊆ R
n. Let us notice that Ω ⊆ Λ. Indeed, since for

every k ≥ n, Wk ⊆ [0, δn] × Λ
1
n , thus Vn ⊆ [0, δn] × Λ

1
n . This implies Ω ⊆ Λ.

We need now the following lemma.

Lemma 4 Ω is a GDQ of F at the point (0, 0) in the direction of R+.

Proof. Let ε > 0. There is k ∈ N such that Vk ⊆ ({0} × Ω)
ε
2 . Thus, also

Wk ⊆ ({0} × Ω)
ε
2 . Define GrG := GrGk |(0,δk]. By definition, GrG = Wk and

from Lemma 2, G is CCA. Moreover, G(0) ⊆ Ω
ε
2 , so from u.s.c. of G at 0,

∃ ηk ∀ t ∈ [0, ηk], G(t) ⊆ G(0)
ε
2 ⊆ Ωε.

As Gk(t)t ⊆ F (t) for every k > 0 and t ∈ [0, δk], then also G(t)t ⊆ F (t). Thus G
restricted to [0, ηk] is the required CCA set-valued map, so Ω ∈ GDQ(F ; 0, 0; R+).

Since Ω is a GDQ and Ω ⊆ Λ, we get Ω = Λ. Let v ∈ Ω. Thus, there exists a

sequence {vk} converging to v such that vk ∈ Gk(tk) ⊆ F (tk)
tk

for k ≥ n and some

tk > 0. This implies that limk→∞ dist(v, F (tk)
tk

) = 0. Therefore, v ∈ DF (0, 0)(1)
and the proof is complete.

Remark 2 Similarly, one can show that

Λ ∈ minGDQ(F ; t, y; R−) ⇒ Λ ⊆ DF (t, y)(−1).

Remark 3 If Λ is not a minimal GDQ, then for a fixed family of maps Gk

defining Λ, the set Ω constructed in the proof of Theorem 6 is an ‘optimal’
GDQ without the possibly superfluous points of the set Λ.

Corollary 4 Consider F : R ։ R
n. If F is GDQ-differentiable at the point

(x, y) in the direction of R+ (R−), then there exists the contingent derivative
DF (t, y)(1) (DF (t, y)(−1)).

Proof. Since F is GDQ-differentiable at (t, y) in the direction R+ (R−), there
exists at least one minimal GDQ of F at this point, which is contained in
DF (t, y)(1) (DF (t, y)(−1)).
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6. Viability results

Let K : T ։ R
n, where Do(K) = T = [0, b] ⊆ R, be a constraint multifunction

and F : GrK ։ R
n, where Do(F ) = GrK, be an orientor field (i.e. multivalued

vector field). Consider the multivalued Cauchy problem as follows:
{

ẏ(t) ∈ F (t, y(t)), a.e. on T
y(t0) = y0 ∈ K(t0).

(11)

By a solution to this problem we mean an absolutely continuous function
y : [t0, b] → R

n that satisfies the inclusion almost everywhere and satisfies the
initial condition, with y(t) ∈ K(t) for t ∈ [t0, b].

Let SGDQ(K; t, y; R+) denote the closure of the union of all minimal GDQs
of K at (t, y) ∈ GrK in the direction of R+

We say that K : T ։ R
n, where Do(K) = T , is left u.s.c. if to every

t0 ∈ (0, a] and ε > 0 there is a δ = δ(t0, ε) > 0 such that

K(t) ⊆ K(t0) + εB(0)

for all t ∈ (t0 − δ, t0] ∩ T .
The following proposition shows the existence of a solution to (11), under

GDQ-differentiability condition on K.

Proposition 2 Let K : T ։ R
n be GDQ-differentiable at every (t, y) ∈ GrK

in the direction of R+. Assume that K is left u.s.c. with closed values. Let
F : GrK ։ R

n, with Do(F ) = GrK, be a multifunction with closed convex
values such that

1. for every ε > 0 there is a closed set Tε ⊆ T with λ(T \Tε) ≤ ε such that
F |(Tε×Rn)∩Gr(K) is u.s.c.;

2. there exists N ⊂ [0, b], λ(N) = 0, such that F (t, y)∩SGDQ(K; t, y; R+) 6=
∅ for all (t, y) ∈ ((T \N) × R

n) ∩ Gr(K), and
3. ||F (t, y)|| ≤ a(t)(1 + ||y||) for almost every t ∈ T and for every y ∈ K(t),

with a ∈ L1(T ),
where λ is the Lebesgue measure. Then (11) has a solution y : [t0, b] → R

n,
which is an absolutely continuous function.

Proof. By Theorem 6, if Λ ∈ minGDQ(K; t, y; R+) then Λ ⊆ DK(t, y)(1). Thus
the conclusion of the proposition follows from Theorem 1 in Bothe (1992) in
which DK(t, y)(1) is used instead of SGDQ(K; t, y; R+).

Proposition 3 (Jarnik, Kurzweil, 1968) Assume that G ⊆ R × R
n, F : G ։

R
n, where Do(F ) = G, and that for almost all t the map F (t, ·) is upper

semicontinuous with compact convex values. Then there exists a multifunc-
tion F0 : G ։ R

n with compact convex values such that F0(t, y) ⊆ F (t, y) for
(t, y) ∈ G, and satisfying the conditions

1. for every ε > 0 there exists a measurable set Tε ⊂ R such that λ(R\Tε) < ε
and the multifunction F0 |(Tε×Rn)∩G is u.s.c.;
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2. if T ⊂ R is measurable , u : T → R
n and v : T → R

n are measurable maps
such that v(t) ∈ F (t, u(t)), for almost all t ∈ T , then v(t) ∈ F0(t, u(t)) for
almost all t ∈ T .

Proof. For the proof see Jarnik, Kurzweil (1968).

Proposition 4 If K is GDQ-differentiable at (s, y) in the direction R+, then
there exists a measurable map γ : [s, s + δ] → R

n such that γ(t) ∈ K(t) for
t ∈ [s, s + δ], γ(s) = y and γ is continuous at s.

Proof. Without loss of generality, we can assume s = 0, y = 0. From GDQ-
differentiability of K, there is a CCA set-valued map G such that G(t)t ⊆ K(t)
for t ∈ [0, δ]. Since G has compact graph, then, in particular, it is u.s.c. and
has closed values, which implies that H(t) := G(t)t is also u.s.c. and has closed
values. Then, by Proposition 8.2.1 and Theorem 8.1.3 in Aubin, Frankowska
(1990) we get that there exists a measurable map γ : [0, δ] → R

n such that
γ(t) ∈ H(t) ⊂ K(t). Moreover, if M := maxt∈[s,s+δ] ||G(t)||, then ||γ(t)|| ≤
Mt → 0 with t → 0, and the proof is complete.

Now we present the main result of this paper.

Theorem 7 Consider a multivalued Cauchy problem (11). Assume that K :
T ։ R

n, where T = [0, b], is a left u.s.c. multifunction with nonempty closed
values such that for all (t, y) ∈ GrK, where t ∈ [0, b), K is GDQ differentiable
at (t, y) in the direction of R+, and for every ε > 0 there exists Sε ⊆ T such
that λ(T \Sε) < ε and the map (t, y) 7→ SGDQ(K; t, y; R+) is u.s.c. on (Sε ×
R

n) ∩ GrK. Let F : GrK ։ R
n with nonempty closed convex values satisfy

(a) for every measurable γ(·) the map t p։ F (t, γ(t)) is measurable;
(b) the map y p։ F (t, y) is u.s.c. for every t ∈ [0, b];
(c) |F (t, y)| ≤ a(t) + c(t)||y|| a.e. on T with a, c ∈ L1(T ).
Additionally, assume that F (t, y) ∩ SGDQ(K; t, y; R+) 6= ∅ for almost every t,
(t, y) ∈ GrK. Then for every y0 ∈ K(t0), the problem (11) has an absolutely
continuous solution.

Proof. The idea of the proof comes from the proof of Theorem 4.11 in Hu,
Papageorgiou (1997b). First, let us notice that by assumptions (a),(b),(c) on the
set-valued map F and from Proposition 3 we get that there exists F̃ : GrK ։ R

n

with compact convex values such that
(i) F̃ (t, y) ⊆ F (t, y) for all (t, y) ∈ GrK;
(ii) for every ε > 0 there exists a closed set Tε ⊆ T such that λ(T \Tε) < ε and
F̃ |(Tε×Rn)∩GrK is u.s.c.; and
(iii) if A ⊆ T is measurable and α, β : A → R

n are measurable functions such
that β(t) ∈ F (t, α(t)) a.e. on A, then β(t) ∈ F̃ (t, α(t)) a.e. on A.
By Proposition 2, it is enough to prove now that for almost all t ∈ T and every
y ∈ K(t), we have F̃ (t, y) ∩ SGDQ(K; t, y; R+) 6= ∅. In order to prove this,
we start with ε > 0. Let Sε be a subset of T from the assumption on K. Let
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Tε ⊆ T be a set satisfying the property (ii) above. From Lebesgue’s density
theorem, almost all points of Tε ∩ Sε are density points. Therefore, there exists
a set T̃ε ⊆ Tε∩Sε with λ(T \T̃ε) ≤ 3ε such that the points in T̃ε are right density
points of Tε ∩ Sε. Hence, for each s ∈ T̃ε there is (tn) such that tn ∈ Tε ∩ Sε,
tn > s and tn → s. Let us assume that b /∈ T̃ε. Let s ∈ T̃ε and y ∈ K(s). From
GDQ-differentiability of K at (s, y) in the direction R+ and Proposition 4,
we get that there exists on [s, s + ρ] a single-valued map t → γ(t) ∈ K(t),
measurable and continuous at s, with γ(s) = y. Because of the assumption
(a) on F , the map t → F (t, γ(t)) is measurable on [s, s + ρ]. From the almost
u.s.c. assumption on the map (t, y) 7→ SGDQ(K; t, y; R+), by Lemma 2 in
Rzeżuchowski (1980), there is a subset M of T such that λ(T \ M) = 0 and
the restriction of this map to (M × R

n) ∩ Gr(K) is jointly measurable. Then
the map t 7→ SGDQ(K; t, γ(t); R+) is measurable on M ∩ [s, s + ρ] and thus
on [s, s + ρ], and so is t 7→ F (t, γ(t)) ∩ SGDQ(K; t, γ(t); R+). Moreover, from
the assumption that F (t, y) ∩ SGDQ(K; t, y; R+) 6= ∅ for a.e. t ∈ [s, s + ρ],
it has nonempty values for a.e. t ∈ [s, s + ρ]. Now, applying Proposition on
measurable selection from Rzeżuchowski (1980), which says that a measurable
set-valued map with (possibly empty) closed values has a measurable selection,
we get a measurable function t → y(t) such that

y(t) ∈ F (t, γ(t)) ∩ SGDQ(K; t, γ(t); R+) (12)

for a.e. t ∈ [s, s + ρ]. By property (iii) of F̃ , we can write y(t) ∈ F̃ (t, γ(t)) ∩
SGDQ(K; t, γ(t); R+) for a.e. t ∈ [s, s + ρ]. The fact that s is a right density
point of Tε ∩ Sε implies that there exists tn → s, tn > s such that {tn}n≥1 ⊆
Tε ∩ Sε ∩ S where S = [s, s + ρ]\N , λ(N) = 0, and

yn := y(tn) ∈ F̃ (tn, γ(tn)) ∩ SGDQ(K; tn, γ(tn); R+)

where y(tn) is given by (12). Since F̃ |(Tε×Rn)∩GrK is u.s.c. with compact

values, thus
⋃

n≥1 F̃ (tn, γ(tn)) is compact. Therefore we may assume that yn →
ỹ as n → ∞ and since Limsuptn→sF̃ (tn, γ(tn)) ⊆ F̃ (s, y) then ỹ ∈ F̃ (s, y).

Analogously, from u.s.c. of SGDQ of K, ỹ ∈ SGDQ(K; s, y; R+), so F̃ (t, y) ∩
SGDQ(K; t, y; R+) 6= ∅, for a.e. t ∈ T and every y ∈ K(t). Then Proposition 2
permits to conclude.

Remark 4 In the above theorem the assumption on K to be GDQ-differentiable
at every (t, y) ∈ (T × R

n) ∩ GrK is important. Indeed, let T = [0, 1] and
y : T → R be the Cantor function. Thus y is continuous, nondecreasing,
ẏ(t) = 0 for almost every t ∈ T , y(T ) = T and y(·) is not absolutely continuous.
Let K(t) = {y(t)} and F (t, y) = {0}. Then the tangential condition is satisfied
for all t ∈ T \N , λ(N) = 0, such that ẏ(t) = 0. However, problem (11) has no
solution since 0 /∈ K(t) for t > 0.
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Rzeżuchowski, T. (1980) Scorza-Dragoni type theorem for upper-semicon-
tinuous multivalued functions. Bull. Acad. Polonaise des Science 28

(1-2), 61–65.
Sussmann, H.J. (2000) New theories of set-valued differentials and new ver-

sion of the maximum principle of optimal control theory. In: A. Isidori,
F. Lamnabhi-Lagarrigue and W. Respondek, eds., Nonlinear Control in
the Year 2000. Springer-Verlag, London, 487–526.

Sussmann, H.J. (2002) Warga derivate containers and other generalized dif-
ferentials, Proceedings of the 41st IEEE 2002 Conference on Decision and
Control. Las Vegas, Nevada, December 10-13, 1101–1106.




