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1. Introduction

The concept of variational symmetry entered into optimal control in the 1970s
(Djukic, 1973). Variational symmetries, which keep an optimal control problem
invariant, are described mathematically in terms of a group of parameter trans-
formations: two transformations performed one after another may be replaced
by one transformation of the same family; there exists an identity transforma-
tion; to each transformation there exists an inverse one. Variational symmetries
are very useful in optimal control, but, unfortunately, their study is not easy,
requiring lengthy and cumbersome calculations (Torres, 2004).

Recently, there has been an interest in the application of Computer Algebra
Systems to the study of control systems, and collections of symbolic tools are
being developed to help in the analysis and solution of complex problems. The
first computer algebra package for computing the variational symmetries in the

1Presented at the 4th Junior European Meeting on “Control and Optimization”, Bia lystok
Technical University, Bia lystok, Poland, 11-14 September 2005.
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calculus of variations was given in Gouveia, Torres (2005a); then extended to
the more general setting of optimal control in Gouveia, Torres (2005b).

In this work we provide a new Maple package for the automatic computation
of variational symmetries and respective Noether’s first integrals in the calculus
of variations and optimal control. The present package generalize the previ-
ous results in Gouveia, Torres (2005b) by introducing two new possibilities: (i)
invariance symmetries up to a gauge term (Torres, 2002); (ii) presence of non-
conservative external forces (Frederico, Torres, 2007). Moreover, the efficiency
in computing the variational symmetries is largely improved when we compare
the running times with the ones in Gouveia, Torres (2005b). With the improve-
ments in the efficiency of the package, we are now able, for the first time in the
literature, to obtain eight independent first integrals for the nilpotent problem
(2, 3, 5, 8) of sub-Riemannian geometry.

2. Nonconservative forces

Without loss of generality, we consider the optimal control problem in Lagrange
form: to minimize an integral functional

I[x(·),u(·)] =

∫ b

a

L(t,x(t),u(t)) dt (1)

subject to a control system described by a system of ordinary differential equa-
tions of the form

ẋ(t) = ϕ(t,x(t),u(t)) , (2)

together with appropriate boundary conditions, not relevant for the present
study (the results of the paper are valid for arbitrary boundary conditions). The
Lagrangian L : R × R

n × R
m → R and the velocity vector ϕ : R × R

n × R
m →

Rn are assumed to be continuously differentiable functions with respect to all
their arguments. The controls u : [a, b] → Ω ⊆ Rm are piecewise continuous
functions taking values on an open set Ω; the state variables x : [a, b] → Rn are
continuously differentiable functions.

The resolution of optimal control problems usually goes by identifying the
Pontryagin extremals (Pontryagin et al., 1962). In presence of nonconservative
external forces F : R × R

n × R
m → R

n the Pontryagin Maximum Principle
(PMP) takes the following form (Frederico, Torres, 2007).

Theorem 1 (PMP under a nonconservative force F) If (x(·),u(·)) is a solution
of the optimal control problem (1)-(2) under the presence of a nonconservative
force F (t,x,u), then there exists a non-vanishing pair (ψ0,ψ(·)), where ψ0 ≤ 0
is a constant and ψ(·) an n-vectorial piecewise C1-smooth function with do-
main [a, b], such that the quadruple (x(·),u(·), ψ0, ψ(·)) satisfies the following
conditions almost everywhere in [a, b]:
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(i) the nonconservative Hamiltonian system
{

ẋ(t)T = ∂H
∂ψ

(t,x(t),u(t), ψ0,ψ(t)) ,

ψ̇(t)T = −∂H
∂x

(t,x(t),u(t), ψ0,ψ(t)) + F(t,x(t),u(t))T ;
(3)

(ii) the maximality condition

H(t,x(t),u(t), ψ0,ψ(t)) = max
v∈Ω

H(t,x(t),v, ψ0,ψ(t)) ; (4)

where the Hamiltonian H is defined by

H(t,x,u, ψ0,ψ) = ψ0L(t,x,u) +ψT · ϕ(t,x,u) . (5)

Remark 1 The right-hand side of the equations of the nonconservative Hamil-
tonian system (3) represents a row-vector. First equation in (3) is nothing more
than the control system (2); the second equation is known as the nonconservative
adjoint system.

Definition 1 A quadruple (x(·),u(·), ψ0,ψ(·)), satisfying Theorem 1, is said to
be a nonconservative extremal. A nonconservative extremal is said to be normal
when ψ0 6= 0, abnormal when ψ0 = 0.

Remark 2 Since we are assuming Ω to be an open set, the maximality condition
(4) implies the stationary condition

∂H

∂u
(t,x(t),u(t), ψ0,ψ(t)) = 0 , t ∈ [a, b] . (6)

3. Invariance up to a gauge term

Let hs : [a, b] × Rn × Rm × R × Rn → R × Rn × Rm × Rn be a one-parameter
group of C

1 transformations of the form

hs(t,x,u, ψ0,ψ) =

(hst (t,x,u, ψ0,ψ),hsx(t,x,u, ψ0,ψ),hsu(t,x,u, ψ0,ψ),hsψ(t,x,u, ψ0,ψ)) . (7)

Without loss of generality, we assume that the identity transformation of the
group (7) is obtained when the parameter s is zero:

h0
t (t,x,u, ψ0,ψ) = t, h0

x
(t,x,u, ψ0,ψ) = x,

h0
u(t,x,u, ψ0,ψ) = u, h0

ψ(t,x,u, ψ0,ψ) = ψ.

Associated with a one-parameter group of transformations (7), we introduce its
infinitesimal generators :

T (t,x,u, ψ0,ψ) =
∂

∂s
hst

∣

∣

∣

∣

s=0

, X(t,x,u, ψ0,ψ) =
∂

∂s
hsx

∣

∣

∣

∣

s=0

,

U(t,x,u, ψ0,ψ) =
∂

∂s
hs

u

∣

∣

∣

∣

s=0

, Ψ(t,x,u, ψ0,ψ) =
∂

∂s
hsψ

∣

∣

∣

∣

s=0

. (8)
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Definition 2 (Invariance up to a gauge term) An optimal control problem (1)-
(2) is said to be invariant under a one-parameter group of transformations (7)
up to a gauge term gs(t,x,u, ψ0,ψ) ∈ C

1([a, b],Rn,Rm,R,Rn; R), if for all s
sufficiently small and for any subinterval [α, β] ⊆ [a, b] one has

∫ βs

αs

(

H(ts,xs(ts),us(ts), ψ0,ψ
s(ts)) −ψs(ts)T ·

d

dts
xs(ts)

)

dts

=

∫ β

α

(

H(t,x(t),u(t), ψ0,ψ(t)) −ψ(t)T ·
d

dt
x(t)

+
d

dt
gs(t,x(t),u(t), ψ0,ψ(t))

)

dt , (9)

where αs = hst (α,x(α),u(α), ψ0 ,ψ(α)), βs = hst (β,x(β),u(β), ψ0 ,ψ(β)), and

(ts,xs,us,ψs) =
(

hst ,h
s
x,h

s
u,h

s
ψ

)

.

When we write (9) in terms of the generators (8), one gets a necessary and
sufficient condition of invariance – see Djukic (1973), Torres (2005).

Theorem 2 (Necessary and sufficient condition of invariance) An optimal con-
trol problem is invariant under (8) up to

G(t,x,u, ψ0,ψ) =
d

ds
gs(t,x,u, ψ0,ψ)

∣

∣

∣

∣

s=0

or, equivalently, (8) is a symmetry of the problem up to G, if, and only if,

∂H

∂t
T +

∂H

∂x
·X+

∂H

∂u
·U+

∂H

∂ψ
·Ψ−ΨT · ẋ−ψT ·

dX

dt
+H

dT

dt
=

dG

dt
, (10)

with H the Hamiltonian (5).

Remark 3 The function G(t,x,u, ψ0,ψ) = d
dsg

s(t,x,u, ψ0,ψ)
∣

∣

s=0
is also known

in the literature as a gauge term.

Proof Transforming the integral on the left-hand side of (9) to the interval
[α, β], and having in mind that (9) is satisfied for all subintervals [α, β] ⊆ [a, b],
the invariance condition can be written in the following equivalent form:
(

H(hs(t,x,u, ψ0,ψ)) − hsψ(t,x,u, ψ0,ψ)T ·

dhs

x
(t,x,u,ψ0,ψ)

dt
dhs

t
(t,x,u,ψ0,ψ)

dt

)

dhst (t,x,u, ψ0,ψ)

dt

= H(t,x,u, ψ0,ψ) −ψT ·
d

dt
x +

d

dt
gs(t,x,u, ψ0,ψ) .

Differentiating both sides of the equation with respect to s,

d

ds

[(

H(hs(t,x,u, ψ0,ψ)) − hsψ(t,x,u, ψ0,ψ)T ·

dhs

x
(t,x,u,ψ0,ψ)

dt
dhs

t
(t,x,u,ψ0,ψ)

dt

)

×
dhst (t,x,u, ψ0,ψ)

dt

]

=
d

ds

(

d

dt
gs(t,x,u, ψ0,ψ)

)

,
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we obtain the equality

(

H(hs) − hsψ
T ·

dhs
x
/dt

dhst/dt

)

d

dt

dhst
ds

+

(

∂H(hs)

∂hst

∂hst
∂s

+
∂H(hs)

∂hs
x

·
∂hs

x

∂s

+
∂H(hs)

∂hs
u

·
∂hs

u

∂s
+
∂H(hs)

∂hsψ
·
∂hsψ
∂s

−
dhsψ

T

ds
·
dhs

x
/dt

dhst/dt

−hsψ
T ·

(

d
dt

dhs

x

ds
dhs

t

dt

−

dhs

x

dt
d
dt

dhs

t

ds
dhs

t

dt
dhs

t

dt

))

dhst
dt

=
d

dt

dgs

ds
.

Finally, choosing s = 0, we express the condition in terms of the infinitesimal
generators (8) and the function G(t,x,u, ψ0,ψ) = d

dsg
s(t,x,u, ψ0,ψ)

∣

∣

s=0
:

(

H −ψT · ẋ
) dT

dt
+

(

∂H

∂t
T +

∂H

∂x
· X +

∂H

∂u
· U +

∂H

∂ψ
· Ψ − ΨT · ẋ

−ψT ·

(

dX

dt
− ẋ

dT

dt

))

=
dG

dt
.

4. Nonconservative Noether’s theorem

Emmy Noether was the first who established the relation between the existence
of invariance transformations of the problems and the existence of conservation
laws – first integrals of the Euler-Lagrange or Hamiltonian equations (Noether,
1918). A generalization of the classical result of E. Noether for the nonconser-
vative calculus of variations was recently given by Fu and Chen (2003); then
extended to the more general setting of optimal control by Frederico and Torres
(2007).

Using (3), together with the stationary condition (6), one can deduce that
along the nonconservative Pontryagin extremals (Definition 1), the total deriv-
ative of the Hamiltonian with respect to the independent variable t is equal
to its partial derivative plus the scalar product of the velocity vector with the
resultant nonconservative forces F (Frederico, Torres, 2007):

d

dt
H(t,x(t),u(t), ψ0,ψ(t)) =

∂

∂t
H(t,x(t),u(t), ψ0,ψ(t))+ẋ(t)T·F(t,x(t),u(t)) .

(11)

Using this fact, the nonconservative optimal control version of E. Noether’s
theorem is easily obtained from the necessary and sufficient invariance condition
(10), restricting attention to the quadruples (x(·),u(·), ψ0,ψ(·)) that satisfy
the nonconservative Hamiltonian system (3) and the maximality condition (4):
along the extremals, equalities (3), (6), and (11) permit to simplify (10) to the
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form
(

dH

dt
− ẋT · F

)

T +
(

FT − ψ̇
T
)

·X −ψT ·
dX

dt
+H

dT

dt
=

dG

dt

⇔
dH

dt
T +H

dT

dt
− ψ̇

T
· X −ψT ·

dX

dt
−

dG

dt
−
(

ẋT T − XT
)

· F = 0

⇔
d

dt

(

HT −ψT · X−G−

∫

(

ẋT T − XT
)

·F dt

)

= 0 .

This means that HT − ψT · X − G −
∫(

ẋT T − XT
)

· F dt is a first integral
whenever the optimal control problem under consideration admits a symmetry
(8) up to the gauge term G:

Theorem 3 (Nonconservative Optimal Control version of Noether’s Principle)
If the infinitesimal generators (8) constitute a symmetry of the optimal control
problem (1)-(2) under the presence of nonconservative forces with the resultant
vector F (t,x,u), then

∫

(

ẋ(t)TT (t,x(t),u(t), ψ0,ψ(t))−X(t,x(t),u(t), ψ0,ψ(t))T
)

·F(t,x(t),u(t))dt

+ ψ(t)T ·X(t,x(t),u(t), ψ0,ψ(t)) +G(t,x(t),u(t), ψ0,ψ(t))

−H(t,x(t),u(t), ψ0,ψ(t)) T (t,x(t),u(t), ψ0,ψ(t)) = const (12)

is a conservation law, i.e., condition (12) holds for all t in [a, b] and for every
nonconservative extremal (x(·),u(·), ψ0,ψ(·)) of the problem.

5. Computation of symmetries up to a gauge term

The main problem in obtaining Noether’s conservation laws (in applying The-
orem 3) resides in the determination of the symmetries and respective gauge
terms. If n effective first integrals exist (Rocha, Torres, 2006), then the optimal
control problem is integrable, and classical results allow the integration of the
equations of motion.

Here we propose an algorithm for determining the infinitesimal generators (8)
and the gauge terms G, which define a variational symmetry. Let us assume, for
the moment, that the optimal controls are C1 functions (in §7 we will drop this
restrictive assumption, just by assuming that T , X, and G do not depend on the
control variables). The key point to compute symmetries consists in generalizing
the method used in Gouveia, Torres, (2005b, §3) to the nonconservative and
gauge-invariant cases. The idea is simple: when we substitute the Hamiltonian
H and its partial derivatives in the invariance identity (10), then the condition
becomes a polynomial in ẋ, u̇ and ψ̇, and one can equal the coefficients of the
polynomial to zero. Thus, given an optimal control problem (1)-(2), defined
by a Lagrangian L and a velocity vector ϕ, we determine the infinitesimal
generators T , X, U and Ψ and the gauge term G, which define a symmetry for
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the problem, by the following method: (i) we define the respective Hamiltonian
(5); (ii) we substitute H and its partial derivatives into (10); (iii) expanding the
total derivatives

dT

dt
=

∂T

∂t
+
∂T

∂x
· ẋ +

∂T

∂u
· u̇ +

∂T

∂ψ
· ψ̇,

dX

dt
=

∂X

∂t
+
∂X

∂x
· ẋ +

∂X

∂u
· u̇ +

∂X

∂ψ
· ψ̇, (13)

dG

dt
=

∂G

∂t
+
∂G

∂x
· ẋ +

∂G

∂u
· u̇ +

∂G

∂ψ
· ψ̇,

we write equation (10) as a polynomial

A(t,x,u, ψ0,ψ) +B(t,x,u, ψ0,ψ) · ẋ + C(t,x,u, ψ0,ψ) · u̇

+D(t,x,u, ψ0,ψ) · ψ̇ = 0 (14)

in the 2n+m derivatives ẋ, u̇ and ψ̇:

(

∂H

∂t
T +

∂H

∂x
· X +

∂H

∂u
· U +

∂H

∂ψ
· Ψ +H

∂T

∂t
−ψT ·

∂X

∂t
−
∂G

∂t

)

+

(

−ΨT +H
∂T

∂x
−ψT ·

∂X

∂x
−
∂G

∂x

)

· ẋ +

(

H
∂T

∂u
−ψT ·

∂X

∂u
−
∂G

∂u

)

· u̇

+

(

H
∂T

∂ψ
−ψT ·

∂X

∂ψ
−
∂G

∂ψ

)

· ψ̇ = 0 . (15)

The terms in (15), which involve derivatives with respect to vectors, are ex-
panded in row-vectors or in matrices, depending, respectively, if the function is
a scalar or a vectorial one. For example,

∂T

∂x
=

[

∂T

∂x1

∂T

∂x2
· · ·

∂T

∂xn

]

,

∂X

∂ψ
=

[

∂X

∂ψ1

∂X

∂ψ2
· · ·

∂X

∂ψn

]

=













∂X1

∂ψ1

∂X1

∂ψ2

· · · ∂X1

∂ψn

∂X2

∂ψ1

∂X2

∂ψ2

· · · ∂X2

∂ψn

...
...

. . .
...

∂Xn

∂ψ1

∂Xn

∂ψ2

· · · ∂Xn

∂ψn













.

Equation (15) is a differential equation in the 2n+m+2 unknown functions T ,
X1, . . . , Xn, U1, . . . , Um, Ψ1, . . . , Ψn and G. This equation must hold for all
ẋ1, . . . , ẋn, u̇1, . . . , u̇n, ψ̇1, . . . , ψ̇n, and therefore the coefficients A, B, C and
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D of polynomial (14) must vanish, that is,



















































∂H

∂t
T +

∂H

∂x
·X +

∂H

∂u
·U +

∂H

∂ψ
·Ψ +H

∂T

∂t
−ψT ·

∂X

∂t
−
∂G

∂t
= 0 ,

−ΨT +H
∂T

∂x
−ψT ·

∂X

∂x
−
∂G

∂x
= 0 ,

H
∂T

∂u
−ψT ·

∂X

∂u
−
∂G

∂u
= 0 ,

H
∂T

∂ψ
−ψT ·

∂X

∂ψ
−
∂G

∂ψ
= 0 .

(16)

The system of equations (16), obtained from (15), is a system of 2n + m + 1
partial differential equations with 2n + m + 2 unknown functions; so, in gen-
eral, there exists not a unique symmetry but a family of such symmetries.
The system (16) becomes even more under-determined when one assumes, as
in Section 7, that T , X, and G do not depend on the control variables u.
Although a system of partial differential equations, solving (16) is possible,
because the system is of the first order and linear with respect to the un-
known functions and their derivatives. We solve the system of PDEs by the
method of (additive) separation of variables, as explained in Cheb-Terrab, von
Bulow (1995). Following Cheb-Terrab, von Bulow (1995), the generators are
replaced by the sum of unknown functions, one for each variable. For example,
T (t, x1, x2, ψ1, ψ2) = T1(t) + T2(x1) + T3(x2) + T4(ψ1) + T5(ψ2). When deal-
ing with optimal control problems with several state and control variables, the
number of calculations is big enough, and the help of the computer is more than
welcome. We define a Maple procedure Symmetry that does all the cumbersome
calculations for us. The procedure receives, as input, the Lagrangian and the
velocity vector; and returns, as output, a family of symmetries (T,X,U,Ψ)
and, if necessary, the respective gauge term G. We remark that since system
(16) is homogeneous, we always have, as trivial solution, (T,X,U,Ψ) = 0.

6. The computer algebra package

We obtain Noether conservation laws, in an automatic way, through two steps:
(i) with our procedure Symmetry we obtain the variational symmetries and re-
spective gauge terms; (ii) using the obtained symmetries, gauge terms, and non-
conservative forces as input to procedure Noether, we obtain the correspondent
conservation laws. In Section 8 we give several examples, not covered by the pre-
vious results in Gouveia, Torres (2005a, b), illustrating the whole process. Given
the limit on the maximum number of pages of the paper, we do not provide the
Maple definitions for the procedures Symmetry and Noether here. The complete
Maple package can be freely obtained from http://www.mat.ua.pt/delfim/

maple.htm together with an online help database for the Maple system.



Symbolic computation of variational symmetries in optimal control 839

Novelties of the procedures Symmetry and Noether with respect to the pre-
vious versions in Gouveia, Torres (2005a, b) are: (i) capacity of procedure
Symmetry to cover invariance symmetries up to a gauge term, according with
Sections 3 and 5; (ii) improvements of efficiency – see Section 7; (iii) capacity of
procedure Noether to consider problems of the calculus of variations and opti-
mal control under nonconservative external forces, according to Section 4; (iv)
improvement of the usage of the procedures by introduction of several optional
parameters, as illustrated in Section 8. Moreover, a new Maple procedure called
PMP was added, which implements Theorem 1, according to Section 2.1 The
procedure PMP is very useful in practice, when dealing with concrete prob-
lems of the calculus of variations and optimal control – see Section 8. The
input to the procedure is: the Lagrangian L and the velocity vector ϕ, that
define the optimal control problem (1)-(2) and the respective Hamiltonian H ;
the nonconservative external forces (if present); and several useful optional ar-
guments which define the output. The output of PMP is either (depending
on the optional parameters): the (nonconservative) extremals; the equations of
the (nonconservative) Hamiltonian system and stationary condition; or, alter-
natively, the Hamiltonian. We refer the reader to the Examples in Section 8 for
a general overview on the usage of the developed Maple procedures; to the an-
notated Maple worksheet available at http://www.mat.ua.pt/delfim/maple.htm,
with all the definitions of the package, detailed documentation, and many other
examples not given here, for more details. The reader is free to experiment with
the Maple package in order to determine variational symmetries and Noether
conservation laws on his/her own problems.

7. Efficiency, comparison with previous results

The high number of dependences that the infinitesimal generators may present,
affect, excessively, the efficiency of the method described in Section 5, namely
for problems with a large number of state and control variables. In order to
quantify this effect, we measured the computing running times of our procedure
Symmetry for different dependences of the infinitesimal generators (8), with a
large set of optimal control problems: the ten problems considered in Gouveia,
Torres (2005b; Sections 4 and 5) (examples 4.1–4.6 and 5.1–5.4), together with
twelve new problems. Three of these new problems are given in Section 8, the
complete set of problems being available as a Maple worksheet, as mentioned
in Section 6. All the computational processing was carried out with the Maple
10 Computer Algebra System on a 1.4GHz Pentium Centrino with 512MB of
RAM. In Gouveia, Torres (2005b), the maximum number of dependences for
each generator, as indicated in (8), is always considered. We denote here such
situation by D1. In the D1 case, and as noticed in Gouveia, Torres (2005b),

1In the software Cotcot, available from http://www.n7.fr/apo/cotcot/, the tool Adifor for
automatic differentiation in Fortran is also used to generate, in the conservative case, the
equations of the Pontryagin maximum principle (Bonnard, Caillau, Trélat, 2005).
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the involved computational effort is sometimes very high: the computing times
increase exponentially with the dimension of the problem. This is particularly
well illustrated with the following problems of sub-Riemannian geometry: the
nilpotent problem (2, 3), with three state variables, requires a total computing
time of one minute (Gouveia, Torres, 2005b, Example 4.5); problem (2, 3, 5),
with five state variables, requires thirty minutes (Gouveia, Torres, 2005b, Ex-
ample 4.6); the problem (2, 3, 5, 8), with eight state variables, was not studied in
Gouveia, Torres (2005b), and thought to be out of its capacities. We compute
here its symmetries in Example 3, with the present Maple package, with forty
one minutes of computing time; while the method in Gouveia, Torres (2005b)
requires, approximately, thirty times this value: twenty hours of computing time
are needed.2

The computing running times largely depend on the numbers n and m, re-
spectively the number of state and control variables: besides directly influencing
the number of dependences of the unknown functions (infinitesimal generators),
they determine the amount of those functions and the number of partial differ-
ential equations that must be solved in order to find the variational symmetries.
Without considering the gauge term, we come across a system of m + 2n + 1
partial differential equations and m+2n+1 unknown functions, each one of the
unknown functions being dependent of m + 2n + 1 variables. We address here
the following question: is there some way to simplify the process of obtaining
the variational symmetries?

Although knowing that the complexity of the method is intimately related
with the values n and m, that are fixed with a given optimal control problem, we
get, even so, a quite satisfactory answer to the question. Analyzing the results
from the test set of problems, we verify that, in spite of considering the maximum
number of dependences (D1 ), the infinitesimal generators obtained through
the procedure Symmetry are, nevertheless, almost always, dependent functions
of a quite reduced number of variables. When we restrict ourselves to the
dependences T (t), X(t,x), U(u,ψ), Ψ(ψ) – that we identify as D2 – we are able
to cover the totality of the twenty two considered problems in our study. If in the
formulation of the system of PDEs (16) we only enter with these dependences,
besides the obvious reduction of the number of dependences of the unknown
functions, we reduce the number of equations to less than half: from m+2n+1
to n+1. In agreement with the simulations done, the efficiency of the procedure
Symmetry increases significantly with this new group of dependences (D2 ). For
instance, for the problem (2, 3, 5) of sub-Riemannian geometry (Gouveia, Torres,
2005b, Example 4.6), a problem with two controls and five state variables, the
running time passed from half an hour to less than one and a half minute. We
have also considered another more simplified set of dependences, denoted by
D3 : T (t), X(t,x), U(t,u), Ψ(t,ψ). With it, it is now possible to obtain the

2We believe that the forty minutes of computing time can still be diminished by us-
ing a programming language closer to machine, for instance using Adifor: http://www-
unix.mcs.anl.gov/autodiff/ADIFOR.
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symmetries of the sub-Riemannian nilpotent problem (2, 3, 5, 8) (Example 3),
in less than 45 minutes; and it is still possible to obtain the same conservation
laws for all the twenty two studied problems (in three of the problems, Gouveia,
Torres, 2005b, Examples 4.4, 5.2 and 5.3), the generators were different, since
the more general generators U depend on the variables ψ, but the correspondent
Noether conservation laws (12) are exactly the same since they only depend on
the generators T and X). Finally, we repeated the study for a more restricted
group of dependences (D4 ): T (t), X(x), U(u), Ψ(ψ). As expected, the time
of processing suffered an additional reduction (for the (2, 3, 5, 8) problem the
running time passed from 44′16′′ to 28′21′′), but, in this case, not the entire
family of conservation laws for the problems are obtained. For four of the
problems – Example 4.3 in Gouveia, Torres (2005b), Examples 2 and 3 in the
Maple worksheet, and Example 1 here – only particular cases of the complete
family of conservation laws are obtained.

To summarize the influence that the different dependences of the genera-
tors have on the efficiency of the procedure Symmetry, we give in Table 1 the
running times for computing the variational symmetries of the three problems
of sub-Riemannian geometry already mentioned: Gouveia, Torres (2005b, Ex-
amples 4.5 and 4.6) and Example 3. All the three problems have two control
variables and the same Lagrangian, but a different number of state variables,
respectively, 3, 5, and 8.

Table 1. Running times of procedure Symmetry for three problems of sub-
Riemannian geometry (Gouveia, Torres, 2005b, Examples 4.5, 4.6, and Exam-
ple 3 here), with different dependences of the infinitesimal generators: D1 –
[T (t,x,u, ψ), X(t,x,u, ψ), U(t,x,u, ψ), Ψ(t,x,u, ψ)]; D2 – [T (t), X(t,x), U(u, ψ),
Ψ(ψ)]; D3 – [T (t), X(t,x), U(t,u), Ψ(t, ψ)]; D4 – [T (t), X(x), U(u), Ψ(ψ)].

Dependences Number of Problem Problem Problem
PDEs∗ (2, 3) (2, 3, 5) (2, 3, 5, 8)

D1 m+2n+1 1′04′′ 30′34′′ 20h07′12′′

D2 n+ 1 5′′ 1′26′′ 51′28′′

D3 n+ 1 4′′ 1′09′′ 44′16′′

D4 n+ 1 2′′ 38′′ 28′21′′

∗ n = number of state variables; m = number of control variables.

We verify that of the four sets of studied generators, just with D4 it was not
possible to obtain, with full generality, the totality of Noether’s conservation
laws for the twenty two considered problems. The set of generators D3 (T (t),
X(t,x), U(t,u), Ψ(t,ψ)) gives the best compromise: it presents the best run-
ning times, between the generators that give the complete family of variational
symmetries and Noether conservation laws for the problems we have studied;
running times are much better than the ones obtained with the generators D1.
We recommend the user to try configuration D3 first on his/her own optimal
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control problems. Considering t and x for the dependences of the gauge term
– G(t,x) – the system of PDEs that we have to solve, in order to find the
variational symmetries, takes the form (see (16))



















∂H

∂t
T +

∂H

∂x
·X +

∂H

∂u
·U +

∂H

∂ψ
·Ψ +H

∂T

∂t
−ψT ·

∂X

∂t
−
∂G

∂t
= 0 ,

ΨT +ψT ·
∂X

∂x
+
∂G

∂x
= 0 .

(17)

Our present procedure Symmetry computes, by default, the variational symme-
tries as defined by D3, and with a gauge term G(t,x): by default Symmetry
solves system (17). Through optional parameters, it is possible to find the
variational symmetries for other generators and gauge terms: in order to use
all the dependences (D1 ) one must use option alldep; to use a minimum of
dependences (D4 ) one uses option mindep. We remark that with the class of
generators D3, T and X are not functions of u, and there is no need to assume
the control variables u to be smooth functions (see (13)).

Table 2 shows the computing running times needed to obtain all the varia-
tional symmetries of the problems in Gouveia, Torres (2005b, Sections 4 and 5),
by using the default version of procedure Symmetry we give here (generators
D3 ); and by using the version in Gouveia, Torres (2005b), which is a particular
case of our present procedure – see Section 8 for examples not covered by the
previous methods in Gouveia, Torres (2005b) – obtained using option alldep,
that is, generators D1. The time needed to compute the variational symmetries
for the (2, 3, 5) problem (Example 4.6 in Gouveia, Torres, 2005b) decreased from
thirty minutes to one.

Table 2. Running times of procedure Symmetry for all the problems of Gouveia,
Torres, 2005b, with the generator sets D1 (the only possibility in Gouveia,
Torres, 2005b) – [T (t,x,u, ψ), X(t,x,u, ψ), U(t,x,u, ψ), Ψ(t,x,u, ψ)], and D3 –
[T (t), X(t,x), U(t,u), Ψ(t, ψ)].

4.1 4.2 4.3 4.4 4.5 4.6 5.1 5.2 5.3 5.4

D1 2′′ 1′13′′ 2′44′′ 6′41′′ 1′04′′ 30′34′′ 8′′ 17′′ 6′42′′ 1′′

D3 0′′ 5′′ 11′′ 18′′ 4′′ 1′09′′ 0′′ 3′′ 16′′ 0′′

The use of generators with a smaller number of dependences leads to a
drastic reduction of the computing running times. For the studied problems,
the use of generators D3 permits to obtain the same results while decreasing
the total processing times for about 4% of the ones verified in Gouveia, Torres,
2005b (generators D1 ).
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8. Examples of the new possibilities

In order to show the functionality and the use of the new procedures, we apply
our Maple package to three concrete optimal control problems which are not
covered by the previous results in Gouveia, Torres (2005a,b). All the examples
were solved with Maple version 10 on a 1.4GHz 512MB RAM Pentium Centrino.
The running time of procedure Symmetry is indicated, for each example, in the
format min’sec”. All the other Maple commands run instantaneously.

8.1. Variational symmetries up to a gauge term

We begin with a very simple example of the classical calculus of variations. We
recall that for the fundamental problem of the calculus of variations there are
no abnormal extremals, so one can choose ψ0 = −1 (we use option noabn of our
Maple package).

Example 1 (0’00”) Let us consider the following scalar problem of the calculus
of variations (n = m = 1):

∫ b

a

(u(t))2 dt −→ min ,

ẋ(t) = u(t) .

In this case L = u2 and ϕ = u. First we obtain the variational symmetries of the
problem (Maple procedure Symmetry) up to a gauge term (parameter gauge).

> S := Symmetry(u^2,u,t,x,u,showt,gauge);

S :=

�
T = 2C2t+ C6, X =

1

2

C3t

ψ0

+ C2x(t) + C4, U =
1

2

C3

ψ0

− u(t)C2,

Ψ = −ψ(t)C2 − C3, GAUGE = C3x(t) + C5

�
.

Noether conservation laws are obtained through Theorem 3 (Maple procedure
Noether) with the generators and the gauge term just obtained.

> CL := Noether(u^2,u,t,x,u,S,showt,noabn,H);

CL :=

�
−

1

2
C3t+ C2x(t) +C4

�
ψ(t) −H (2C2t+ C6) + C3x(t) + C5 = const

The Hamiltonian H, which appears in the above family of conservation laws, is
given by (5):

> H := PMP(u^2,u,t,x,u, evalH,showt,noabn);
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H := −u(t)2 + u(t)ψ(t).

This is a very simple problem, just used to illustrate, in the simplest possible
way, our Maple procedures. In this case it is an easy exercise to obtain the
extremals by direct application of the Pontryagin Maximum Principle or the
Euler-Lagrange equations,

> extremals := PMP(u^2,u,t,x,u,showt,noabn);

extremals :=

�
ψ(t) = K2, x(t) =

1

2
K2 t+K1, u(t) =

1

2
K2

�
and one can validate the obtained conservation laws by applying the definition of
conservation law: by definition, the obtained family of conservation laws must
hold along all the extremals of the problem.

> subs(extremals,CL);

K2 C2K1 +K2 C4 −
1

4
K

2

2C6 + C3K1 + C5 = const .

8.2. Presence of nonconservative forces

We consider now a problem of the calculus of variations under the action of a
nonconservative force. The problem is borrowed from Djukic, Strauss (1980,
Section 4).

Example 2 (n = 1, m = 2, 0’01”) The problem is defined by the Lagrangian

L(q, q̇, q̈) = 1
2 q̈(t)

2 + 1
2 aq̇(t)

2 + 1
2 bq(t)

2, and presence of the nonconservative

force f(t) = µ q̇(t)+ µ2

a2 q̈(t)−2 µ
a

...
q (t) which depends on higher-order derivatives

(a, b, and µ are constants).

> PDEtools[declare](prime=t);

derivatives with respect to t of functions of one variable will now be displayed with ’

> L := u^2/2+a*v^2/2+b*q^2/2;

> phi := [v,u];

> f := mu*v+mu^2/a^2*u-2*mu/a*z(t);

L :=
1

2
u

2 +
1

2
av

2 +
1

2
bq

2

ϕ := [v, u]

f := µ v +
µ2u

a2
− 2

µ z(t)

a

> S := Symmetry(L, phi, t, [q,v], u);

S := [T = C1, X1 = 0, X2 = 0, U = 0, Ψ1 = 0, Ψ2 = 0]

> CL := Noether(L, phi, t, [q,v], u, S, ncf=[f,0], noabn);
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CL := −

�
−

1

2
u(t)2 −

1

2
a v(t)2 −

1

2
b q(t)2 + ψ1(t)v(t) + ψ2(t)u(t)

�
C1

+

Z
C1q

′

�
µ v(t) +

µ2u(t)

a2
− 2

µ z(t)

a

�
dt = const .

The multipliers ψ1(t) and ψ2(t) are obtained using the adjoint system and the
stationary condition, as given by Theorem 1.

> sys := PMP(L, phi, t, [q,v], u, noabn, evalSyst, ncf=[f,0], showt);

sys :=

��
q
′ = v(t), v ′ = u(t)

	
,

�
−ψ1

′

= −µ v(t) −
µ2u(t)

a2
+ 2

µ z(t)

a
− bq(t),

−ψ2

′

= −av(t) + ψ1(t)

�
, {−u(t) + ψ2(t) = 0}

�
> dsolve({sys[2][2],sys[3][]},{psi[1](t),psi[2](t)});�

ψ2(t) = u(t), ψ1(t) = −u
′ + av(t)

	
.

With substitutions

> subs(%, z(t)=diff(u(t),t), u(t)=diff(v(t),t), v(t)=diff(q(t),t),

C[1]=1, CL);

−
1

2
q
′′2+

1

2
aq

′2+
1

2
b q(t)2−

�
−q

′′′ + aq
′
�
q
′+

Z
q
′

�
µ q

′ +
µ2q ′′

a2
− 2

µ q ′′′

a

�
dt = const

one obtains the conservation law, Djukic, Strauss (1980, Section 4). We re-
mark that the conclusion is nontrivial, and difficult to obtain without Noether’s
principle.

8.3. The sub-Riemannian nilpotent case (2, 3, 5, 8)

We finish the section by applying our Maple package to one important problem:
the study of sub-Riemannian geodesics. The reader, interested in the study
of symmetries of flat distributions of sub-Riemannian geometry, is referred to
Sachkov (2004). Here we use a formulation of the nilpotent problem (2, 3, 5, 8)
which is obtained using the results of Rocha (2004).

Example 3 (44’16”) The problem can be defined in the following way:

1

2

∫ b

a

(

u1(t)
2 + u2(t)

2
)

dt −→ min ,



























































ẋ1(t) = u1(t) ,

ẋ2(t) = u2(t) ,

ẋ3(t) = u2(t)x1(t) ,

ẋ4(t) = 1
2 u2(t)x1(t)

2
,

ẋ5(t) = u2(t)x1(t)x2(t) ,

ẋ6(t) = 1
6 u2(t)x1(t)

3
,

ẋ7(t) = 1
2 u2(t)x1(t)

2x2(t) ,

ẋ8(t) = 1
2 u2(t)x1(t)x2(t)

2
.
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The integrability of the problem is still an open question, Rocha, Torres (2006),
Sachkov (2004), but eight independent conservation laws can be determined with
our present Maple package.

> L := 1/2*(u[1]^2+u[2]^2);

> phi:=[u[1], u[2], u[2]*x[1], (u[2]/2)*x[1]^2, u[2]*x[1]*x[2],

(u[2]/6)*x[1]^3, (u[2]/2)*x[1]^2*x[2], (u[2]/2)*x[1]*x[2]^2];

> XX := [x[i]$i=1..8];

> UU := [u[1],u[2]];

L :=
1

2
u1

2 +
1

2
u2

2

ϕ :=

�
u1, u2, u2x1,

1

2
u2x1

2
, u2x1x2,

1

6
u2x1

3
,
1

2
u2x1

2
x2,

1

2
u2x1x2

2

�
XX := [x1, x2, x3, x4, x5, x6, x7, x8]

UU := [u1, u2].

> Symmetry(L, phi, t, XX, UU);�
T = C1t+ C7, X1 =

1

2
C1x1, X2 = C2 +

1

2
C1x2, X3 = C1x3 + C8,

X4 =
3

2
C1x4 + C6, X5 = C2x3 +

3

2
C1x5 + C3, X6 = 2C1x6 + C5,

X7 = C2x4 + 2C1x7 + C9, X8 = C2x5 + 2C1x8 + C4, U1 = −
1

2
u1C1,

U2 = −
1

2
C1u2, Ψ1 = −

1

2
C1ψ1,Ψ2 = −

1

2
C1ψ2, Ψ3 = −ψ3C1 − C2ψ5,

Ψ4 = −
3

2
ψ4C1 − C2ψ7, Ψ5 = −

3

2
C1ψ5 − C2ψ8, Ψ6 = −2C1ψ6,

Ψ7 = −2C1ψ7, Ψ8 = −2C1ψ8

�
> CL := Noether(L, phi, t, XX, UU, %, H);

CL :=
1

2
C1x1ψ1 +

�
C2 +

1

2
C1x2

�
ψ2 + (C1x3 +C8)ψ3 +

�
3

2
C1x4 + C6

�
ψ4

+

�
C2x3 +

3

2
C1x5 + C3

�
ψ5 + (2C1x6 + C5)ψ6 + (C2x4 + 2C1x7 + C9)ψ7

+ (C2x5 + 2C1x8 + C4)ψ8 −H (C1t+ C7) = const

The Hamiltonian is given by

> Hamilt := PMP(L, phi, t, XX, UU, noabn, evalH);

Hamilt := −
1

2
u1

2 −
1

2
u2

2 + ψ1u1 + ψ2u2 + ψ3u2x1 +
1

2
ψ4u2x1

2 + ψ5u2x1x2

+
1

6
u2x1

3
ψ6 +

1

2
u2x1

2
x2ψ7 +

1

2
u2x1x2

2
ψ8

and the extremal controls are obtained through the stationary condition.
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> PMP(L,phi,t, XX, UU, noabn, evalSyst)[3];�
−u2 + ψ2 + ψ3x1 +

1

2
ψ4x1

2 + ψ5x1x2 +
1

6
x1

3
ψ6 +

1

2
x1

2
x2ψ7 +

1

2
x1x2

2
ψ8 = 0,

−u1 + ψ1 = 0

�
> solve(%,{u[1],u[2]});�
u1 = ψ1, u2 = ψ5x1x2 + ψ2 + ψ3x1 +

1

2
ψ4x1

2 +
1

6
x1

3
ψ6 +

1

2
x1

2
x2ψ7 +

1

2
x1x2

2
ψ8

�
> H = expand(subs(%, Hamilt));

H =
1

2
ψ2x1x2

2
ψ8 + ψ5x1x2ψ2 + ψ5x1

2
x2ψ3 +

1

2
ψ2ψ4x1

2 +
1

2
ψ3x1

3
ψ4

+
1

2
ψ5

2
x1

2
x2

2 +
1

6
ψ2x1

3
ψ6 +

1

8
x1

2
x2

4
ψ8

2 +
1

8
x1

4
x2

2
ψ7

2 +
1

12
ψ4x1

5
ψ6

+
1

2
ψ3

2
x1

2 +
1

72
x1

6
ψ6

2 +
1

2
ψ2

2 +
1

2
ψ1

2 +
1

8
ψ4

2
x1

4 +
1

6
ψ5x1

4
x2ψ6 +

1

2
ψ3x1

2
x2

2
ψ8

+
1

4
ψ4x1

3
x2

2
ψ8 +

1

4
ψ4x1

4
x2ψ7 + ψ2ψ3x1 +

1

4
x1

3
x2

3
ψ7ψ8 +

1

12
x1

5
ψ6x2ψ7

+
1

12
x1

4
ψ6x2

2
ψ8 +

1

2
ψ2x1

2
x2ψ7 +

1

2
ψ5x1

3
x2ψ4 +

1

2
ψ5x1

2
x2

3
ψ8 +

1

2
ψ5x1

3
x2

2
ψ7

+
1

2
ψ3x1

3
x2ψ7 +

1

6
ψ3x1

4
ψ6

Now, the eight conservation laws, we are looking for, are easily obtained:

> subs(C[8]= 1, seq(C[i]=0,i=1..9), CL);

> subs(C[6]= 1, seq(C[i]=0,i=1..9), CL);

> subs(C[3]= 1, seq(C[i]=0,i=1..9), CL);

> subs(C[5]= 1, seq(C[i]=0,i=1..9), CL);

> subs(C[9]= 1, seq(C[i]=0,i=1..9), CL);

> subs(C[4]= 1, seq(C[i]=0,i=1..9), CL);

> subs(C[2]= 1, seq(C[i]=0,i=1..9), CL);

> subs(C[7]=-1, seq(C[i]=0,i=1..9), CL);

ψ3 = const

ψ4 = const

ψ5 = const

ψ6 = const

ψ7 = const

ψ8 = const

ψ2 + x3ψ5 + x4ψ7 + x5ψ8 = const

H = const
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Given the results of Rocha (2004), one can say that the sub-Riemannian
nilpotent Lie group of type (2, 3, 5, 8) has seven trivial first integrals: the Hamil-
tonian H ; and the multipliers ψ3, ψ4, ψ5, ψ6, ψ7, ψ8. Together with the non-
trivial first integral ψ2 + x3ψ5 + x4ψ7 + x5ψ8, here first obtained, it is possible
to prove that the system is integrable. This is nontrivial since Liouville theorem
does not apply: the set of first integrals is not involutive (for instance, Poisson
bracket between ψ3 and ψ2 + x3ψ5 + x4ψ7 + x5ψ8 is not zero). This question is
under study and will be addressed in a forthcoming publication.
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