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Abstract: If the system semigroup of a control system is a
group, the system has the partition property, i.e., the reachable
sets form a disjoint partition in the state space. The converse is
not true in general. In this work we give sufficient conditions for
the partition property for a family of discrete-time control systems
on homogeneous spaces. We apply our results to Inverse Iteration
systems on flag manifolds, which are closely related to numerical
algorithms.
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1. Introduction

Given a discrete-time control system, the reachable set of an initial point is
defined as the set of points one may obtain in finitely many iteration steps using
arbitrary controls. In applications it is necessary to understand the structure
of the reachable sets, since they provide fundamental limitations on possible
convergence behavior under feedback laws.

In general, the reachable sets of a discrete-time control system coincide with
orbits of a certain semigroup action on the state space. Therefore, the reachable
sets form a partition in the state space if this particular semigroup – the system
semigroup – is a group. Unfortunately, in many important applications the
system semigroup is not a group. We are interested in conditions, under which
the state space is, nevertheless, a disjoint union of reachable sets. One sufficient
condition for this is controllability of the system, i.e., the system semigroup
acts transitively on the state space. For example San Martin and Mittenhuber
showed necessary and sufficient conditions for transitive semigroup actions, see
San Martin (1998) and Mittenhuber (2001) for more details. Unfortunately,
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in many applications – for example for systems with fixed points – we have
naturally more than one reachable set and therefore no controllability.

For a family of discrete-time systems on homogeneous spaces, we will pro-
pose conditions for the partition property, which are weaker than transitivity
of the semigroup action. This setting is motivated by a certain application
concerning numerical algorithms. The idea is to interpret iterative algorithms
as discrete-time dynamical systems. Interesting examples of such an approach
can be found in the work by Ammar and Martin (1986), Batterson and Smillie
(1989, 1990), and Shub and Vasquez (1987). In this context, topological and
geometric structures naturally appear. Nevertheless, to prove our main result,
we only use algebraic properties of the system. Therefore, we are able to state
our result in a very general context.

The paper is organized as follows. In Section 2 we introduce the partition
property in the general context of discrete-time control systems. For a family
of such systems on homogeneous spaces we give a sufficient condition for the
partition property in Section 3. In Section 4 we will apply our previous results
on Inverse Iteration systems on flag manifolds, which are closely related to
iterative numerical algorithms, such as QR algorithm. In particular, we show
that a certain matrix semigroup - related to the system semigroup - is a group
if and only if the Inverse Iteration system has partition property.

2. Partition property

Following the notation in Sontag (1998) we define a discrete-time control sys-
tem as a triple Σ = (M, U, f) containing of a state space M , a set of control
parameters U and a transition map f : M × U → M . The system Σ describes
the iteration

x0 ∈ M, xt+1 := f(ut, xt), ut ∈ U. (1)

The reachable set R(x) of a point x is the set of all states to which one may
steer from x in finitely many iterations, using arbitrary controls in each step.
For T ∈ N we define recursively f1 = f and fT : UT × H → M by

fT : (u0, . . . uT−1, x) 7→ f(uT−1, fT−1(u0, . . . , uT−2, x)). (2)

By SΣ we denote the set of all maps one can generate in this way, i.e.,

SΣ = {F : M → M | ∃T < ∞, ∃u ∈ UT : F = fT (u, ·)}. (3)

SΣ is a semigroup, the so called system semigroup of Σ. The reachable set of a
point x ∈ M can be regarded as the orbit R(x) = SΣ ·x of the semigroup action

SΣ × M → M, (s, m) → s · m := s(m). (4)

Note that x ∈ R(y) implies R(x) ⊂ R(y).
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We say that a system Σ has the partition property if the reachable sets form
a partition in the state space, i.e., for every x ∈ M there exists y ∈ M , such
that x ∈ R(y) and for all x, y ∈ M it is either R(x) = R(y) or R(x)∩R(y) = ∅.
Note that the partition property implies x ∈ R(x) for all x ∈ M , even if the
identity is not an element of the system semigroup.

Since the reachable sets are orbits of a semigroup action, a system Σ has
the partition property whenever SΣ is a group. The following example shows
that the partition property may hold even when the system semigroup is not a
group.

Example 1 Let M = R, U = R+ and

f(x, u) =

{

ux x ≥ 0
2ux x < 0.

(5)

Note that f(·, u) is bijective for every u ∈ U . Every element of SΣ has the form

F (x) =

{

ux x ≤ 0
2kux x < 0

(6)

with u ∈ U and k ∈ N. In particular, identity does not belong to SΣ and
therefore SΣ is not a group.

On the other hand, Σ has the partition property, since R(x) = R+ for every
x > 0, R(0) = {0} and R(x) = R− for x < 0.

3. Control systems on homogeneous spaces

This work was motivated by the analysis of the shifted eigenvector algorithms
such as Inverse Iteration and QR algorithm. Both methods can be formulated as
discrete-time control systems on related homogeneous spaces. It turns out that
the reachable sets of both systems are semigroup orbits of the same semigroup.
Moreover, for a given matrix the Inverse Iteration system has the partition
property if and only if the QR algorithm has the partition property. The proof
of these facts is purely algebraic and can be extended to a very general setting.

Let G be a group and H be a subgroup of G. The set of cosets G/H :=
{gH |g ∈ G} is called homogeneous space. Every element x ∈ G/H can be
represented in the form x = gH . Note that gH = g̃H if and only if g−1g̃ ∈ H .
Canonically, we define for any subsemigroup S̃ of G a product

S̃ × G/H → G/H, s · gH = sgH. (7)

Now, let U be a set of control parameters and Φ : U → G be a map, which
induces the transition map f : G/H × U → G/H by f(x, u) = Φ(u) · x. In the
following we analyze the system Σ = (G/H, U, Φ), respectively the iteration

x0 ∈ G/H, xt+1 := Φ(ut) · xt, ut ∈ U. (8)
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In this setting the reachable sets are orbits of the semigroup

S̃ :=

{

T
∏

t=0

Φ(ut) |T ∈ N0, ut ∈ U

}

, (9)

i.e., R(x) = {Φ · x |Φ ∈ S̃}. Typically, S̃ is easier to handle than the system
semigroup SΣ since S̃ is a subsemigroup of G.

Obviously, system Σ has the partition property if S̃ is a group. In the
following we show a weaker condition. For that purpose we introduce the normal
core of a homogeneous space G/H defined as

C :=
⋂

g∈G

gHg−1. (10)

Note that C is the largest normal subgroup of G contained in H . In particular,
it is gC = Cg for all g ∈ G.

Lemma 1 Let Σ = (G/H, U, Φ) be a system of Type (8).
a) CS̃ = {cs | c ∈ C, s ∈ S̃} is a subsemigroup of G.
b) If S̃ is a group then CS̃ is a group.
c) For every point x ∈ G/H there holds R(x) = CS̃ · x.

Proof. All statements follow from the fact that C is a normal subgroup of G.
a) For all c1s1, c2s2 ∈ CS̃ there exist c̃2 ∈ C, such that c1s1c2s2 = c1c̃2s1s2 ∈

CS̃. Therefore CS̃ is a semigroup.
b) If S̃ is a group, then CS̃ is a group, since CS̃ = S̃C.
c) Since C is a subgroup of H it is C · gH = gH for all g ∈ G and therefore

R(gH) = S̃ · gH = S̃CgH = CS̃ · gH .

Note that CS̃ is a group if and only if the system semigroup SΣ is a group.
Nevertheless, for our applications it is more convenient to deal with CS̃ instead
of SΣ.

Lemma (1) shows, that in order to analyze the reachable sets of a system
of Type (8) we can use more algebraic structure if we regard the reachable sets
as orbits of CS̃ instead of S̃. It follows that the partition property is already
given, if CS̃ is a group. In Section 4 we will give an example where CS̃ is a
group but S̃ is not.

In the following we give a sufficient condition, under which the partition
property implies that CS̃ is a group. Recall that a subset S̃ ⊂ G of a group G
generates the subgroup

〈S̃〉 :=

{

N
∏

i=1

si |N < ∞, si ∈ S̃ ∪ S̃−1

}

. (11)

Note that 〈S̃〉 is the smallest subgroup of G which contains S̃. Moreover, CS̃ is
a group if and only if CS̃ = 〈CS̃〉.
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Theorem 1 Let Σ = (G/H, U, Φ) be a system of Type (8) where H ∩ 〈S̃〉 is a
subgroup of C. The following statements are equivalent:

(i) CS̃ is a group.
(ii) For all x ∈ G/H the equation R(x) = 〈S̃〉 · x holds.
(iii) System Σ has the partition property.

Proof. The implications (i)⇒(iii) and (ii)⇒(iii) are obvious.
(iii)⇒(ii) For any s̃ ∈ S̃−1 and x ∈ G/H it is x = s̃−1s̃ · x ∈ R(s̃ · x). It follows
that R(x) = R(s̃ ·x) and therefore s̃·x ∈ S̃ ·x. We conclude that for an arbitrary

δ ∈ 〈S̃〉, i.e., δ =
∏N

t=1 s̃t with s̃t ∈ S̃ ∪ S̃−1 there exist s1, . . . , sN such that

δ · x =
∏N

t=1 st · x ∈ S̃ · x and therefore R(x) = S̃ · x = 〈S̃〉 · x.

(iii)⇒(i) If CS̃ is not a group, then there exists a ∈ 〈CS̃〉 \ CS̃. Since C is
a normal subgroup of G we can factorize a = c̃δ with c̃ ∈ C and δ ∈ 〈S̃〉.
Supposing that the reachable sets form a partition in G/H , then for every
gH ∈ G/H — and in particular for δ−1H — there exists cs ∈ CS̃ such that

a · δ−1H = cs · δ−1H. (12)

Since C is a normal subgroup of G, with C ⊂ H , it follows that sδ−1 ∈ H .
Moreover, since s, δ ∈ 〈S̃〉 and H ∩ 〈S̃〉 ⊂ C we have c̆s = δ with c̆ ∈ C.
Therefore, a = c̃c̆s, which is a contradiction to a /∈ CS̃. Hence, CS̃ is a group.

4. Partition property of Inverse Iteration

In the following we want to apply our results of the previous section to shifted
Inverse Iteration on flag manifolds.

Let F be an arbitrary field. With F∗ we denote the multiplicative group of
F. A flag V is an increasing sequence of F-linear subspaces

{0} $ V1 $ V2 $ . . . $ Vk ⊂ Fn.

The type of the flag V = (V1, . . . , Vk) is defined by the k-tuple d := (d1, . . . , dk)
of dimensions di = dimF Vi, i = 1, . . . , k. For any such sequence of integers
d = (d1, . . . , dk), 1 ≤ d1 < · · · < dk ≤ n, we denote the set of all flags of
type d with Flag(d, Fn). Note that every A ∈ GLn(F) acts on Flag(d, Fn) via
A(V1, . . . , Vk) = (AV1, . . . , AVk).

Via the bijection TV : gHV 7→ (gV1, . . . , gVk) we can identify Flag(d, Fn) with
the homogeneous space Flag(d, Fn) := GLn(F)/HV , where V = (V1, . . . , Vk) is
any fixed reference flag of type d and HV := {g ∈ GLn(F) | gVi = Vi} is the
stabilizer group of V .

For a given matrix A ∈ Fn×n we define U = F \ Spec(A) and the map
Φ : U → GLn(F), Φ(u) = (A − uI)−1. Note that for every x ∈ GLn(F)/HV the
equation TV(Φ(u) · x) = Φ(u)TV(x) holds.
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The Inverse Iteration system is given by ΣA,d = (Flag(d, Fn), U, Φ). Obvi-
ously,

S̃II =

{

N
∏

t=1

(A − utI)−1 |N < ∞, ut ∈ F \ Spec(A)

}

. (13)

Note that Flag(d, Fn) is the projective space PFn−1 for d = (1). In this case
ΣA,(1) describes the well known Inverse Iteration algorithm. The fixed points of
ΣA,(1) coincide with the eigenspaces of A.

Another important special case is dc = (1, 2, . . . , n − 1), yielding the com-
plete flag manifold. The fixed points of ΣA,dc

coincide with the eigenflags
E = (V1, . . . , Vn−1) of A, i.e., AVi = Vi for i = 1, . . . , n − 1. It is known
that the dynamics of Inverse Iteration on complete flag manifolds is closely re-
lated to the QR algorithm. We refer to Ammar, Martin (1986), Shub, Vasquez
(1987), for more details.

In applications as above, one is usually interested in the behavior of cyclic
matrices, i.e., matrices A ∈ Fn×n, such that there exists a cyclic vector v ∈ Fn

such that span(v, Av, . . . , An−1v) = Fn. For F = R, C the set of cyclic matrices
is open and dense in Fn×n. Therefore, cyclicity is a generic assumption on a
matrix.

The following lemma shows that the conditions of Theorem 1 are satisfied.

Lemma 2 Let A ∈ Fn×n be cyclic and Flag(d, Fn) a flag manifold of type d, such
that d1 = 1. The Inverse Iteration system ΣA,d = (Flag(d, Fn), U, Φ) satisfies
the following conditions:

a) C = F∗I.
b) HV ∩ 〈S̃II〉 ⊂ C for a reference flag V of type d.

Proof. As above we identify the set Flag(d, Fn) with the homogeneous space
GLn(F)/HV . For that purpose we choose a reference flag V = (V1, . . . , Vk) of
type d, such that a nonzero vector v ∈ V1 is a a cyclic vector.
a) For any c ∈ C and for all g ∈ GLn(F) we have cgV1 = gV1. Therefore, every
one dimensional vector space is an eigenspace of c. It follows that c ∈ F∗I.
b) Obviously, 〈S̃II〉 is a subgroup of the centralizer Z(A) := {B ∈ GLn(F) |AB =
BA}. Moreover, since A is cyclic, there is

Z(A) = {p(A) | p ∈ F[t], p coprim χA, deg(p) ≤ n − 1} (14)

where χA is the characteristic polynomial of A (see Fuhrmann, 1996, Proposition

6.1.2). Therefore, if X =
∑n−1

j=0 αjA
j ∈ HV ∩ 〈S̃II〉 and v ∈ V cyclic, then

Xv = λv and (α0 − λ)v +
∑n−1

j=1 αiA
iv = 0. Since v, Av, . . . , Ak−1v is a basis of

Fn we conclude that X = λI.

Applying Theorem 1 we have the following result:
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Theorem 2 Let A be cyclic and Flag(d, Fn) a flag manifold with d1 = 1. Then
the following statements are equivalent:

(i) F∗S̃II is a group.
(ii) System Σd,A has the partition property.

The following example shows that R∗S̃II may be a group even if S̃II is not.

Example 2 Let F = R and

A :=

(

0 −1
1 0

)

. (15)

We show that S̃II is not a group. Let

B :=

(

1 −1
1 1

)−1

∈ S̃II =

{

N
∏

t=1

(

−ut −1
1 −ut

)−1
∣

∣

∣

∣

∣

N < ∞, ut ∈ R

}

. (16)

Assume B−1 ∈ S̃II , i.e., there exist shift parameters u1, . . . , uN ∈ R such that
B−1 =

∏N

t=1(A − utI)−1. Then

det(B−1) = det

(

N
∏

t=1

(

−ut −1
1 −ut

)−1
)

=

N
∏

t=1

1

u2
t + 1

≤ 1, (17)

which is a contradiction to det(B) = 1
2 . Hence, S̃II is not a group.

On the other hand, the inverse of (A − uI)−1 ∈ S̃II is given by

A − uI = (u2 + 1)A−1A−1(A + uI)−1 ∈ R∗S̃II . (18)

Therefore, R∗S̃II is a group.

Let ΣA,d be the Inverse Iteration system on a flag manifold Flag(d, Fn) and

(A − uI)−1 be an arbitrary element of S̃II . In order to find out if F∗S̃II is a
group one has to find elements α1, . . . , αn−1 ∈ F\Spec(A) and r ∈ F∗ such that

r

n−1
∏

t=1

(A − αtI)−1(A − uI)−1 = I. (19)

In the case F = C this can always be done. Let χA be the characteristic
polynomial of A. Since C[z] is an Euclidean ring and since u is not a zero of
χA we have the identity χA = (t − u)k − r with k ∈ C[z] and r ∈ C \ {0}.

The linear factorization of χA + r gives us χA + r = (t − u)
∏n−1

t=1 (t − αt) for
α1, . . . , αn−1 ∈ C \ Spec(A). Therefore, there holds

I =
1

r
(A − uI)

n−1
∏

t=1

(A − αiI). (20)
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We conclude that in the case F = C the Inverse Iteration system ΣA,d always
has the partition property.

In the case F = R the situation is much more complicated. The following
example shows that we cannot expect to have the partition property for all
matrices A ∈ Rn×n.

Example 3 Let ΣA,d = (PR2, R\Spec(A), ΦII) be the Inverse Iteration system
for the cyclic matrix

A :=





0 −1 0
1 0 0
0 0 0



 . (21)

We show that the identity is not an element of the semigroup R∗S̃II . By The-
orem 2 it follows that ΣA,d fails to have the partition property.

Suppose there exist r ∈ R∗ and control parameters u1, . . . , uN ∈ U such that
I = r

∏N

t=0(A − utI)−1. The block structure of A yields the equations

(

1 0
0 1

)

= r

N
∏

t=1

(

−ut −1
1 −ut

)

and 1 = r

N
∏

t=0

(−ut). (22)

Comparison of the determinants shows that

r2
N
∏

t=0

(u2
t + 1) = r2

N
∏

t=0

u2
t , (23)

which is a contradiction to r 6= 0.

5. Conclusion and remarks

We have shown a sufficient condition for partition property for a family of
discrete-time control systems on homogeneous space. As an application we
obtain a necessary and sufficient condition, for which Inverse Iteration on flag
manifolds has the partition property. In particular, for a given matrix, Inverse
Iteration on projective space has the partition property if and only if Inverse
Iteration on complete flag manifolds – and therefore the QR algorithm – has
the partition property.

To analyze Inverse Iteration concerning its controllability properties and
adherence structure of the reachable sets – as it is done in Helmke and Fuhrmann
(2000), Helmke and Wirth (2001), Helmke and Jordan (2002) – it is appropriate
to use the specific topological, geometric and algebraic structure of the system.
Nevertheless, for the proof of our results stated in the paper we only need purely
algebraic properties. It might be possible to apply and adapt those results to
other applications of control theory with discrete state spaces, such as coding
theory or cryptography.
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