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Abstract: In multiobjective (vector) optimization problems,
among the given objective functions there exist some, which do not
influence the set of efficient solutions. These objective functions are
said to be nonessential. In this paper we present a new method to
decide if a given linear objective function is nonessential or not.
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1. Introduction and notations

In this paper we study the following multiobjective (vector) optimization prob-
lem

P = (X,Fn,ℜ) (1)

where:
1) X is a feasible set;
2) Fn = [f1(x), f2(x), . . . , fn(x)]T : X → R

n (n > 1) is a vector-valued func-
tion, each fi is called an objective function;
3) ℜ is a binary relation on R

n

y1 = [y1
1 , ..., y

1
n
]T ,y2 = [y2

1 , ..., y
2
n
]T

(y1,y2) ∈ ℜ ⇔ y1 ≥ y2 ⇔ ∀i ∈ {1, ..., n} y1
i
≥ y2

i
∧ ∃i ∈ {1, ..., n} y1

i
> y2

i
.

The solution of the problem (1) is to find all solutions that are efficient in
the sense of the following definition:

Definition 1 A vector x
0 ∈ X is said to be an efficient (Pareto - optimal)

solution of the problem (1) iff there exists no x ∈ X such that F
n(x) ≥ F

n(x0).
The set of efficient solutions of the problem (1) is denoted by Xn

E
.
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We form a new vector optimization problem P̃ from P by adding an ob-
jective function fn+1 to the problem P . If the set of efficient solutions of the
problem P̃ equals that of P , then the objective function fn+1 is called nonessen-
tial. Information about nonessential objectives helps a decision maker to know
better and understand the problem and this might be a good starting point
for a further investigation or revision of the model. Dropping of nonessential
functions leads to new problems with a smaller number of objectives, thus easier
to solve. For this reason the issue of nonessential objectives must be considered
in works dealing with Multiple Criteria Decision Making (MCDM). However,
research in this field is indeed scarce. The seminal papers by Gal and Leberling
(1977) and Gal (1980) defined and investigated nonessential objectives in linear
problems. With respect to these papers Gal and Hanne (1999, 2006) considered
the consequences of dropping nonessential objectives functions for application of
MCDM methods. The concept of nonessential objectives was generalized by the
present author. In Malinowska (2002a,b) convex vector optimization problems
are considered. Furthermore, new definitions of weak nonessential and proper
nonessential functions are introduced and investigated.

The aim of this paper is to give an algorithm to determine if a given objective
function of a certain linear problem is essential or not. In comparison with
the Gal - Leberling method, which is based on the sufficient condition for the
function to be nonessential, our method is based on the necessary and sufficient
conditions. The outline of the paper is as follows: In Section 2 we develop the
theory of nonessential objectives. Section 3 presents how to verify that the set
of efficient solutions of the problem P̃ is contained in that of P . Section 4 is
devoted to the main result of the paper: the method to determine if a given
objective function of a linear problem is essential or nonessential. In Section
5 we provide examples to illustrate our method. Finally some conclusions are
given.

2. Nonessential objective functions

Let Xn+1
E

denote the set of solutions of the problem

P̃ = (X,Fn+1,ℜ) (2)

where Fn+1 = [f1(x), f2(x), . . . , fn(x), fn+1(x)]T and ℜ is a binary relation on
R

n+1. With this notation we introduce the definition of nonessential objective
function.

Definition 2 The objective function fn+1 is said to be nonessential in P̃ iff
Xn

E
= Xn+1

E
.

An objective function which is not nonessential is called essential.

Let Xn+1 denote the set of solutions of the single objective optimization
problem

Max{fn+1 : x ∈ X}. (3)
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In other words

Xn+1 = {x0 ∈ X : ∀x ∈ X fn+1(x0) ≥ fn+1(x)}. (4)

From now on we make the following assumptions:
A1. X is a nonempty, compact and convex set;
A2. Each fi is a continuous and convex function.
Below we provide the conditions under which the objective is nonessential.

Theorem 1 Let the problem P̃ satisfy the assumptions A1, A2. The objective
function fn+1 is nonessential in P̃ if and only if the following three conditions
hold:
a) Xn

E
⊂ Xn+1

E
;

b) Xn

E
∩ Xn+1 6= ∅;

c) ∀x ∈ X\Xn

E
∃x′ ∈ R

k
F

n+1(x′) ≥ F
n+1(x).

For the proof we refer the reader to Malinowska (2002a,b).

Now assume that P̃ is a linear vector optimization problem,that is

X = {x ∈ R
k : Ax = b, ∀i ∈ {1, ..., k} xi ≥ 0}, A ∈ R

m×k, b ∈ R
m

Fn+1(x) = C̃x = [(c1)T x, ..., (cn+1)Tx]T , ci ∈ R
k(i = 1, ..., n)

The following theorem was proved by Gal and Leberling (1977).

Theorem 2 Let the problem P̃ be linear. The objective function fn+1 is nonessen-
tial in P̃ if the following holds:

c
n+1 =

n
∑

i=1

αic
i, αi ≥ 0 (i = 1, ..., n). (5)

3. The inclusion X
n+1

E
⊂ X

n

E
in linear vector optimization

problems

In the linear case, in order to verify that the inclusion Xn+1
E

⊂ Xn

E
holds,

we need only to solve a finite number of single objective linear optimization
problems. If we want to test the condition b), first we solve the problem (3)
and next we check if there is a vertex of Xn+1 which belongs to Xn

E
(for the

method we refer the reader to Benson, 1978). In order to verify the condition
c) we may test the equality of sets Ũ = {u ∈ R

k : C̃u ≥ 0} = ∅. Because the
following remark holds.

Remark 1 If Ũ = {u ∈ R
k : C̃u ≥ 0} 6= ∅, then the condition c) of Theorem 1

holds.
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Proof. Let Ũ 6= ∅. Assume, on the contrary, that

∃x ∈ X\Xn

E ∀x′ ∈ R
k ¬(C̃x′ ≥ C̃x). (6)

Since Ũ 6= ∅, there exists u ∈ R
k such that C̃u ≥ 0. Applying x′ = u+ x to (6)

we obtain

¬(C̃(u + x) ≥ C̃(x)),

¬(C̃u ≥ 0).

This is a contradiction by free choice of x′.

Below, we present the theorem which will be useful in next section.

Theorem 3 (Galas, Nykowski, Zó lkiewski, 1987) A sufficient condition for
Xn+1

E
= X is Ũ = ∅. If intX 6= ∅, this condition is also necessary (intX stands

for the interior of the set X).

4. Main result

The theory presented in the previous section enables us to work out the method:
how to test whether an objective function of a linear problem is essential or not.
Generally, the method consists of seven steps.

Step 1. Solve the problem: Is there Ũ = ∅?
If the answer is ”Yes”, then Xn+1

E
= X (by Theorem 3), go to Step 2. If the

answer is ”No”, then the condition c) of Theorem 1 holds (by Remark 1), go to
Step 5.
Step 2. Solve the problem: Is there U = {u ∈ Rk : Cu = [(c1)T u, ..., (cn)T u]T ≥
0} = ∅?
If the answer is ”Yes”, then Xn

E
= X and the objective function fn+1 is nonessen-

tial. Otherwise go to Step 3.
Step 3. Solve the problem: Is there intX 6= ∅?
For the method we refer the reader, for instance, to Galas, Nykowski, Zó lkiewski
(1987). If the answer is ”Yes”, then Xn

E
6= X (by Theorem 3) and the objective

function fn+1 is essential. If the answer is ”No”, then go to Step 4.
Step 4. Solve the problem: Is there Xn

E
= X?

(This can be done, for instance, by checking the efficiency of some feasible vec-
tors.) If the answer is ”Yes”, then the objective function fn+1 is nonessential.
Otherwise fn+1 is essential.
Step 5. Determine the set Xn+1 and go to Step 6.
Step 6. Solve the problem: Is there Xn

E
∩ Xn+1 6= ∅?

If the answer is ”Yes”, then Xn+1
E

⊂ Xn

E
, go to Step 7. If the answer is ”No”,

then the objective function fn+1 is essential.
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Step 7. Solve the problem: Is there Xn

E
⊂ Xn+1

E
?

If the answer is ”Yes”, then the objective function fn+1 is nonessential. Other-
wise fn+1 is essential.

Figure 1. The scheme of the method.

The advantage of using the above method lies in the fact that the basis of the
method is provided by the necessary and sufficient condition for the objective
function to be nonessential. It is worth pointing out that in Steps 1 - 6 we must
solve only single objective linear problems (with one exception in Step 4, if it is
necessary).

The disadvantage of the method is that we cannot use it in the case of lack
of any knowledge of the set X . The next problem is Step 7. It is not always
easy to verify that Xn

E
⊂ Xn+1

E
. The inclusion holds, for example, if the vector

- valued function Fn is one-to-one on the set Xn

E
(Gutenbaum, Inkielman, 1998)

or the objective fn+1 is a linear combination of the other objectives (Malinowska,
2002b).

5. Illustrative examples

To illustrate the proposed method, we now consider some simple problems.

Example 1 The set X , the vector-valued function Fn and the objective function
fn+1 are given by

X = {x ∈ R
2 : x1 + 4x2 ≤ 24,−x1 − x2 ≤ −6, x2 ≤ −1, 3x1 + 2x2 ≤ 32}

F2(x) = [x2, 4x1 + x2]T

f3 = −x1 + 4x2.
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Step 1. Since in the problem

Max{v1 + v2 + v3 : −C(x − 1a) + v = 0, a ≥ 0, ∀i ∈ {1, 2} xi ≥ 0,

∀i ∈ {1, 2, 3} vi ≥ 0}

there is (v1 + v2 + v3)max = ∞, the condition c) of Theorem 1 holds.
Step 5. The solution of the problem

Max{−x1 + 4x2 : x ∈ X}

is X3 = {[0, 6]T}.
Step 6. Since the solution of the problem

Max{v1 +v2 : x ∈ X, Cx−v = C[0, 6]T , ∀i ∈ {1, 2} xi ≥ 0, ∀i ∈ {1, 2} vi ≥ 0}

is v = 0,x = [0, 6]T , x = [0, 6]T ∈ X2
E

. Hence X3
E
⊂ X2

E
.

Step 7. Since det

(

0 1
4 1

)

= det C 6= 0, F2 is one-to-one and X2
E
⊂ X3

E
.

Hence the objective function f3 is nonessential.
Let us notice that the condition (5) does not hold. The solution of the system

of equations c3 = α1c
1 + α2c

2 is α1 = 17/4, α2 = −1/4.
In this problem the objective function f1 is also nonessential. It is easy to

check it by using the condition (5) or our method.

Example 2 Let the set X satisfy the assumption A1. The vector-valued func-
tion Fn and the objective function fn+1 are given by

a)
F3(x) = [x1 + 3x2, 3x1,−3x1 − x2]T

f4 = 2x1 + x2.

Step 1. Since the solution of the problem

Max{v1 + v2 + v3 + v4 : −C(x − 1a) + v = 0, a ≥ 0, ∀i ∈ {1, 2} xi ≥ 0,

∀i ∈ {1, 2, 3, 4} vi ≥ 0}

is v = 0,x = 0, a = 0, X4
E

= X .
Step 2. Since the solution of the problem

Max{v1 + v2 + v3 : −C(x − 1a) + v = 0, a ≥ 0, ∀i ∈ {1, 2} xi ≥ 0,

∀i ∈ {1, 2, 3} vi ≥ 0}

is v = 0,x = 0, a = 0, X3
E

= X .
Hence the objective f4 is nonessential.

b)
F3(x) = [x1 + 3x2, 2x1 + x2,−3x1 − x2]T

f4 = 3x1.
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Step 1. Like in a).
Step 2. There is (v1 + v2 + v3)max = ∞ in the problem

Max{v1 + v2 + v3 : −C(x − 1a) + v = 0, a ≥ 0, ∀i ∈ {1, 2} xi ≥ 0,

∀i ∈ {1, 2, 3} vi ≥ 0}.

Step 3. If we know that intX 6= ∅, then X3
E
6= X and the objective function f4

is essential. Otherwise, we do not know whether f4 is essential or not.
It is easy to check that the condition (5) does not hold. Therefore by using

the method from Gal, Leberling (1977) we also cannot verify whether f4 is
essential or not.

Example 3 Let the set X satisfy the assumption A1. The vector-valued func-
tion Fn and the objective function fn+1 are given by

F2(x) = [x1 − 3x2 − x3, 2x2 + 3x3]T

f3 = 2x1 − 4x2 + x3.

According to the method from Gal, Leberling (1977) the objective function f3 is
nonessential, since it is a linear combination of the other two objective functions
(with α1 = 2 and α2 = 1). Now we use our method.

Step 1. In the problem

Max{v1 + v2 + v3 : −C(x − 1a) + v = 0, a ≥ 0, ∀i ∈ {1, 2, 3} xi ≥ 0,

∀i ∈ {1, 2, 3} vi ≥ 0}

there is (v1 + v2 + v3)max = ∞. Since we do not know the set X , we cannot go
to Step 5. Hence in this problem we cannot use our method.

6. Conclusions

As mentioned in the introduction, there are theoretical and practical reasons for
developing a method to test if a given objective function is nonessential. One
such method, for linear problems, was given by Gal and Leberling in 1977. In
this paper we present a new method. From the examples in Section 5, it is clear
that the effectiveness of both methods depends on the particular problem under
consideration.
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