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1. Introduction

A polydynamical system on a smooth manifold M is defined by a finite number
of vector fields v1, · · · , vn, n ≥ 2. These vector fields are called admissible

velocities. Locally, near a point of the phase space, the system can be written
in the classical form

ẋ = v(x, u)

where x is a local smooth coordinate, ẋ = dx/dt, v(x, u) is the velocity of the
motion at the point x under the value u of the control parameter, v(·, i) = vi,
1 ≤ i ≤ n, u ∈ {1, · · · , n}, n ≥ 2.

An admissible motion x : t 7→ x(t) ∈ M passing through a point x0 ∈ M of
its trajectory is defined as a solution of the Cauchy problem

ẋ = v(x, u(t)), x(t0) = x0

where u : t 7→ u(t) ∈ {1, · · · , n} is a piecewise constant function called an
admissible control.

When the admissible velocities depend additionally on a parameter, we get
a family of polydynamical systems. Its admissible velocities are such families of
vector fields.

Given a family of polydynamical systems, a point of the product space of
the phase space by the parameter space is a stationary strategy point if the zero
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velocity belongs to the convex hull of all the admissible velocities at that point.
The stationary domain is the set of all such points.

The stationary domain plays an important role on the study of various
control problems. For example, in a generic 2-dimensional case, its interior
(closure) coincides with the interior (closure, respectively) of local transitivity
zones, Davydov (1994, 1995). In the case of time averaged optimization on a
1-dimensional manifold, for any point of this domain there exists an admissible
motion providing an averaged profit that equals the value of the density at that
point (Moreira, 2005). That motivates the epithet ”stationary strategy” for
such a point. Besides, in time averaged optimization on the circle, stationary
strategies can provide the optimal profit (Arnold, 2002) and belong to one of
two types (stationary strategies and periodic motions) inside which the optimal
strategy can be found (Davydov, Mena-Matos, 2007).

For 1-parameter families of control systems and of profit densities on a 1-
dimensional manifold, the classification of generic singularities of the stationary
domain was obtained in Moreira (2005, 2006) for polydynamical case and in
Davydov, Mena-Matos (to appear) for the general case. Here we describe this
classification for families of polydynamical sytems with 2- and 3-dimensional
parameter and generalize the results in Moreira (2005, 2006) concerning the
generic singularities of the stationary domain for any natural k. Although the
proofs are based on the same ideas, it becomes more complex to prove the
transversality conditions and to identify equivalent stationary domains. Besides,
this generalization involves a heavier framework on the statement of the results.

2. Singularities of the stationary domain

The product space of the phase space M by the parameter space is naturally
fibred over the parameter, that is, with fibres Fp = M × {p}, for every pa-
rameter value p. Two objects of the same nature defined on a fibred space
are F−equivalent if one of them can be carried out to the other by a fibred
diffeomorphism, i. e., by a diffeomorphism that sends fibres to fibres.

Consider a family of polydynamical systems on a 1-dimensional manifold
and denote by Z the union of the zeros of all the admissible velocities on the
product space. A point of this set is called a point type AIj

with Ij = (i1, · · · , ij),
(all j, i1, · · · , ij are nonnegative integers and 0 ≤ i1 ≤ · · · ≤ ij), if at this point
the germ of the set Z is F -equivalent to the germ at the origin of the set

(

xi1+1 +

i1
∑

l=1

plx
i1−l

)

j
∏

l=2



xil+1 +

|Il|
∑

m=|Il|−il

pmx|Il|−m



 = 0

where x and p1, p2, . . . are local coordinates along the phase space and the
parameter space, respectively, Il = (i1, · · · , il), 1 ≤ l ≤ j and |Il| = l − 1 + i1 +
· · · + il.
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On the space of our objects (families of vector fields, families of polydynami-
cal systems, etc.) we introduce the fine smooth Whitney topology. A property is
generic (or holds generically) if it holds for any element of some open everywhere
dense subset.

Theorem 1 Generically, every point of the set Z of a k-parameter family of

polydynamical systems on a 1-dimensional manifold is of one of the types AIj

with |Ij | ≤ k.

Theorem 2 Consider the space of k-parameter families of polydynamical sys-

tems on a 1-dimensional manifold, with k ≤ 3. Generically, the germ of the

stationary domain of a family at any boundary point is, up to F-equivalence,

the germ at the origin of one of the sets from the second column of:

- Table 1, if k = 1,
- Tables 1 and 2, if k = 2,
- Tables 1, 2 and 3, if k = 3.

Moreover, the germs of the stationary domains of a generic family, and of any

other sufficiently close to it, can be reduced one to another by F-equivalence

close to the identity.

In these tables, the third and the fourth columns show the type of the point
and the restriction on the number of admissible velocities, respectively.

Table 1.

N. Singularities Type n

1 x ≤ 0 A0 ≥ 2
2± ±(x2 + p1) ≤ 0 A1 ≥ 2
3± ±x(x + p1) ≤ 0 A0,0 2
4± x ≤ 0 ∨ ±(x + p1) ≤ 0 ≥ 3

Table 2.

N. Singularities Type n

5 x3 + p1x + p2 ≤ 0 A2 ≥ 2
6 x(x2 + p1x + p2) ≤ 0 A0,1 2
7± x ≤ 0 ∨ ±(x2 + p1x + p2) ≤ 0 ≥ 3
8∗ x(x + p1) ≤ 0 ∨ x(x + p2) ≤ 0 A0,0,0 3
8± ±x(x + p1) ≤ 0 ∨ x(x + p2) ≥ 0
9± x ≤ 0∨x+p1 ≤ 0∨±(x+p2) ≤ 0 ≥ 4

Observe that Tables 2 and 3 correspond to the singularities of the stationary
domain at points type AIj

with |Ij | = 2 and 3, respectively. Naturally, for any
k > 1, the generic Table k consists of singularities of the stationary domain at
points type AIj

with |Ij | = k.
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Table 3.

N. Singularities Type n

10± ±(x4 + p1x
2 + p2x + p3) ≤ 0 A3 ≥ 2

11± ±x(x3 + p1x
2 + p2x + p3) ≤ 0 A0,2 2

12± x ≤ 0 ∨ ±(x3 + p1x
2 + p2x + p3) ≤ 0 ≥ 3

13± ±(x2 + p1)(x
2 + p2x + p3) ≤ 0 A1,1 2

14∗ x2 + p1 ≤ 0 ∨ x2 + p2x + p3 ≤ 0 ≥ 3
14± ±(x2 + p1) ≤ 0 ∨ x2 + p2x + p3 ≥ 0
15± ±x(x + p1) ≤ 0 ∨ x(x2 + p2x + p3) ≤ 0 A0,0,1 3
16±± x ≤ 0 ∨ ±(x + p1) ≤ 0 ∨±(x2 + p2x + p3) ≤ 0 ≥ 4
17±± x(x + p1) ≤ 0 ∨±x(x + p2) ≤ 0 ∨±x(x + p3) ≤ 0 A0,0,0,0 4
18∗ x ≤ 0 ∨ x + p1 ≤ 0 ∨ x + p2 ≤ 0 ∨ x + p3 ≤ 0 ≥ 5
18± x ≤ 0 ∨ x + p1 ≤ 0 ∨±(x + p2) ≤ 0 ∨ x + p3 ≥ 0

3. Proofs

In this section, the main results are proved.

3.1. Proof of Theorem 1

The following statement is useful.

Lemma 1 Generically, every equilibrium point1 of a k-parameter family of vector

fields on a 1-dimensional manifold is an equilibrium point type Al with 0 ≤ l ≤ k.

Proof. In a fixed coordinate system we can consider a vector field as a function.
F -equivalence acts differently on the field and on the respective function but
preserves their zero levels. But in a generic case the germ of a k-parameter fam-
ily of smooth functions on the line at any point of its zero level is F -equivalent
to the germ at the origin of either x or xl+1 + p1x

l−1 + · · · + pl, 1 ≤ l ≤ k
(Arnold, Varchenko, Gusein-Zade, 1985). Consequently, in a generic case every
equilibrium point of a k-parameter family of vector fields on a 1-dimensional
manifold is a point of one of the types Al with 0 ≤ l ≤ k

Now let us prove the theorem. For a k-parameter family of polydynamical sys-
tems with n admissible velocities, any point of the set Z has to be an equilibrium
point of exactly j admissible velocities vα1

, · · · , vαj
, where j, α1, · · · , αj are nat-

ural numbers not greater than n. Due to this lemma, generically this point is of
type Ai1 for vα1

, ..., Aij
for vαj

, where i1, · · · , ij are nonnegative integers. We
can always suppose that 0 ≤ i1 ≤ · · · ≤ ij .

1an equilibrium point of a family of vector fields is a point where the family vanishes
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Thus, by applying the Mather Division Theorem (Golubitsky, Guillemin,
1986), we reduce this set near this point by F -equivalence to the set

(

xi1+1 +

i1
∑

l=1

plx
i1−l

)

j
∏

l=2



xil+1 +

|Il|
∑

m=|Il|−il

rm(p)x|Il|−m



 = 0

near the origin (x = 0, p = 0); where all rm are smooth functions vanishing at
the origin.

Finally, Thom Transversality Theorem (Golubitsky, Guillemin, 1986) implies
that |Ij | ≤ k and that the map

p 7→ (p1, · · · , pi1 , ri1+1(p), · · · , r|Ij |(p), p|Ij |+1, · · · , pk)

has maximum rank at the origin. Consequently, by selecting new coordinates

pl = rl(p), i1 + 1 ≤ l ≤ |Ij |

we get the needed normal form of the set Z near the point under consideration,
proving Theorem 1.

3.2. Proof of Theorem 2

At a boundary point of the stationary domain at least one of the admissible
velocities has to vanish and all the other that do not vanish must have the same
direction (Moreira, 2006).

When there is exactly one admissible velocity vanishing at the point under
consideration then, in a generic case, this point is of one of the types Al = 0,
0 ≤ l ≤ k, due to Lemma 1. That leads to the singularities 1, 2±, 5 and 10± of
Tables 1, 2 and 3.

If the considered point is an equilibrium point of exactly j ≥ 2 admissible
velocities then all the singularities are obtained as an immediate consequence
of Theorem 1 and by the following reasoning: if there are just j admissible
velocities then, in some coordinate system, the stationary domain is the set of
points where at least two admissible velocities have opposite directions; if there
are more admissible velocities, we must include in the former stationary domain
the region where the direction of the previous velocities is opposite to the one
of all the other admissible velocities at that point.

The stability of the stationary domain up to small perturbations of a generic
family of polydynamical systems follows immediately from the transversality
conditions used to conclude the genericity of Theorem 1
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