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Abstract: The paper studies the realization problem for series
and parallel connections of nonlinear single-input single-output sys-
tems, described by higher order differential equations. Necessary
and sufficient conditions are given for the existence of the classical
state space realization in both cases. It is proved that post- and
parallel compensators are of no help in overcoming non-realizability.
Results are illustrated by an example.
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1. Introduction

It is well known that, unlike the linear systems, not all nonlinear higher or-
der input-output (i/o) differential equations can be transformed into the clas-
sical state space form. The realization problem for continuous-time nonlin-
ear systems has been extensively studied in van der Schaft (1987), Crouch,
Lamnabhi-Lagarrigue (1988, 1995), Delaleau, Respondek (1995), Moog, Zheng,
Liu (2002), Glad (1988) and in Kotta, Mullari (2005) the different approaches
have been compared. For other topics, studied for nonlinear composite systems,
see Willems (1997), Kawski (2000), Rudolph (2000), Delaleau, Rudolph (1998)
and Sontag, Ingalls (2002).

This paper studies the series and parallel connections of two subsystems de-
scribed by nonlinear i/o differential equations with respect to realizability and
realization in the classical state space form. Unlike many other topics, this prob-
lem was first studied in the discrete-time domain. In Nõmm (2003) the necessary
and sufficient realizability conditions for series and parallel connections of two
subsystems were given together with the constructive procedures (up to finding
the integrating factors and integrating the one-forms) to find the state equa-
tions. Nõmm et el. (2004) demonstrated how to construct a post-compensator

1This work was partly supported by Estonian Science Foundation grant Nr 5405
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or a feedback to overcome non-realizability of the control system and to make
the composite system realizable. Finally, in Nõmm, Kotta, Tõnso (2005) imple-
mentation of the procedures in the computer algebra system Mathematica was
described that allows one to find either pre-, post-, or parallel compensators
that make a composite system realizable if the original control system is not.

Our goal is to extend a part of those results to the continuous-time domain.
The results presented will demonstrate once again that similarity between non-
linear continuous- and discrete-time systems is limited and in some area the
results surprisingly differ from each other.

The paper is organized as follows. Section 2 describes the series and parallel
connections of two subsystems and gives the problem statement. It also recalls
the mathematical tools and earlier results on realizability that will be used to
study realizability of composite systems. Necessary and sufficient realizability
conditions, together with procedures to find the state equations are developed
in Section 3. In Section 4 we discuss the possibility to use pre-, post- or par-
allel compensators to overcome non-realizability. An example is discussed in
Section 5. Conclusions are drawn in the last section.

2. Problem statement and mathematical tools

Consider a nonlinear single-input single-output system described by the follow-
ing differential equation

Σobj : y(n) = φ((y, . . . , y(n−1), u, . . . , u(s)) (1)

where u is a real-valued scalar input, y is a real-valued scalar output, φ is a
meromorphic function defined on R

n+s+1, n and s are nonnegative integers,
n > s. A classical state-space representation of the form

ẋ = f(x, u), x ∈ R
n,

y = h(x)
(2)

is called a realization of (1) if the external behavior of two systems coincides,
where the behavior of (1) or (2) is the set of all pairs (u, y) that satisfy (1) or
(2) (for some trajectory x), respectively. An input-output system is said to be
realizable if there exists a realization of the form (2).

For a series connection of two systems, (1) and

Σpst : ỹ(m) = ψ((ỹ, . . . , ỹ(m−1), y, . . . , y(p)) (3)

we understand a composite system so that the output of system (1) is the
input for system (3). In (3), y is a real-valued scalar input, ỹ is a real-valued
scalar output, ψ is a meromorphic function defined on IRm+p+1, m and p are
nonnegative integers, m > p. A series connection of a system and a post-
compensator will be denoted by ΣS . A series connection of a system with
pre-compensator will be denoted ΣSP . Composition of systems (1) and (3) is
shown schematically in Fig. 1.
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Figure 1. Series connection of a system and a post-compensator

For a parallel connection of two systems, (1) and

Σpar : ȳ(m) = γ(ȳ, . . . , ȳ(m−1), u, . . . , u(p)) (4)

we understand a composite system with the same input u and with the output
ŷ = y + ȳ being the sum of the outputs of systems Σobj and Σpar. In (4), u is
a real-valued scalar input, ȳ is a real-valued scalar output, γ is a meromorphic
function defined on IRm+p+1, m and p are nonnegative integers, m > p. Parallel
connection of two systems will be denoted by ΣP . Composition of two systems
(1) and (4) is shown schematically in Fig. 2.
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Figure 2. Parallel connection of two systems

The following problems will be studied in this paper.
1. Find the necessary and sufficient conditions for the series connection of

systems (1) and (3) to be realizable.
2. Find the necessary and sufficient conditions for the parallel connection of

systems (1) and (4) to be realizable.
3. For a non-realizable system Σobj , find, if possible, a pre-, post- or par-

allel compensator such that the respective composition of two systems is
realizable.
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The realization problem for the single-input single-output nonlinear conti-
nuous-time system in van der Schaft (1987) is studied using the language of
vector fields. We recall now this result and use it later. Let F denote the vector
field associated to system (1)

F = y(1) ∂

∂y
+ . . .+ φ

∂

∂y(n−1)
+ u(1) ∂

∂u
+ . . .+ v

∂

∂u(s)
(5)

where v = u(s+1). Let K denote the field of meromorphic functions on a fi-
nite number of variables {y, . . . y(n−1), u . . . , u(s), v(k), k ≥ 0}. The increasing
sequence of distributions {Sk} of

E = spanK

{ ∂

∂y
, . . . ,

∂

∂y(n−1)
,
∂

∂u
, . . . ,

∂

∂u(s+1)

}

is defined by

S1 = spanK{
∂

∂u(s+1)
}

Sk+1 = S̄k + [F, S̄k ∩ ker dy ∩ ker du], k = 1, . . . , s+ 1,

(6)

where S̄k denotes the involutive closure of the distribution Sk, and [F, Sk] de-
notes the distribution spanned by all Lie brackets [F,X ], with X a vector field,
contained in Sk. The following theorem states the necessary and sufficient con-
ditions for system (1) to be realizable.

Theorem 1 (van der Schaft, 1987) The i/o differential equation (1) is locally
realizable in the classical state space form iff all the distributions S1, . . . , Ss+2

are involutive.

While the result of this theorem is valid only locally it can be easily gen-
eralized to hold generically i.e. to hold almost everywhere, except on a set of
measure zero.

3. Realization of composite systems

Consider a series connection ΣS of system (1) and a post-compensator (3),
depicted in Fig. 1. To simplify the notation, we suppose that p ≤ s. Associate
with ΣS an extended state-space system ΣSe with input v(t) = u(s+1) and state
θ(t) = [y, . . . , y(n−1), ỹ(t), . . . , ỹ(m−1), u, . . . u(s)], defined as

θ̇ = fe(θ, v) (7)

where

fe = (θ2, . . . , θn−1, φ(·), θn+2, . . . , θn+m−1, ψ(·), θn+m+2, . . . , θn+m+s+1, v) .
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The realizability conditions of composite system ΣS will be formulated in terms
of the iterative Lie brackets of the vector fields

F̃ = y(1) ∂

∂y
+ . . .+ φ

∂

∂y(n−1)
+ ỹ(1) ∂

∂ỹ
+ . . .

+ ψ
∂

∂ỹ(m−1)
+ u(1) ∂

∂u
+ . . .+ u(s) ∂

∂u(s−1)
+ v

∂

∂u(s)
, (8)

defined by the extended system (7) and ∂/∂u(s+1) . Let K̃ denote now the field
of meromorphic functions in a finite number of variables {θ, v(k), k ≥ 0}. Define
for system (7) the sequence of distributions S̃k of

Ẽ = span
K̃

{ ∂

∂y
, . . . ,

∂

∂y(n−1)
,
∂

∂ỹ
, . . . ,

∂

∂ỹ(m−1)
,
∂

∂u
, . . . ,

∂

∂u(s+1)

}

in analogy with (6):

S̃1 = span
K̃

{ ∂

∂u(s+1)

}

S̃k+1 = ¯̃Sk +
[

F̃ , ¯̃Sk ∩ ker dỹ ∩ ker du
]

, k = 1, . . . , s+ 1.

(9)

Theorem 2 The system ΣS admits generically a state-space realization iff for
1 ≤ k ≤ s + 2 the distributions S̃k defined by (9) for the extended system
ΣSe are involutive. For the realizable system ΣS, the state coordinates xi(θ),
i = 1, . . . , n+m, can be found as the functions whose differential dxi annihilate

the vector fields Lk

F̃

∂

∂u(s)
and

∂

∂u(s+1)
:

〈dxi, L
k

F̃

∂

∂u(s)
〉 = 0, k = 0, . . . , s

〈dxi,
∂

∂u(s+1)
〉 ≡ 0.

(10)

Proof. Sufficiency. Assume that the distributions S̃1, . . . , S̃s+2 are involutive. If
the distribution S̃s+2 is involutive, then it can be expressed as follows (van der
Schaft, 1990)

S̃s+2 = span
K̃

{

Ls

F̃

∂

∂u(s)
, . . . , LF̃

∂

∂u(s)
,

∂

∂u(s)
,

∂

∂u(s+1)

}

. (11)

Because of (11), the functions xi defined by (10) are the invariants of the dis-
tribution S̃s+2:

〈dxi, S̃s+2〉 ≡ 0. (12)
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Choose n+m functionally independent functions xi, satisfying condition (12).
This can be always done since the number of functionally independent invariants
of any involutive distribution equals the dimension n+m+s+2 of the manifold
(where the distribution is defined) minus the dimension s+2 of the distribution.
According to (9), S̃s+1 ⊂ S̃s+2 which, together with (12), implies

〈dxi, S̃s+1〉 ≡ 0. (13)

Taking the time derivative of equation (13), we obtain

〈dẋi, S̃s+1〉 = −〈dxi,
˙̃Ss+1〉, (14)

where the dot over a symbol means the Lie derivative with respect to the vector-

field F̃ 1. From (9), ˙̃Ss+1 ⊂ S̃s+2 and taking also into account (12), the right
hand side of (14) equals zero. The latter yields

〈dẋi, S̃s+1〉 = 0. (15)

According to van der Schaft (1990), in the new coordinates
(

x, u, . . . , u(s+1)
)

,

S̃s+1 = span
K̃

{ ∂

∂u(1)
, . . . ,

∂

∂u(s)
,

∂

∂u(s+1)

}

and together with (15) the latter means that dẋi annihilates the vector fields
∂/∂u(k), k = 1, . . . , s, which is possible if and only if ẋi, i = 1, . . . , n + m, do
not depend on u(1), . . . , u(s).

Necessity. Assume that ΣS has a classical state space realization. Conse-
quently, there exist an extended coordinate transformation for ΣSe that pre-
serves the control related coordinates:

Φ(y, . . . , y(n−1), ỹ, . . . , ỹ(m−1), u, . . . , u(s)) = (x(θ), u, . . . , u(s)) (16)

such that

ẋi = fi(x, u).

In coordinates (16) the vector field (8) for the extended system (7) takes the
following form:

F̃ =

n+m
∑

i=n

fi

∂

∂xi

+ u(1) ∂

∂u
+ . . .+ v

∂

∂u(s)
,

1Due to the fact that vector field F̃ is an operator of total time derivative, the Lie derivative

L
F̃

G and time derivative Ġ are identical where G is an arbitrary tensor object.
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and therefore

Lk

F̃

∂

∂u(s)
= (−1)k ∂

∂u(s−k)
, k = 1, . . . s.

From direct computation (see (9)), in the new coordinates, for k = 1, . . . , s

S̃k+2 = span
K̃

{

(−1)k ∂

∂u(s−k)
, . . . ,

∂

∂u(s)
,

∂

∂u(s+1)

}

,

see also van der Schaft (1990). Obviously, distributions S̃1, . . . , S̃s+2 are invo-
lutive.

Consider now the parallel connection ΣP of systems (1) and (4), depicted
in Fig. 2. To simplify the notation, we suppose that p ≤ s. Associate with
Σp an extended state-space system ΣPe with input v(t) = u(s+1) and state
θ(t) = [y, . . . , y(n−1), ȳ(t), . . . , ȳ(m−1), u, . . . u(s)] defined as

θ̇ = fe(θ, v) (17)

where

fe = (θ2, . . . , θn−1, φ(·), θn+2, . . . , θn+m−1, γ(·), θn+m+2, . . . , θn+m+s+1, v) .

The realizability condition for the composite system Σp will be formulated in
terms of the iterative Lie brackets of the vector fields

F̂ = y(1) ∂

∂y
+ ...+φ

∂

∂y(n−1)
+ ȳ(1) ∂

∂ȳ
+ ...+γ

∂

∂ȳ(m−1)
+u(1) ∂

∂u
+ ...+v

∂

∂u(s)

defined by the extended system (17), and ∂/∂u(s+1). Let K̂ denote now the field
of meromorphic functions in a finite number of variables {θ, v(k), k ≥ 0}. Define
for system (17) the sequence of distributions Ŝk of

Ê = span
K̂

{ ∂

∂y
, . . . ,

∂

∂y(n−1)
,
∂

∂ȳ
, . . . ,

∂

∂ȳ(m−1)
,
∂

∂u
, . . . ,

∂

∂u(s+1)

}

in analogy with (6)

Ŝ1 = span
K̂

{

∂
∂u(s+1)

}

Ŝk+1 =
¯̂
Sk + [F̂ ,

¯̂
Sk ∩ ker dŷ ∩ ker du], k = 1, ..., s+ 1 .

(18)

Theorem 3 The system ΣP admits generically a state-space realization iff for
1 ≤ k ≤ s + 2 the distributions Ŝk defined by (18) for the extended system
ΣPe are involutive. For the realizable system ΣP , the state coordinates xi(θ),
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i = 1, . . . , n+m can be found as the functions whose differential dxi annihilate

the vector fields Lk

F̂

∂

∂u(s)
and

∂

∂u(s+1)
:

〈dxi, L
k

F̂

∂

∂u(s)
〉 = 0, k = 0, . . . , s

〈dxi,
∂

∂u(s+1)
〉 = 0.

The proof of this theorem is similar to that of Theorem 2 and is therefore
omitted.

4. An attempt to overcome non-realizability

Suppose system (1) does not admit a classical state space realization. An in-
teresting question is if it is possible to find either a pre-, post- or parallel com-
pensator (see Figs. 3, 1 and 2, respectively) such that the composite system
is realizable in the classical state space form. In the discrete-time case, for an
arbitrary non-realizable higher order i/o difference equation it is always possible
to construct a pre-, post- or a parallel compensator such that the resulting series
composition will be realizable (Nõmm, Kotta, Tõnso, 2005). Furthermore, the
series connection that results from pre-compensation is i/o equivalent to the
series connection that results from post-compensation. As we will demonstrate
below, this is not the case for continuous-time systems. While it is always pos-
sible to find a pre-compensator that will make the composite system realizable,
there is no way to overcome non-realizability by applying a post- or parallel
compensator. This shows a deep difference between the continuous and discrete
time cases and is due to the difference between the properties of derivative and
shift operators.

� � � � �

v u y
Σpre Σobj

ΣSP

Figure 3. Series connection of the pre-compensator and the system
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4.1. Case of the series connection

Theorem 4 For any non-realizable system of the form (1) there always exists
a pre-compensator

u(r) = v, r ≤ s

such that the series connection is realizable.

Proof. Note that though we cannot realize every i/o equation in the classical
state space form, one can always write down the so-called extended state equa-
tions that depend, besides the inputs, also on their r time derivatives. In the
worst case we can take r = s which will guarantee that the i/o system that
relates v to y will be realizable. The realization in this case is of course, nothing
else than the extended system that corresponds to the i/o equation (1). The
actual value of r depends on the first noninvolutive distribution in the sequence
of distributions Sk. The proof comes from applying Delaleau and Respondek
(1995) result on lowering the time derivatives of inputs in the extended state
space equation. In case one can lower the highest input derivative up to order
r, one needs only a pre-compensator of order r.

Theorem 5 If system (1) is not realizable, then there does not exist a post-
compensator of the form

ỹ(r) = y, r ∈ IN (19)

such that the series connection is realizable.

Proof. We will demonstrate that if Sl is the first non-involutive distribution of
the original system, then S̃l is also the first non-involutive distribution of the
composite system and therefore, adding the post-compensator is of no help in
making the system realizable.

Define by M the manifold with coordinates {y, . . . , y(n−1), u, . . . , u(s)} and
let M̃ be the manifold with coordinates {ỹ, . . . , ỹ(n+r−1), u, . . . , u(s)}. Con-
structing the series connection via the post-compensator (19) corresponds to
defining the immersion Φ : M → M̃ that retains the input coordinates

Φ : u(λ) 7−→ u(λ) λ = 0, . . . , s (20)

and relates the new and old output coordinates as follows

Φ : y(i) −→ ỹ(r+i), i = 0, . . . , n− 1.

The vector field (8) for the composite system takes now the form

F̃ = F ∗ + TΦ(F ), (21)
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where

F ∗ := ỹ(1) ∂

∂ỹ
+ . . .+ ỹ(y) ∂

∂ỹr−1
,

and the image of vector field F onto manifold TM̃

TΦ(F ) = ỹ(r+1) ∂

∂ỹ(r)
+ . . .+ φ ◦ Φ

∂

∂y(n+r−1)
+ u(1) ∂

∂u
+ . . .+ v

∂

∂u(s)
.

In a similar manner as for the original system, we can define the distributions
Sk for the composite system

S̃k+1 = ¯̃Sk +
[

(

F ∗ + TΦ(F )
)

,
( ¯̃Sk ∩ ker dỹ ∩ ker du

)

]

. (22)

Vector fields P and P̃ defined on tangent bundles of the manifolds M and
M̃ respectively, are said to be Φ-related, if the tangent map TΦ : TM → TM̃
maps the vector field P uniquely to vector field P̃ .

We will prove next by induction that the vector fields Lk
F

∂

∂u(s)
and Lk

F̃

∂

∂u(s)

are Φ-related for k = 1, . . . , s+ 1. Due to (21),

LF̃

∂

∂u(s)
= LF∗

∂

∂u(s)
+ LTΦ(F )

∂

∂u(s)
, LF∗

∂

∂u(s)
= 0

and therefore, from (20)

LF̃

∂

∂u(s)
= LTΦ(F )

(

TΦ
( ∂

∂u(s)

)

)

= TΦ
(

LF

∂

∂u(s)

)

.

The latter equality comes from

TΦ[P1, P2] = [TΦ(P1), TΦ(P2)] (23)

(see proposition (2.30) in Nijmeijer and van der Schaft, 1990). Therefore, for
k = 1, the relation holds. Assuming now that

Lk

F̃

∂

∂u(s)
= TΦ

(

Lk
F

∂

∂u(s)

)

(24)

holds for k, we will demonstrate that relation (24) holds also for k + 1. From
direct computation and (21)

Lk+1

F̃

∂

∂u(s)
= LF̃

(

Lk

F̃

∂

∂u(s)

)

=
[

F̃ , TΦ
(

Lk
F

∂

∂u(s)

)]

=
[

F ∗, TΦ
(

Lk
F

∂

∂u(s)

)]

+
[

TΦ(F ), TΦ
(

Lk
F

∂

∂u(s)

)]

(25)
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where because of (21)

[

F ∗, TΦ
(

Lk
F

∂

∂u(s)

)]

= 0.

Therefore (25) yields

Lk+1

F̃

∂

∂u(s)
=

[

TΦ(F ), TΦ
(

Lk
F

∂

∂u(s)

)]

= TΦ
(

Lk+1
F

∂

∂u(s)

)

. (26)

Assume now, that Sl is the first non-involutive distribution. If Sl−1 is invo-
lutive, then (see van der Schaft, 1990)

Sl = Sl−1 + spanK

{

Ll−2
F

∂

∂u(s)

}

where

Sl−1 = spanK

{

Ll−3
F

∂

∂u(s)
, . . . , LF

∂

∂u(s)
,

∂

∂u(s)
,

∂

∂u(s+1)

}

.

Since, van der Schaft (1990)

Lξ
F

∂

∂u(s)
= (−1)ξ ∂

∂u(s−ξ)
+

ξ
∑

j=1

γξ,j(·)
∂

∂u(n−j)
,

the direct computation shows that non-zero Lie brackets of the vector fields

Lξ
F

∂

∂u(s)
, ξ = 1, . . . , l − 2, can not be the linear combination of these vector

fields, and therefore, they do not belong to Sl. So, if a distribution Sl is non-
involutive, then necessarily

[

Ll−2
F

∂

∂u(s)
, Lq

F

∂

∂u(s)

]

6= 0 (27)

for some q = 0, . . . , l − 3.

From (22) we obtain

S̃k+2 = span
K̃

{

TΦ
(

Lk
F

∂

∂u(s)

)

, . . . , TΦ
(

LF

∂

∂u(s)

)

, TΦ
( ∂

∂u(s)

)

,
∂

∂u(s+1)

}

k = 0, 1, . . . , l − 2.

We next prove by induction that for k = 1, . . . , l − 2 the distribution S̃k+2

is the image TΦ(Sk+2) of distribution Sk+2 :

S̃k+2 = TΦ
(

Sk+2

)

. (28)
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Obviously, S̃1 and S̃2 are involutive and S̃1 = TΦ(S1), S̃2 = TΦ(S2). There-
fore, (28) holds for k = 0. Assuming now that (28) holds for k, and S̃k is
involutive we will show next that (28) also holds for k+ 1. Really, according to
(22)

S̃k+1 = S̃k +
[

(F ∗ + TΦ(F )), S̃k

]

=

TΦ(Sk) +
[

F ∗, TΦ(Sk)
]

+
[

TΦ(F ), TΦ(Sk)
]

=

= TΦ
(

Sk + [F, Sk]
)

= TΦ(Sk+1)

since
[

F ∗, TΦ(Sk)
]

= 0.

Now, if Sl is a first non-involutive distribution, then the distribution S̃l =
TΦ(Sl), as its image, can neither be involutive, since according to (23) and (27)
for some q = 0, . . . , l − 3

[

Ll−2

F̃

∂

∂u(s)
, Lq

F̃

∂

∂u(s)

]

= TΦ
(

[

Ll−2
F

∂

∂u(s)
, Lq

F

∂

∂u(s)

]

)

6= 0.

4.2. Case of parallel connection

Unlike the discrete-time case, where for any non-realizable system there always
exists a parallel compensator such that the corresponding composite system is
realizable (Nõmm, Kotta, Tõnso, 2005), continuous-time systems do not enjoy
this property. The following theorem formalizes this fact.

Theorem 6 For a non-realizable system of the form (1) there does not exist a
compensator of the form (4) such that their parallel connection Σp is realizable.

Proof. Since system (1) is non-realizable, there exists an integer l, 3 ≤ l ≤ s+2,
such that the distribution Sl is not involutive, van der Schaft (1987). The se-
quence of distributions Ŝk for the parallel connection ΣP of systems (1) and
(4) is defined by (18). We will demonstrate that if Sl is the first non-involutive
distribution of the original system, then Ŝl is also the first non-involutive distri-
bution of the composite system and therefore, adding the parallel compensator
is of no help in making the system realizable. According to (18), under the
assumption that Ŝl−1 is involutive the distribution Ŝl is given by

Ŝl = span
K̂

{

Ll−2

F̂

∂

∂u(s)
, ...,

∂

∂u(s)
,

∂

∂u(s+1)

}

.

Distribution Ŝl is not involutive iff for some k = 1, . . . , l− 3
[

Ll−2

F̂

∂

∂u(s)
, Lk

F̂

∂

∂u(s)

]

6= 0.
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Due to the structure of functions φ in (1) and γ in (4), the vector field Lk

F̂

∂

∂u(s)
,

k = 1, . . . l − 3 has the following form:

Lk

F̂

∂

∂u(s)
= (−1)k ∂

∂u(s−k)
+

k
∑

i=1

Ξn−i,k

(

y, ..., y(n−1), u, ..., u(s)
) ∂

∂y(n−i)
+

+

k
∑

i=1

Ξ̄m−i,k

(

ȳ, ..., ȳ(m−1), u, ..., u(s)
) ∂

∂ȳ(m−i)
,

where Ξ and Ξ̄ are certain meromorphic functions of their arguments. In other

words, the Lie derivatives are linear combinations of the vector fields
∂

∂u(s−k)
,

∂

∂y(n−i)
, and

∂

∂ȳ(m−i)
, i = 1, ..., k and therefore

[

Ll−2

F̂

∂

∂u(s)
, Lk

F̂

∂

∂u(s)

]

=

[

Ll−2
F

∂

∂u(s)
, Lk

F

∂

∂u(s)

]

+

+(−1)l−2

[

∂

∂u(s−l+2)
,

k
∑

i=1

Ξ̄m−i,k(·)
∂

∂ȳ(m−i)

]

+

+(−1)k

[

∂

∂u(s−k)
,

l−2
∑

i=1

Ξ̄m−i,k(·)
∂

∂ȳ(m−i)

]

+

+

[

l−2
∑

i=1

Ξ̄m−i,k(·)
∂

∂ȳ(m−i)
,

k
∑

i=1

Ξ̄m−i,k(·)
∂

∂ȳ(m−i)

]

. (29)

The non-involutivity of the distribution Sl means, that for some k the first term
in the right-hand side of equation (29) is non-zero. Consequently, the right-hand
side can be zero only if the sum of the remaining three terms would give the same
vector field with the opposite sign. The first term of expression (29) is the linear

combination of vector fields
{ ∂

∂y(n−k)
, ...,

∂

∂y(n)
,
∂

∂u
, ...,

∂

∂u(s)

}

, but the sum of

three remaining terms is the linear combination of vector fields
{ ∂

∂ȳ(m−k)
, ...,

∂

∂ȳ(m)
,
∂

∂u
, ...,

∂

∂u(s)

}

. Consequently, the sum on the right hand side of equation

(29) can never be zero. The latter means that distribution Ŝl is not involutive.

5. Example

Consider the system

y(3) = (y(1) − u)(u(1))2 + u(2). (30)
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The vector field (5), associated to system (30) is

F =y(1) ∂

∂y
+ y(2) ∂

∂y(1)
+

[

(y(1) − u)(u(1))2 + u(2)
] ∂

∂y(2)

+ u(1) ∂

∂u
+ u(2) ∂

∂u(1)
+ u(3) ∂

∂u(2)
.

Compute

LF

∂

∂u(2)
= −

∂

∂u(1)
−

∂

∂y(2)
,

L2
F

∂

∂u(2)
=

∂

∂u
+ 2u(2)(y(1) − u)

∂

∂y(2)
+

∂

∂y(1)

and

S3 = spanK{LF

∂

∂u(2)
,

∂

∂u(2)
,

∂

∂u(3)
},

S4 = spanK

{ ∂

∂u(3)
,

∂

∂u(2)
, LF

∂

∂u(2)
, L2

F

∂

∂u(2)

}

.

Obviously,

[ ∂

∂u(2)
, LF

∂

∂u(2)

]

= 0

which means that S3 is involutive, but since

[

LF

∂

∂u(2)
, L2

F

∂

∂u(2)

]

= −2(y(1) − u)
∂

∂y(1)
6∈ S4, (31)

S4 is non-involutive. Therefore, system (30) is not realizable. Since S3 is invo-
lutive, we can choose the generalized state coordinates

x1 = y

x2 = y(1)

x3 = y(2) − u(1)

such that 〈dxi, Sk〉 = 0 holds for all i = 1, 2, 3 and k = 0, 1. This yields the
generalized state equations

x
(1)
1 = x2

x
(1)
2 = x3 + u(1)

x
(1)
3 = (x2 − u)(u(1))2

that depend on u(1) but not anymore on u(2). Therefore, according to the proof
of Theorem 3 we can introduce the pre-compensator

v = u(1).
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The choice of state coordinates z1 = y, z2 = ẏ, z3 = ÿ − u̇, z4 = u yields the
following state equations for the composite system

z
(1)
1 = z2

z
(1)
2 = z3 + v

z
(1)
3 = (z2 − z4)v

2

z
(1)
4 = v.

Applying to system (30) the post-compensator ỹ(r) = y, we get the composite
system with equations

ỹ(r+3) =
(

ỹ(r+1) − u
)

(u(1))2 + u(1). (32)

The vector field (8), associated to composite system (32) is

F̃ = ỹ(1) ∂

∂ỹ
+. . .+

[

(

ỹ(r+1)−u
)

(u(1))2+u(2)
] ∂

∂ỹ(r+2)
+u(1) ∂

∂u
+u(2) ∂

∂u(1)
+v

∂

∂ü
.

Compute

LF̃

∂

∂u(2)
= −

∂

∂u(1)
−

∂

∂ỹ(r+2)

L2
F̃

∂

∂u(2)
=

∂

∂u
+ 2u(1)

(

ỹ(r+1) − u
) ∂

∂ỹ(r+2)
+

∂

∂y(r+1)
.

Distribution

S̃4 = span
K̃

{ ∂

∂u(3)
,

∂

∂u(2)
, LF̃

∂

∂u(2)
, L2

F̃

∂

∂u(2)

}

is not involutive, since

[

LF̃

∂

∂u(3)
, L2

F̃

∂

∂u(2)

]

= −2
(

ỹ(r+1) − u
) ∂

∂ỹ(r+2)
6∈ S̃4.

6. Conclusions

This paper studies the realization problem for continuous-time composite sys-
tems. Necessary and sufficient conditions for the series and parallel connection
to be realizable are presented together with the procedure to obtain the state
equations. It was proved that unlike the discrete-time case, non-realizability
cannot be overcome by using a post- or parallel compensator.
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