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Abstract: In this paper, rotor speed and position of a Switched
Reluctance Motor (SRM) are controlled using an intelligent control
algorithm. The controller is working based on a PID signal while
its gain is permanently tuned by means of an Emotional Learning
Algorithm to achieve a better control performance. Here, nonlinear
characteristic of SRM is identified using an efficient training algo-
rithm (LoLiMoT) for Locally Linear Neurofuzzy Model as an un-
specified nonlinear plant model. Then, the Brain Emotional Learn-
ing Based Intelligent Controller (BELBIC) is applied to the obtained
model. While the intelligent controller works based on a computa-
tional model of a limbic system in the mammalian brain, its contri-
bution is to improve the performance of a classic controller like PID
without much more control effort. The results demonstrate excellent
improvements of control action in different working situations.

Keywords: intelligent control, emotion based learning, neuro-
fuzzy models, switched reluctance motor.

1. Introduction

Switched reluctance (SR) motors have advantages due to their low cost, simple
rugged construction, hazard-free operation and relatively high torque-mass ra-
tio. They are ideally suited for direct-drive application because of their ability
to produce high torques at very low speeds in contrast with other conventional
motors (Alrifai, Chao and Torrey, 2003; Islam et al., Hwu and Liaw, 2001; Rah-
man et al., 2001; Xu and Wang, 2002). In addition, SR motors can work in a
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wide range of speeds without a noticeable reduction of efficiency. As they can
yield high efficiency in a wide range of speeds with no need for a gearbox, SR
motors are appropriate for use in many kinds of applications such as hybrid elec-
tric vehicles, machine tools, washing machines, fans and etc. Therefore, among
all different kinds of electrical motors, Switched Reluctance Motors (SRM) have
attracted much attention in recent years. SRM is a doubly salient single excited
motor with no windings on rotor. Therefore, it has a high power per volume
ratio. SR motors are designed for operation in deep saturation to increase the
output power density. Due to saturation effect and variation of magnetic re-
luctance, all pertinent characteristics of the machine model (e.g. flux linkage,
inductance, back EMF and produced torque) are highly nonlinear functions of
both rotor position () and phase currents (¢) (Alrifai, Chow and Torrey, 2003;
Islam et al., 2003; Hwu and Liaw, 2001).

Figure 1. Two views of SR motor illustrating its various parts.
1-Frame 2-Stator yoke 3-Stator teeth 4-Windings 5-Air gap 6-Ending windings
7-Endcupping air 8-Rotor teeth 9-Rotor yoke 10-Axial shaft

Therefore, despite their simple mechanical construction (Fig. 1), SRMs need
complex algorithms for control and commutation. Recent progress in intelligent
feedback control and power electronics have led to a renewed interest in SR
motor design problem from both theoretical and industrial points of view as an
attractive alternative for the conventional induction motors. This paper focuses
on solving these complex control problems via an innovative approach: use of
Brain Emotional Learning Based Intelligent Control (BELBIC).

We have used BELBIC (Lucas, Shahmirzadi, Sheikholeslami, 2004; Milasi,
Lucas, Araabi, 2004; Rouhani et al., 2006), our recently developed neuromorphic
controller based on an emotional learning model elaborated in Moren, Balkenius
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(2000), Balkenius, Moren (1998), to produce the control action. Biologically
motivated intelligent computing has been successfully applied to solve complex
problems in recent years,in which model-based approaches to decision making
are being replaced by data-driven and rule-based approaches (Miyazaki et al.,
1998).

In this research a cognitive approach of reinforcement learning is adopted in
which a critic is permanently evaluating the performance of a control system on
a plant. Indeed, for each system state, control performance is assessed based on
an objective function and subsequently, reinforcement (or punishment) signal is
created, which directs the control action by means of a learning algorithm (Lucas
et al., 2000). This cognitive version of reinforcement learning can be interpreted
as “Emotional Learning”. Because, here, the reinforcement (or punishment)
critic plays the role of some emotions such as stress, concern, fear, satisfaction,
happiness and etc. in assessing and evaluating of environmental situations. This
assessment is based on objectives in each concrete application (Lucas et al.,
2000; Inoue, Kawabata, Kabayashi, 1996). Whether called emotional learning
based control or reinforcement learning with critic, the approach is increasingly
implemented in control engineering, robotics and decision support systems and
has led to excellent results (Lucas, Shahmirzadi, Sheikholeslami, 2004; Milasi,
Lucas, Araabi, 2004; Rouhani et al., 2006; Lucas et al., 2000; Inoue, Kawabata,
Kobayashi, 1996; Fatourechi, Lucas, Khaki Sedigh, 2001).

In this paper, an intelligent controller will be applied to speed and posi-
tion control of Switched Reluctance Motor (SRM). First, the nonlinear torque
characteristic of SRM is identified using Locally Linear Model Tree (LoLiMoT)
algorithm for training a neurofuzzy network (Nelles, 1996, 1997) and then Brain
Emotional Learning Based Intelligent Controller (BELBIC) is applied to the
plant. Use of a Neurofuzzy model of SR motor in this work proves the capa-
bility of BELBIC in controlling the plants with unstructured models. Using
the proposed strategy, the speed and position control of switched reluctance has
been tackled. The performance of the proposed controller is compared with that
of a PID controller, which simulation results show better match for BELBIC.
Aforementioned comparison seems to be more reasonable when the structure of
BELBIC in this work is based on PID controller and the contribution of brain
emotional learning will be performance improvement of PID controller.

2. The model of SR motors

The nonlinear properties of the SRMs are divided into two groups: nonlinear an-
gular positioning parameters such as winding inductance, produced torque and
Back EMF, which depend on the rotor angle and nonlinear magnetic characteris-
tics, in which magnetic saturation causes the nonlinear magnetic characteristics.
The modeling of SR motors is usually based on the magnetic-position curves,
which show the linking flux versus phase current and rotor angular position.
The mathematical model of SRM including the electromagnetic equations is
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achieved with considering the magnetic saturation (Alrifai, Chow, Torrey, 2003;
Islam et al., 2003; Hwu and Liaw, 2001). The voltage equation in the motor
phases is:

d);(0,1; d\
i ZJ)+_I

Vi=Bij+ = dt

(1)
where V; is j*" phase winding voltage, i; is j** phase current, ); is linking flux,
R is the ohmic resistance of phase winding and finally A; is leaky linking flux.
In (1) the linking coupling between adjacent windings is neglected. Using the
chain derivation, (1) can be expressed as follows:
. ON(0,15) dij  OXNj(0,i5) dO dN\
V.=Rj, + 22/ 779 4 779N 7 T 2
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which can be written also as

. di; di;
VjZR’Lj-i-me-d—tJ—i-Cw-w—l—Lk-d—tj (3)
where (Lip.) is the increasing inductance and (C,,) is the back EMF coefficient,
and both of them are dependent on the phase current and rotor angular position.
In this equation, (L) is the flux leakage. The produced torque on the shaft is
obtained from the following equation:

T(i,0) = zn: (aggl)ijzcte (4)

j=1

where co-energy is determined as follows:

Wiy = [ 2005.6) (5)
On the other hand, the mechanical equations are defined as follows:

o

w=" 6)
dv 1 .
= = 7 (I.6) =T, — Bw) (7)

where w is angular velocity, (7%) is load torque, (B) is friction coefficient, and
(J) is the moment of inertia. However, finding a lumped function for (7'(4, 6)) is
very difficult and demands numerical (FEM) or experimental data for each cer-
tain motor under study. Many efforts have been made to estimate the produced
torque and linkage flux. However, as highly nonlinear functions, they were not
obtained in the form of precise explicit formulae. On the other hand, neural
networks are able to estimate the highly nonlinear functions via large number
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of neurons and consequently, they are not agile tools in online applications. Fi-
nally, locally linear neurofuzzy models are proven to be able to estimate highly
nonlinear functions using less neurons than conventional neural networks such
as MLP and RBF (Nelles, 1996, 1997; Jalili-Kharaajoo, Ranji, Begherzadeh,
2003). Here, an efficient and fast algorithm for training locally linear neuro-
fuzzy networks entitled (LoLiMoT) will be proposed. LoLiMoT can be used in
rapid training of neurofuzzy networks.

3. Locally linear model tree identification of nonlinear
functions

The network structure of a local linear neurofuzzy model is depicted in Fig. 2.
Each neuron realizes a local linear model (LLM) and an associated validity
function (i.e. fuzzy membership function) that determines the region of validity
of the corresponding LLM. The network output is calculated as a weighted
sum of the outputs of the local linear models, where the validity functions are
interpreted as the operating point dependent weighting factors. The validity
functions are typically chosen as normalized Gaussians.

Figure 2. Network structure of a local linear neurofuzzy model with M neurons
for n, LLM inputs z and n, validity function inputs z

The local linear modeling approach is based on a divide-and-conquer strat-
egy. A complex SRM model is divided into a number of smaller and thus simpler
subproblems, which are solved independently by identifying simple linear mod-
els (Nelles, 1996, 1997; Jalili-Kharaajo, Ranji, Begherzadeh, 2003). The most
important factor for the success of such an approach is the division strategy
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for the original complex problem. This will be done by means of an algorithm
named LoLiMoT (Locally Linear Model Tree).

LoLiMoT is an incremental tree-construction algorithm that partitions the
input space by axis-orthogonal splits (Nelles, 1996). In each iteration, a new
fuzzy rule or local linear model is added to the model. In each iteration of the
algorithm, the validity functions which correspond to the actual partitioning
of the input space are computed as the fuzzy membership functions and the
corresponding rules are optimized by a local weighted least squares technique.

The training algorithm LoLiMoT is found out to be rapid, precise, self tuned
and more user friendly than other conventional methods for training of neuro-
fuzzy networks which makes it more acceptable in online control applications
(Nelles, 1996, 1997; Jalili-Kharaajo, Ranji, Begherzadeh, 2003). The model
based on this training algorithm is used in the following control problem.

For modeling the SRM, input-output data from finite element method or
experiments can be used. Input data are rotor position and applied phase
currents whereas the output is the produced torque. The torque is a function
of phase current and rotor position. Therefore, the estimated function has two
inputs (phase current, rotor position) and one output (produced torque).

Here, according to Fig. 3, a network including 50 neurons yields accurate
results with 1% error. However, a network including 23 neurons with an error
of 2% has been chosen to obtain more rapid performance in online control ap-
plication. Fig. 4 shows normalized error for estimated produced torque in 1400
data sets (0 < i < 50 & —7/4 < 0 < w/4). Fig. 5 depicts the inputs and output
data and Fig. 6 shows the local linear neurofuzzy model.
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Figure 3. Convergence of network output to its target
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Figure 5. The input/output data

It should be noted once more that while performing faster and more precisely
than traditional neural networks (e.g. MLP and RBF), locally linear neurofuzzy
network trained by LoLiMoT presents a much more user-friendly function ap-
proximation method than look up tables. In other words, contrary to look up
tables, in LoLiMoT the user is not obliged to spend much time on finding the
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Figure 6. Local linear neuro-fuzzy model

model parameters by means of trial and error. Indeed, the LoLiMoT training
method finds whole parameters of locally linear neurofuzzy model automatically.
This effect is of a greater importance in online control problems.

4. Brain emotional learning based intelligent controller
(BELBIC)

This research is motivated by the new successes and fruitful application results
of functional modeling of emotions in control engineering, robotics and decision
support systems. Here, a structural model based on the limbic system of mam-
malian brain in decision making and control is used. A network model developed
by Moren and Balkenius (Balkenius, Moren, 1998; Moren, Balkenius, 2000) has
been adopted as a computational model for the performance of Amygdala, Or-
bitofrontal Cortex, Thalamus, Sensory Input Cortex and generally, those parts
of the brain thought to be responsible for processing emotions (Fig. 7).

There are two approaches in intelligent control: indirect and direct. In
the indirect one the intelligent system is exploited to tune the parameters on
the controller block while in the direct approach the intelligent system itself
plays the role of controller. Unlike the previous application in which BELBIC
was the controller block in terms of the direct approach (Lucas, Shahmirzadi,
Sheikoleslami, 2004; Milasi, Lucas, Arrabi, 2004), in this work BELBIC is the
tuner of overall loop gain of controller (Rouhani et al., 2006). Thus, basic per-
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Figure 7. The abstract structure of the computational model mimicking some
parts of mammalian brain

formance of the control system is influenced by the choice of primary controller
block and BELBIC is in charge of overall loop gain tuning for that controller and
generally, online and adaptive improvement of its performance. Of course, this
improvement is admirable just when the final control effort will not be much
more than its value before the performance improvement. In all, emotional
learning based controllers have had an excellent response against uncertainties
while having simple structure and being easily implemented.

As illustrated in Fig. 8, BELBIC is actually a control action generator mech-
anism based on two input signals: Sensory Input (SI) and Emotional Cue (EC).
These two signals can be vectors in general however, in this case, are selected
as two scalar values.

—* Sensory Input Control

' Effort

Error

—+ Emotional Cue

3

Figure 8. Control system configuration using BELBIC
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Emotional learning is mainly taking place in Amygdala and Orbitofrontal
Cortex. The learning rule of Amygdala is given in formula (8):

AG, = k1.max (0, EC — |A]) (8)

where GG, is the gain in Amygdala connection, k; is the learning step in Amyg-
dala and EC and A are the values of emotional cue function and Amygdala
output at each time. The term max in the formula (8) makes the learning
changes, monotonic. It implies that the Amygdala gain can never be decreased
as it is modeled to occur in biological process (Moren, Balkenius, 2000; Balke-
nius, Moren, 1998). In other words, Amygdala can not unlearn the emotional
signal which has been learned previously. Subsequently, the learning rule in
Orbitofrontal Cortex is expressed as follows:

AG, = ky.(—EC) (9)

which is inspired by the original biological process. Subtle deviations in formulae
(8, 9) from the original version are done to make these processes symmetric in
case of need to increase or decrease control effort to approach the set point.
In the above formula, G, is the gain in Orbitofrontal connection, ko is the
learning step in Orbitofrontal Cortex. Finally, the output of the whole model
is calculated as follows:

MO=A-0 (10)

where, O represents the output of Orbitofrontal Cortex. Indeed, BELBIC calcu-
lates the outputs of Amygdala and Orbitofrontal Cortex after receiving sensory
input in formula (11,12) at each time:

A=G,.SI (11)
0 =G,.S1. (12)

Generally Amygdala is responsible for reinforcement and Orbitofrontal Cortex
is responsible for punishment. While Amygdala can never unlearn the emotional
response it ever learned, inhibition of any inappropriate response of BELBIC is
the duty of Orbitofrontal Cortex.

In order to exploit the computational model proposed by Moren and Balke-
nius in control applications, input signals in this model should be carefully built.
In control application, the controller generally receives two signals as input sig-
nals (ST and EC) and yields the control signal via processing them in an online
procedure. Therefore, these two signals have to be chosen in a way that have
an apt interpretation in the closed loop control system.

The proposed structure for BELBIC as an emotional learning based con-
troller is depicted in Fig. 8. In this structure, implemented functions for “Sen-
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sory Input” and “Emotional Cue” blocks are defined as follows:
EC = |MO|.(—W.ée) (13)
SI=W2.€+W3.é+W4./€dt (14)

where EC, MO, SI and e are emotional cue, controller output, sensory input
and output error and the Wj through W, are the gains that must be tuned
offline for designing a satisfactory controller. In the choice of these two signals
(EC, SI) the following principles are taken into consideration:

1. Considering the output signal from BELBIC which is actually Sensory In-
put (SI) with an adaptively variable gain, one may conclude that ST has
to have a “Control Signal” form which is adaptively reinforced (by Amyg-
dala Block) or punished (by Orbitofrontal Cortex) based on Emotional
Cue. Therefore, it is recommended to choose it as a standard function of
output error such as PID. This choice has some benefits, like achieving a
systematic way to tune parameters in the controller, which was the major
difficulty in previous works (Lucas, Shahmirzadi, Sheikholeslami, 2004).
In this way k1 and ks are set at zero in beginning and then coefficients in
ST signal will be found to yield a proper PID controller. Finally, k1 and
ko can be selected to reach the best improvement of PID performance for
the determined EC'. Using this way, a challenge in BELBIC, consisting
in coincident parameter choice, can be solved. Furthermore, the proposed
controller structure is much more reliable because of presence of PID as
a naturally robust classic controller. Particularly, even limited robust-
ness of PID is more desirable for control of systems, which have model
uncertainty, for example due to number of neurons used in system identi-
fication. Using lower number of neurons may be advantageous in reducing
the sensitivity of model to noisy input data and, of course, the volume
of online calculations in control applications. PID coefficients are defined
by trial and error method in this work which can be defined even by an
evolutionary optimization. This PID may not be the best, but it should
be noticed that BELBIC is expected to improve the corresponding PID
controller’s performance adaptively.

2. When EC is a positive number, G, will increase (reinforcement) and
when it is a negative number, G, will increase (punishment). In addition,
a larger absolute value of EC causes a larger variation in reinforcement
and punishment signals. Therefore, EC should have a larger absolute
value when the error is large to motivate the control system to change in
order to improve. Besides, it can be expressed generally that approaching
a lower absolute error magnitude must be reinforced and in other words,
getting far from the set point must be punished. Approaching the set
point can be mathematically described by negative error derivative when
the error is positive and positive error derivative when the error itself is
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negative. The term of —é.e can provide all of aforementioned conditions.
As EC is compared to |A] in (8), it should have a proportional magnitude
to A or MO to make a logical subtraction in (8). Therefore, it has been
multiplied by |MO| to avoid the effect of its sign. Therefore, one can
define the Emotional cue as in equation (13). Performance of BELBIC in
adjusting SR motor’s control gain may be more apparent through Fig. 9.

1 Input

Rotor
et Input Demancded phase oo
point 4 error +torque Currents poed
PID Commutator SR Motor
|
BELBIC

(as a tuner)

Figure 9. Performance of BELBIC in adjusting the gain of SR motor controller

5. Simulation results

In this section, the simulation results of the speed and position control problem
using BELBIC with LoLiMoT identifier will be presented. The model obtained
by algorithm LOLIMOT (Fig. 6) is substituted in equation (7).

Just like in other SR motor control algorithms, produced torque plays the
role of the control effort. Phase currents are calculated according to the de-
manded torque and instant rotor position using a commutation algorithm. In
this commutation algorithm, phase current rises and sets no steeper than a con-
stant value determined by magnetic characteristics of the motor. Choosing the
instant phase current is done with the aim of reaching the highest efficiency.
Fig. 10 depicts the closed-loop system response using PID controller and using
BELBIC as the emotional learning based adaptive PID controller. Comparing
these two sets of results, one can realize that the performance of the system
using BELBIC is considerably better than that of PID controller. The system
responses using BELBIC is faster and BELBIC strategy causes faster and more
precise response for close loop system compared to PID as the base of this intel-
ligent controller. Also BELBIC controller did not make a greater control effort
than PID controller (Figs. 11,12). In a more detailed description of BELBIC
performance, reinforcement (G,) and punishment (G,) signals for speed control
are depicted in Fig. 13. It can be seen that both approach a constant value in
the steady state period. The negative punishment signal just works as a rein-
forcement signal. Why the reinforcement signal can not be negative? Just for
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reasons of mimicking the truth of a mammalian body. Similar results have been
obtained in position control (Figs. 14-17).
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Figure 10. Rotor speed in speed control using BELBIC & PID
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In addition, using PID signal as sensory input which can be reinforced or
punished by BELBIC retains some advantages of PID controller such as robust-
ness. As it is shown in Fig. 18 even when system is subjected to a variable
load torque as noise, the performance of BELBIC is still very good (Fig. 19).
Therefore, it can be claimed that BELBIC has enough robustness against noise
and model uncertainties. Hence, it can be concluded that BELBIC with this
structure based on PID as sensory input can retain many advantages of a con-
ventional controller like PID and operates just like a Brain Emotional Learning
Based Tuned Adaptive PID Controller. In order to study the performance of the
proposed algorithm for emotional learning in the set point tracking, set point
in speed control has been decreased and then increased. Controlled rotor speed
and reinforcement-punishment signals are shown in Figs. 20,21, displaying sym-
metric performance of BELBIC in approaching the set point both in positive
and negative directions. Figs. 18-21 also show the new tuning process once the
system is affected by a new set point or disturbance after reaching the steady
state situation.

Furthermore, the same architecture can be used in other applications, where
the PID controller is replaced by the other conventional control strategies. In
this application, this was not necessary because the persistent modifications
introduced by BELBIC were enough to overcome the limitations of the PID
controller due to the linear nature of the latter.

20

15} 1
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Figure 18. Imposed load torque as noise
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6. Conclusion

In this paper, a Brain Emotional Learning Based Intelligent Controller (BEL-
BIC) was applied to SR motor. To this end, the produced torque of the motor
was estimated using Locally Linear Model Tree (LoLiMoT) algorithm. Then,
BELBIC was applied to the system to tackle the speed and position control



Emotional learning based intelligent speed and position control 93

g 2 ‘ ‘

g ]

S

(2]

G 15 .

=

[0}

E 1 Ga i

L

c

]

o

% 05

8 Go

=

[0}

€ 0y / o o e o o o e

g N S

o

(=]

kS

(] -0.5 | | | |

T 0.2 0.4 0.6 0.8
Time (sec)

Figure 21. Reinforcement and punishment signals for speed control in the above
decreased and increased set point

problem. The closed-loop system performance using BELBIC was compared
with that of PID controller. It was shown that BELBIC could settle faster with
less distortion while its control effort was not much higher than that of a PID
controller. Also, selection of PID signal as sensory input of BELBIC could bring
about some advantages, such as robustness against noise and model uncertain-
ties, besides facilitating tuning. In simulation results, some other characteristics
of the developed intelligent controller, such as its symmetric response to positive
and negative set point approaching were demonstrated. Our use of BELBIC in
this application also encompasses considerable improvement compared to our
previous utilizations of this model, especially in terms of the required control
efforts for achieving desired performance levels.
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