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Abstract: At the end of 19th century Peano discerned vector
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He applied these notions to solve numerous problems. The theo-
rem on necessary conditions of optimality (Regula) is one of these.
The formal language of logic that he developed, enabled him to
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theoretic primitive terms and properties, which was a revolutionary
turning point in the development of mathematics.
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1. Introduction

The aim of this paper is to trace back the evolution of mathematical concepts
in the work of Giuseppe Peano (1858-1932) that are constituents of Regula, that
is, Peano’s theorem on necessary conditions of optimality.

†Commemorating the 150th anniversary of the birth of Giuseppe Peano.
‡The first author gratefully acknowledges a partial support by Dipartimento di Matematica,

Università di Trento.
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Well-known necessary conditions of maximality of a function at a point, are
formulated in terms of derivative of the function and of tangent cone of the
constraint at that point. Consider a real-valued function f : X → R, where X
is a Euclidean affine space, and a subset A of X

Regula (of Optimality) If f is differentiable at x ∈ A and f(x) = max{f(y) :
y ∈ A}, then

〈Df(x), y − x〉 ≤ 0 for every y ∈ Tang(A, x). (1)

The derivative Df(x) is defined to be the vector Df(x) such that

limy→x

f(y) − f(x) − 〈Df(x), y − x〉

|y − x|
= 0. (2)

The affine tangent cone Tang(A, x) of A at x (for arbitrary x∈X) is given by

Tang(A, x) := Lsλ→+∞ (x + λ(A − x)) , (3)

where the upper limit Lsλ→+∞ Aλ of sets Aλ (as λ tends to +∞) is defined by

Lsλ→+∞ Aλ := {y ∈ X : lim infλ→+∞ d(y, Aλ) = 0}. (4)

Of course, d is the distance and in (3), Aλ := x + λ(A − x) := {x + λ(a − x) :
a ∈ A}.

It is generally admitted among those who study optimization, that modern
definition of differentiability was introduced by Fréchet (1911a), of tangent cone
by Bouligand (1932), and of limit of sets by Painlevé (see Zoretti, 1905, p. 8)1.
So we were very surprised to discover that Regula was already known by Peano
in 1887. Indeed, in order to formulate it, one needed to possess the notions of
differentiability and of affine tangent cone, hence also that of limit of sets.

But our surprise was even greater, because not only all these notions were
familiar to Peano at the end of the 19th century, but they were formulated in a
rigorous, mature way of today mathematics, in contrast with the approximated
imprecise style that dominated in mathematical writings of those times, and
often persisted during several next decades.

Impressed by the so early emergence of these notions, we started to peruse
the work of Peano in order to understand the evolution of the ideas that lead
to Regula.

1A Painlevé’s student, Zoretti (1880-1948), attests in Zoretti (1912, p. 145) that Painlevé
introduced both upper and lower limit of a family of sets. Following Zoretti, Hausdorff (1927,
p. 280) and Kuratowski (1928, p. 169) reiterate this attribution to Painlevé. More clearly,
Zoretti calls “set-limit” of a sequence of sets the today’s upper limit; while by “point-limit”
he means “point belonging to the lower limit” of the sequence. Painlevé’s use of the notion of
“set-limit” is dated 1902 in Zoretti (1905, p. 8); on the other hand, one finds in Zoretti (1909,
p. 8) the first occurrence of the notion of “point-limit”, without any reference to Painlevé.
Both “set-limit” and “point-limit” are present also in Zoretti (1912, p. 145).
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All the citations of Peano’s activity, related to the concepts involved in the
optimality conditions, prevalently concern the span of time between the first
appearance of Regula in “Applicazioni Geometriche”(1887) and its ultimate
form in “Formulario Mathematico”2 (1908, p. 335), where Regula is stated
exactly as above.

Tracing back the development and applications of differentiability, tangency,
limit and other concepts, in the work of Peano over the years, we see evolution
and enrichment of their facets. Peano built mathematics axiomatically, based
exclusively on logical and set-theoretic primitive terms and properties. This was
a revolutionary turning point in the development of mathematics. The reduction
of every mathematical object to the founding concept of “set” (genus supremum)
of Cantor, enabled the emergence of new concepts related to properties of sets,
unconceivable otherwise. Early and illuminating examples of the fecundity of
Cantor’s views are in the books Fondamenti per la teorica delle funzioni di
variabili reali of Dini (1878), Calcolo differenziale e integrale of Genocchi and
Peano (1884), and the second edition of Cours d’Analyse of Jordan (1893-96).

To appreciate the novelty of Cantor’s approach to mathematics, we should
remember the opposition of some luminaries of mathematics that existed at the
beginning of the twentieth century. For example, in the address to the Congress
of Mathematicians in Rome in 1908, Poincaré (1909, p. 182) said

Quel que soit le remède adopté [contre le “cantorisme”], nous pou-
vons nous promettre la joie du médecin appelé à suivre un beau cas
pathologique.

This paper is not a definitive word on historical roots of conditions of op-
timality. For instance, a comparison of (1) with the virtual work principle has
still to be addressed3. We have found no evidence of this relationship in the
work of Peano, but it is plausible that he was aware of it (remark that Regula
is placed in Formulario Mathematico within the context of mechanics).

This article concerns several historical aspects. From a methodological point
of view, we are focused on primary sources, and not on secondary founts, that is,
on mathematical facts, and not on opinions or interpretations of other scholars
of history of mathematics. On the other hand, we will avoid to mention, if not
necessary, historical facts that are well-known among those who study optimiza-
tion (see, for example, Rockafellar and Wets, 1997; Borwein and Lewis, 2000;

2The previous four editions of Formulario Mathematico are Formulaire Mathématique
tome 1 (1895), tome 2 (1899), tome 3 (1901) and tome 4 (1903). The first half of the fifth
edition was printed in 1905; the other half in 1908. The “Index and Vocabulary” to Formulario
Mathematico of 1908 was published separately in 1906.

3If a force acting on a material point in equilibrium x, has a potential f , then the virtual
work principle states

δL := 〈Df(x), δx〉 ≤ 0 for each δx,

where δx is a virtual displacement of that point with respect to an ideal constraint A (either
bilateral or unilateral) independent of the time (see, for example, Banach, 1951).
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Aubin, 2000; Aubin and Frankowska, 1990; Hirriart-Urruty and Lemaréchal,
1996; Pallaschke and Rolewicz, 1997).

2. Affine and vector spaces

Applicazioni Geometriche is based on the extension theory (Ausdehnungslehre,
1844 edition) of Grassmann (1894-1911), presented in detail in Peano (1888),
where, forgoing the philosophical aura founding the work of Grassmann, Peano
introduces the modern notion of vector space.

In Grassmann’s work, points and vectors coexist distinctly in a common
structure, together with other objects, like exterior products of points and vec-
tors (see Greco and Pagani, 2007). This subtle distinction was very demanding
in comparison with today habits of mathematicians. Peano maintains the dis-
tinction. For instance, a difference y − x is a vector if both y and x are either
points or vectors; otherwise, it is a point (if x is a vector and y is a point) or a
point of mass −1 (if y is vector and x is a point).

Moreover, Peano follows Grassmann in construction of metric concepts from
the scalar product of vectors (introduced by Grassmann, 1847). Following
Grassmann and Hamilton, he conceives the gradient of a function as a vec-
tor, differently from a common habit (of using the norm of the gradient) that
prevailed at the pre-vectorial epoch 4.

In several papers Peano applies the geometric calculus of Grassmann, for
instance, to define area of a surface (Peano, 1887, p. 164, and 1890a) and to
give in Peano (1897-8) an axiomatic refoundation (today standard) of Euclidean
geometry, based on the primitive notions of point, vector and scalar product.

Peano’s approach to the definition of linear map was slightly different from
(but equivalent to) that commonly adopted nowadays. Peano says that a map
g between spaces is linear if it is additive and bounded, that is, g(x + y) =
g(x) + g(y) for all x and y, and if sup{|g(x)| : |x| < 1} is finite. The reader
has certainly observed that the today condition of homogeneity is substituted
by that of boundedness 5. For Peano, the interest of employing boundedness in
the definition, was to obtain simultaneously a concept of norm (module in his
terminology) on spaces of linear maps.

The norm was useful in his study of systems of linear differential equations,
Peano (1888b); to give a formula for a solution in terms of resolvent, he defines
the exponential of matrix and proves its convergence using the norm (see also
Peano, 1894, and the English translation of Peano, 1888, in Birkhoff, 1973).

4These observations are relevant for the understanding of Peano’s interpretation of the
formula 〈Df(x), y − x〉 ≤ 0 that appears in Regula.

5In other moments (for example, in 4th edition of Formulaire Mathématique (Peano, 1903,
p. 203) Peano adopts a different (but equivalent) definition of linearity, replacing boundedness
with continuity. All these variants are related to the following fundamental lemma (see a
proof in Peano, 1908, pp. 117-118, where Peano quotes Darboux, 1880, footnote of p. 56):“For
an additive function f : Rn → R are equivalent: (1) homogeneity, (2) continuity and (3)
boundedness on bounded sets”.
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As other new theories, the theory of vector spaces was contested by many
prominent mathematicians. Even those (few) who adopted the vector approach,
were not always entirely acquainted with its achievements. To perceive the
atmosphere of that time, we give an excerpt from the introduction of Goursat
to Leçons de géométrie vectorielle of Bouligand (1924):

Si le calcul vectoriel a été un peu lent à pénétrer en France, il est
bien certain que la multiplicité des notations et l’abus du symbolisme
ont justifié en partie la défiance de nos étudiants. Or, dans le livre
de M. Bouligand, le symbolisme est réduit au minimum, et l’auteur
n’hésite pas à revenir aux procédés habituels du calcul quand les
méthodes lui paraissent plus directes. [...]

M. Bouligand a devisé son ouvrage en trois parties, consacrées
respectivement aux opérations vectorielles en géométrie linéaire, en
géométrie métrique et aux opérations infinitésimales.

A decisive role in the dissemination of vector spaces had a book Space-Time-
Matter (Weyl, 1918, for details see Zaddach, 1988, 1994).

3. Differentiability

In Applicazioni Geometriche Peano (1887, p. 131) says that a vector u is a
derivative at a point x of a real-valued function f defined on a finite-dimensional
Euclidean affine space X , if there exists a vector ε(y) such that

f(y) − f(x) = 〈y − x,u + ε(y)〉 with limy→x ε(y) = 0. (5)

The reader recognizes in (5) the Taylor formula of order 1 and, on the other hand,
the characterization of derivability, given in Carathéodory (1964, p. 119): “f is
derivable at x if there is a function ϕ continuous at x such that f(y) − f(x) =
〈y − x, ϕ(y)〉 for every y” 6.

In Formulario Mathematico (Peano, 1908, p. 334 and 330) the derivative
u is denoted by Df(x) and is defined by (2) and, more generally, one finds
a definition of differential of map between finite-dimensional Euclidean vector
spaces, namely if f : R

m → R
n then a derivative of f at x is the linear map

Df(x) : R
m → R

n (referred to as Jacobi-Grassmann derivative by Peano, 1908,
p. 455, and called nowadays the Fréchet derivative of f at x) such that

limy→x

f(y) − f(x) − Df(x)(y − x)

|y − x|
= 0. (6)

In giving this definition, Peano refers to the second edition of Ausdehnungs-
lehre of Grassmann (1894-1911, vol. 2, p. 295) and to an article De determi-
nantibus functionalibus (1841) of Jacobi (1881-91, vol. 3, p. 421). Actually, the
citation of Jacobi refers to the concept of Jacobian.

6Remarkably, this Carathéodory reformulation “leads to some sharp, concise proofs of
important theorems: chain rule, inverse function theorem, ...” (see Kuhn, 1991) and “makes
perfect sense in general linear topological spaces” (see Acosta and Delgado, 1994).
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With respect to Peano’s quotation of Grassmann, our verification of the
source leads the following facts. For a map f : R

m → R
n, Grassmann defines a

differential df(x) at x, as a map from R
m to R

n, by

df(x)(v) := limq→0
f(x + q v) − f(x)

q
. (7)

Grassmann proves that if the differential df(x) exists at every x and is radially
continous7 in variable x for each fixed v ∈ V , then f is radially continuous, the
differential is linear in v, and that (7) becomes the partial derivative when v is
an element of the canonical base. Moreover, he claims that the chain rule holds.
In contrast to the comments of Kannenberg (author of English translation of
Ausdehnungslehre, see Grassman, 2000, p. 398), this claim is, however, false, as
can be seen from Acker and Dickstein example (1983, Ex. 2.5, p. 26)8.

In various moments of his activity, Peano studied the concept of derivative.
His contributions are very rich and diversified, and concern

(1) strict derivative (see Peano, 1884a,b, and 1892)9,
(2) Taylor formula with infinitesimal remainder (called Peano remainder) (see

Genocchi, 1884 p. XIX, or Stolz, 1893, pp. 90-91),
(3) asymptotic development and Taylor formula (Peano, 1891)10,
(4) derivation of measures (Peano, 1887, p. 169, see also Greco, 2007) and
(5) mean value theorem.

Here is an excerpt concerning the latter. In Calcolo Geometrico Peano
(1888a) gives a mean value theorem for vector-valued functions f of one vari-
able11, that is, if f has an (n+1)-derivative f (n+1) on [t, t+h], then there exists
an element k of the closed convex hull of the image of interval [t, t+h] by f (n+1)

such that

f(t + h) = f(t) + hf ′(t) + · · · +
hn

n!
f (n)(t) +

hn+1

(n + 1)!
k. (8)

7A map g is radially continuous at x if for every vector v the map h 7−→ g(x + hv) is
continuous at 0. Grassmann adopts the term continuous to denote “radially continuous”.

8A counterexample to Grassmann’s claim is given by the functions f and g of two real

variables defined by g(x, y) := (x, y2), f(x, y) := x3y

x4+y2
and f(0, 0) := 0. These functions were

used in Acker and Dickstein (1983) to invalidate a similar claim for Gateaux differentiability.
9Peano (1884a) observes the equivalence between continuity of derivative f ′ of f at x and

“strict derivability of f at x” (that is, lima,b→x
f(b)−f(a)

b−a
= f ′(x)). Peano (1884b) notices

that the uniform convergence of the difference quotient function
f(x+h)−f(x)

h
in variable x to

f ′(x) (as h tends to 0) amounts to continuity of derivative f ′ in variable x. As observed in
Mawhin (1997, p. 430), Peano formulates an approximation property of primitives equivalent
to Kurzweil integrability of all the functions having a primitive.

10If f is a function, and P (h) = a0 + a1h + · · · + anhn is a polynomial function such that
f(x+h)−P (h) = hnη(h) where η(h) tends to 0 with h, then the Peano derivative of order n
is n!an (see, for example, Weil, 1995, Svetic and Volkmer, 1998). Peano gives an example of
function that is discontinuous in every neighborhood of x, and for which the Peano derivatives
of all order exist.

11Peano gives a proof (by scalarization) in Peano (1895-6, p. 975).
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Here is another surprise in terms of the first appearance of modern notions
of convex set12 and convex hull, as we thought that it was Minkowski (1896)
who introduced these concepts for the first time.

Among the first who studied the modern notion of differentiability of func-
tions of several variables, were Stolz (1893, §.IV 8, p. 130), Pierpont (1905,
p. 269), W.H. Young (1910, p. 21). Besides, Maurice Fréchet (1911) 13 defined
the differential (of a function of two variables) as the linear part of the approx-
imation

f(a + h, b + k) − f(a, b) = hp + kq + hρ(h, k) + kσ(h, k), (9)

where ρ and σ tend to 0 with h and k.
Peano’s definition liberates the concept of derivative from the coordinate

system and from partial derivatives. The definitions (5)-(6) are coordinate-free
in contrast with the predominant habit of the epoch.

We have found no clear evidence in the mathematical literature of an ac-
knowledgement of Peano’s definition of derivative, with the exception of the
paper by Wilkosz (1921), where Peano is cited jointly with Stolz.

4. Limits of variable sets

In Applicazioni Geometriche, Peano (1887, p. 30) introduces a notion of limit
of straight lines, planes, circles and spheres (that depend on parameter). He
considers these objects as sets, which leads him to extend the definition of limit
to variable figure (in particular, curves and surfaces).

A variable figure (or set) is a family, indexed by the reals, of subsets Aλ of
an affine Euclidean space X . Peano (1887, p. 302) defines the lower limit of a
variable figure by

Liλ→+∞ Aλ := {y ∈ X : limλ→+∞ d(y, Aλ) = 0}. (10)

In the edition of Formulario Mathematico (Peano, 1908, p. 237) we find the
lower limit together with a definition of upper limit of a variable figure:

Lsλ→+∞ Aλ := {y ∈ X : lim infλ→+∞ d(y, Aλ) = 0}, (11)

which we have already seen in (4). Besides, he writes down (p. 413) the upper
limit as

Lsn→∞ An =
⋂

n∈N

cl
⋃

k≥n

Ak, (12)

12Peano employs the concept of convex set for the first time in axiomatic foundation of
geometry (Peano, 1889, p. 90, Axioma XVII); more precisely, his Axiom XVII of continuity
states: Let A be a convex set of points, and let x, y points such that x ∈ A and y /∈ A.
Then there exists a point w ∈ xy (the open segment between x and y) such that xw ⊂ A and
wy ∩ A = ∅.

13A month after the publication of Fréchet (1911a), in which he presented the concept of
differentiability, he publishes the note Fréchet (1911b) in order to recognize the priority of
Young.
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where the closure cl A of a set A, is defined (p. 177) by14

clA := {y ∈ X : d(y, A) = 0}. (13)

In several papers, Peano analyzes the meanings that are given in mathe-
matics to the word limit (see, for example, Peano, 1894b): least upper bound,
greatest lower bound of a set, (usual) limit and adherence of sequences and
functions.

Peano conceives the “upper limit of variable sets” as a natural extension
of the adherence of functions. He attributes to Cauchy the introduction of
adherence, see Peano (1894b, p. 37) where he says:

Selon la définition de la limite, aujourd’hui adoptée dans tous les
traités, toute fonction a une limite seule, ou n’a pas de limite. [. . . ]

Cette idée plus générale de la limite [the adherence] est claire-
ment énoncée par Cauchy; on lit en effet dans son Cours d’Analyse
algébrique, 1821, p. 13: ≪Quelquefois...une expression converge à-la-
fois vers plusieurs limites différentes les unes des autres≫, et à la
page 14 il trouve que les valeurs limites de sin 1

x
, pour x = 0, con-

stituent l’intervalle de −1 à +1. Les auteurs qui ont suivi Cauchy,
en cherchant de préciser sa définition un peu vague, se sont mis dans
un cas particulier.

Peano studies the notion of “lower limit of variable sets”, in particular, in
a celebrated article on existence of solutions of a system of ordinary differen-
tial equations (see Peano, 1888). Peano carries on the proof of existence in a
framework of logical and set-theoretic ideography, thanks to which he is able to
detect the axiom of choice15.

The awareness of the problem of “limits of variable sets” was present at
the turn of the 20th century (for example see Manheim, 1964).16 The book of
Kuratowski (1948, p. 241)17 has definitely propagated the concept of limit of
variable sets.

14Peano defined closure, interior and boundary earlier (1887, pp. 152-158); later, these no-
tions were introduced by Jordan (1893-96). Peano relates the closure with the concept of
closed set of Cantor: the closure of A is the least closed set including A.

15Peano proves the existence of a solution with the aid of approximated solutions. In order
to obtain a solution, he is confronted with a problem of non-emptiness of the lower limit of a
sequence of subsets of a finite-dimensional Euclidean space. To this end, he needs to select an
element from every set of the sequence. At that point he realizes that he would need to make
infinite arbitrary choices, which, starting from the paper of Zermelo (1904) is called Axiom of
choice. He avoids to apply a new axiom, which is not present in mathematical literature and,
consequently, the tradition does not grant it. Instead, using the lexicographic order, he is able
to construct a particular element of every set, because the sets of the sequence are compact.

16Borel (1903) (see also Manheim, 1964, p. 114) suggests a “promising” notion of limit of
straight lines and of planes, that is, 16 years after the introduction of the limit of arbitrary
sets in Peano(1887).

17Kuratowski, by his work, establishes the use of upper and lower limits in mathematics,
that are called today upper and lower Kuratowski limits.
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Among the first mathematicians who studied the limits of variable sets are
Burali-Forti (1895)18, Zoretti (1905, p. 8, 1909), Janiszewski (1911), Hausdorff
(1914, p. 234)19, Vietoris (1922)20, Vasilesco (1925), Cassina (1926-27) and Ku-
ratowski (1928).

5. Tangent cones

In Applicazioni Geometriche, Peano (1887, pp. 58, 116) gives a metric definition
of tangent straight line and tangent plane, then reaches, in a natural way, a
unifying notion: that of affine tangent cone:

tang(A, x) := Li λ→+∞ (x + λ(A − x)) . (14)

Later, in Formulario Mathematico (Peano, 1908, p. 331), he introduces another
type of tangent cone, namely

Tang(A, x) := Lsλ→+∞ (x + λ(A − x)) . (15)

To distinguish the two notions above, we shall call the first lower affine tangent
cone and the second upper affine tangent cone 21. Peano lists several properties
of the upper tangent cone. If A is a subset of a Euclidean affine space X , then

(1) If x /∈ clA then Tang(A, x) = ∅;
(2) If x is isolated in A then Tang(A, x) = {x} ;
(3) If x ∈ cl(A\ {x}) then Tang(A, x) 6= ∅;
(4) If x ∈ intA then Tang(A, x) = X ;
(5) If y ∈ Tang(A, x) \ {x} then x + R+(y − x) ⊂ Tang(A, x);

18Burali-Forti studies only lower limits.
19In the celebrated Grundzüge der Mengelehre Hausdorff (1914) studies both upper and

lower limits. Moreover, he defines a metric on the set of bounded subsets of a metric space X
(Hausdorff distance) and proves that the related convergence of bounded subsets {Aλ}λ to A
(as λ → +∞) is equivalent to Lsλ→+∞ Aλ ⊂ A ⊂ Liλ→+∞ Aλ, if X is compact.

20Kuratowski limits, Hausdorff distance and Vietoris’s topology (see Reitberger, 2002,
p. 1234) are milestones in the search of notions of limit of variable sets.

21Of course, tang(A, x) is defined with the aid of lower limit, while Tang(A, x) with the
aid of the upper limit of the same homothetic sets. Hence, tang(A, x) ⊂ Tang(A, x). For the
covenience of the reader, in order to compare the two definitions, we give their alternative
descriptions in terms of limits of sequences:

tang(A, x) = x +



v : ∃ {xn}n ⊂ A such that x = lim
n→∞

xn and v = lim
n→∞

xn − x

1/n

ff

; (16)

Tang(A, x)=x+



v :∃ {λn}n→0+, ∃ {xn}n ⊂A such that x= lim
n→∞

xn and v= lim
n→∞

xn−x

λn

ff

.

The second formula is standard, while we have never seen in the literature the first one, (16).
We have not found in Peano’s papers any example of set A, for which the cones above are
different. Here is another, perhaps most intuitive, formula for the ”lower” affine tangent cone:

tang(A, x) = x+
˘

v : ∃γ : [0, 1] → A such that x = γ(0), γ′(0) exists and v = γ′(0)
¯

. (17)

Notice that tang(A, x) = Tang(A, x) in case of differential manifold A (at x).
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(6) If A ⊂ B then Tang(A, x) ⊂ Tang(B, x);
(7) Tang(A ∪ B, x) = Tang(A, x) ∪ Tang(B, x);
(8) Tang(Tang(A, x), x) = Tang(A, x).22

As usual, after abstract investigation of a notion, Peano considers significant
special cases; he calculates the upper affine tangent cone in several basic figures
(closed ball, curves and surfaces parametrized in a regular way).

Various types of tangent cones have been studied in the literature. Their
definitions depend on variants of the limiting process. The most known contri-
bution to the investigation of tangent cones is due to Bouligand (1932, p. 60).
One can find a mention about other contributors in a paper of Fréchet (1937,
p. 241):

Cette théorie des “contingents et paratingents” dont l’utilité a été
signalée d’abord par M. Beppo Levi, puis par M. Severi, mais dont
on doit à M. Bouligand et à ses élèves d’avoir entrepris l’étude
systématique.

The diffusion of the concept of tangent cone was due mainly to Saks (1937,
pp. 262–263), who adopted the definition of Bouligand, and to Federer (1959,
p. 433), who introduced it in a modern vector version: if x ∈ A then define the
upper vector tangent cone:

Tan(A, x) := {0}∪
{

u 6= 0 : ∀ε > 0, ∃y ∈ A, 0 < |y − x| < ε and

∣

∣

∣

∣

y − x

|y − x|
−

u

|u|

∣

∣

∣

∣

< ε

}

.
(18)

Federer does not give any reference of the origin of the definition (18)23. Notice
that

Tang(A, x) = x + Tan(A, x). (19)

Neither Whitney (1972, chap. 7), intruducing six variants of vector tangent
cone among which one recognizes the upper vector tangent cone discussed above
(18), cites anybody.

We can say that, as far as tangent cones are concerned, main references are,
respectively, Bouligand in optimization theory, Ferderer in geometric measure
theory and calculus of variations and Whitney in differential geometry. A rare

22One finds in the 4th edition of Formulaire Mathématique, Peano (1903, p. 296) the same
definition of upper affine tangent cone and, besides, the eight properties (1)–(8). Besides, one
finds both lower and upper limit of variable sets, Peano (1903, p. 289).

We have not found in any of five editions of Formulario Mathematico (= collection of logical
and set-teoretical formulas) any other property on tangent cones. Today other fundamental
properties are well-known: (1) x ∈ cl A ⇐⇒ Tang(A, x) 6= ∅ ⇐⇒ x ∈ Tang(A, x); (2)
x ∈ cl(A \ {x}) ⇐⇒ Tang(A, x) \ {x} 6= ∅; (3) Tang(A, x) = Tang(A ∩B, x), if x ∈ int B; (4)
Tang(A, x) = Tang

`

cl(A), x
´

; finally, (5) Tang(A, x) is closed (because it is an upper limit of
variable sets).

23The book of Saks (1937) is among bibliographic references in Federer 1959.
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direct reference to Peano’s definition is that of Guido Ascoli24 (1952), who writes
about Peano’s work in Ascoli (1955, pp. 26-27):

[...] il merito maggiore [...] specialmente delle Applicazioni [Geomet-
riche], non sta tanto nel metodo usato, quanto nel contenuto; ché vi
sono profusi, in forma cos̀ı semplice da parere definitiva, idee e risul-
tati divenuti poi classici, come quelli sulla misura degli insiemi, sulla
rettificazione delle curve, sulla definizione dell’area di una superfice,
sull’integrazione di campo, sulle funzioni additive d’insieme; ed altri
che sono tuttora poco noti o poco studiati. Ci basti indicare tra
questi il concetto di limite di una figura variabile, destinato a ricom-
parire, con altro nome di autore, quarant’anni dopo presso la scuola
di ”geometria infinitesimale diretta” del Bouligand, e l’originalissima
definizione di ”figura tangente ad un insieme in un punto”, che ha
fornito a chi scrive, or è qualche anno, la chiave di una difficile ques-
tione asintotica.

The contingent cone of Bouligand (1932) is defined by Saks (1937, p. 262)
as follows: if x is an accumulation point of A, then the contingent cone of A at
x is given by

Cont(A, x) := {l : l tangent half-line to A at x} (20)

where a half-line l issued from x is said to be tangent to A at x if there exist a
sequence {xn}n ⊂ A and a sequence of half-lines {ln}n issued from x such that
x 6= xn ∈ ln, x = limxn and the angle between ln and l tends to 0.

Peano’s upper affine tangent cone, Federer’s upper vector tangent cone and
Bouligand’s contingent cone describe the same intuitive concept in terms, re-
spectively, of points of affine space (via blow-up), of vectors (via directions of
tangent half-lines) and of half-lines (via limits of half-lines)25. Finally, observe
that the tangent cone is built on the notion of distance by Peano, of norm by
Federer and of angle (consequently, of scalar product) by Bouligand.

24One should not confound Guido Ascoli(1887-1957) with Giulio Ascoli (1843-1896), the
latter known because of the Ascoli-Arzelà theorem. Guido proved the geometric version,
Ascoli (1933), of the Hahn-Banach theorem for separable normed spaces; a year later, Mazur
(1933) proved it for arbitrary normed spaces.

25Bouligand, in spite of his knowledge of vector spaces (see, for example, Bouligand, 1924)
and his introduction to the French translation of Weyl (1918), does not use vectors while
defining the contingent cone. In the preface to Félix (1957) Bouligand appraises Peano’s
(1888a) Calcolo Geometrico: ≪Pour être moins incomplet, il faudrait encore citer l’exposé
repris par Peano en 1886 [sic!] du calcul extensif de Grassmann, [et] l’article fondamental
malgré sa brièveté paru en 1900 [sic!] dans l’Enseignement Mathématique au sujet des relations
d’équivalence, rédigé par Burali-Forti (Sur quelques notions dérivées de la notion d’égalité et
leurs applications dans la science).≫ Burali-Forti was Peano’s assistant and friend; the article
quoted by Bouligand is Burali-Forti (1899).
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6. Maxima and minima

In Applicazioni Geometriche (1887, pp. 143-144) Peano analyzes the variation
of a real-valued function around a point in a particular direction p in terms of
the scalar product of the derivative at that point with p.

Theorem 6.1 Let f be a real-valued function such that Df(x̄) 6= 0. Let p be a
unit vector and {xn}n be a sequence so that

x̄ = limn→∞ xn and p = limn→∞

xn − x̄

‖xn − x̄‖
. (21)

If 〈Df(x̄),p〉 > 0, then f(xn) > f(x0) for almost all n; (22)

if 〈Df(x̄),p〉 < 0 then f(xn) < f(x0) for almost all n. (23)

Peano specifies that {xn}n in Theorem 6.1 can be taken either arbitrarily or
constrained by some conditions, for example, lying on a line or on a surface.

If {xn}n is included in a set A, then p is one of the directions (unitary
vectors) of the upper vector tangent cone of A at x. By taking all such sequences,
we get all the directions of the upper vector tangent cone (18) of A at x. Hence,
by relating (21) to upper vector tangent cone, Theorem 6.1 implies

Theorem 6.2 (Regula of Maximality) If f is differentiable at x ∈ A and f(x) =
max{f(y) : y ∈ A}, then〈Df(x), y − x〉 ≤ 0 for every y ∈ Tang(A, x).

Theorem 6.3 (Regula of Minimality) If f is differentiable at x ∈ A and
f(x) = min{f(y) : y ∈ A}, then〈Df(x), y − x〉 ≥ 0 for every y ∈ Tang(A, x).

One finds both Theorems 6.2 and 6.3 in Peano (1908, p. 335). It is worthwhile
to note that Peano’s use of Regula exhibits the normality of gradient with respect
to the constraint.

Optimization problems were among principal interests of Peano. His re-
search with regard to these problems was intense, continual and influential.
The precision with which Peano studied maxima and minima was notorious.

Hancock, student of Weierstrass, is the author of a booklet: Lectures on
the theory of maxima and minima of functions of several variables. Weierstrass’
theory (1903). In the second edition of this book he says (Hancock, pp. iv-v):

In the preface to the German translation by Bohlmann and Schepp
of Peano’s of Calcolo differenziale e principii di calcolo integrale,
Professor A. Mayer [editor of Math.Annalen together with Felix
Klein] writes that this book of Peano not only is a model of precise
presentation and rigorous deduction, whose propitious influence has
been unmistakably felt upon almost every calculus that has appeared
(in Germany) since that time (1884), but by calling attention to old
and deeply rooted errors, it has given an impulse to new and fruitful
development.
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The important objection contained in this book [Calcolo differen-
ziale e principii di calcolo integrale] (Nos. 133-136) showed unques-
tionably that the entire former theory of maxima and minima needed
a thorough renovation; and in the main Peano’s book is the original
source of the beautiful and to a great degree fundamental works of
Scheeffer, Stolz, Victor v.Dantscher, and others, who have developed
new and strenuous theories for extreme values of functions. Speak-
ing for the Germans, Professor A. Mayer, in the introduction to the
above-mentioned book, declares that there has been a long-felt need
of a work which, for the first time, not only is free from mistakes
and inaccuracies that have been so long in vogue but which, besides,
so incisively penetrates an important field that hitherto has been
considered quite elementary.

7. Appendix

All articles of Peano are collected in Opera Omnia (Peano, 2002), a CD-ROM,
edited by S. Roero. Selected works of Peano were assembled and commented
in Opere scelte (Peano, 1957-9) by Cassina, a student of Peano. A few have
English translations in Selected Works (Peano, 1973). Regrettably, even fewer
Peano’s articles have a public URL and are freely downloadable.

One finds the following articles of Peano:

in Opere scelte, vol. 1:
(1884a), (1884b), (1888b), (1890a), (1890b),
(1891), (1892), (1894a), (1894b)

in Opere scelte, vol. 2: (1889)

in Opere scelte, vol. 3: (1896), (1898)

in Selected Works :
(1887, pp. 152–160, 185–7),
(1888a, pp. 1–32),
(1890a), (1894a), (1896).

Along with the bibliography we attach several pages of Applicazioni Geo-
metriche (Peano, 1887) and of Formulario Mathematico (Peano, 1908) corre-
sponding to Regula, limits of variable sets, derivatives and tangent cones.

For reader’s convenience, we provide a chronological list of some mathemati-
cians mentioned in the paper, together with biographical sources.

The html files with biographies of methematicians listed below with an as-
terisk (∗) can be attained at University of St Andrews’s web-page

http://www-history.mcs.st-and.ac.uk/history/Biographies/{Name.html}
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Jacobi, Carl (1804-1851)∗ Hausdorf, Felix (1868-1942)∗

Hamilton, William R. (1805-1865)∗ Borel, Emile (1871-1956)∗

Grassmann, Hermann (1809-1877)∗ Carathéodory, Constantin (1873-1950)∗

Weierstrass, Karl (1815-1897)∗ Levi, Beppo (1875-1961),
Genocchi, Angelo (1817-1889)∗ see May (1973, p. 238)
Jordan, Camille (1838-1922)∗ Fréchet, Maurice (1878-1973)∗

Mayer, Adolph (1839-1907)∗ Severi, Francesco (1879-1961)∗

Darboux, Gaston (1842-1917)∗ Zoretti, Ludovic (1880-1948),
Stolz, Otto (1842-1905)∗ see http://catalogue.bnf.fr

Ascoli, Giulio (1843-1896), Weyl, Hermann (1885-1955)∗

see May (1973, p. 62) Ascoli, Guido (1887-1957),
Cantor, Georg (1845-1918)∗ see May (1973, p. 63)
Dini, Ulisse (1845-1918)∗ Janiszewski, Zygmunt (1888-1920)∗

Dantscher von Kollesberg, Victor Bouligand, Georges (1889-1979),
(1847-1921), see http://catalogue.bnf.fr

see A. M. Monthly, 29 (1922) Vietoris, Leopold (1891-2002),
Klein, Felix (1849-1925)∗ see Reitberger (2002)
Poincaré, Henri (1854-1912)∗ Wilkosz, Witold (1891-1941),
Goursat, Edouard (1858-1936)∗ see http://www.wiw.pl/matematyka/

Peano, Giuseppe (1858-1932), Biogramy/Biogramy 21.Asp

see Kennedy (1980) Banach, Stefan (1892-1945)∗

Scheeffer, Ludwig (1859-1885), Kuratowski, Kazimierz (1896-1980)∗

see Math. Annalen (1886) 26, p. 197 Cassina, Ugo (1897-1964),
Burali-Forti, Cesare (1861-1931)∗ see Kennedy (1980, p. 222)
Young, William H. (1863-1942)∗ Vasilesco, Florin (1897-1958),
Painlevé, Paul (1863-1933)∗ see May (1973, p. 368)
Pierpont, James (1866-1938), Saks, Stanislaw (1897-1942)∗

see Bull. A.M.S. 45 (1939), p. 481 Mazur, Stanislaw (1905-1981)∗

Hancock, Harris (1867-1944), Whitney, Hassler (1907-1989)∗

see May (1973, p. 185) Birkhoff, Garrett (1911-1996)∗
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Pura Appl. 10, 33-81, 203-232. http://www.springerlink.com

Ascoli, G. (1952) Sopra un’estensione di una formula asintotica di Laplace
agli integrali multipli. Rend. Sem. Mat. Pad. 21, 209-227.
http://www.numdam.org

Ascoli, G. (1955) I motivi fondamentali dell’opera di Giuseppe Peano. In:
A. Terracini, ed., In memoria di Giuseppe Peano, Liceo Sc. Cuneo, 23-30.

Aubin, J.-P. (2000) Applied Functional Analysis. Wiley.
Aubin, J.-P. and Frankowska, H. (1990) Set-Valued Analysis. Birkhäuser.
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leurs applications à la limite d’un ensemble variable.Math. Annalen 47, 20-
32. http://gdzdoc.sub.uni-goettingen.de/sub/digbib/loader?did=D77340
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Fréchet, M. (1911a) Sur la notion de différentielle. C.R.A.Sc. Paris 152,
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1950-1951, 18 April 1911. http://gallica.bnf.fr/ark:/12148/bpt6k3105c



Necessary optimality conditions 507

Figure 3. Peano (1887, pp. 143-144): Regula
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Figure 11. Peano (1908): calculus of a tangent plane
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Figure 13. Peano (1908, p. 335): regula n. 72.2 (min) and n. 72.3(max)
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