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1. Introduction

The equilibrium problem was proposed in Blum and Oettli (1994) and has been
intensively studied since then. This problem setting proves to be general and
convenient for applying various mathematical tools in investigation. It con-
tains many optimization-related problems such as variational inequalities, com-
plementarity problems, vector optimization, fixed point and coincidence point
problems, the Nash equilibrium problem, etc. As usual for various fields of re-
search, solution existence is one of the most important issues and so is the aim
of numerous papers (see e.g., Bianchi et al., 1997; Ansari et al., 2001; Lin and
Chen, 2005; Hai and Khanh, 2007a) and the references therein. To include more
practical problems in a unified framework, a number of extended problem set-
tings have been considered: variational inclusion problems (Luc and Tan, 2004;
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Tan, 2004; Hai and Khanh, 2006), systems of equilibrium or quasiequilibrium
problems (Ansari et al., 2000 and 2002; Hai and Khanh, 2006; Lin, 2006), sys-
tems of variational inclusion problems (Hai and Khanh, 2007b). Noor and Oettli
(1994) introduced a symmetric quasiequilibrium problem, which proved to be
more suitable in modeling several practical situations. For instance, problems
of finding equilibria of constrained non-cooperative games are conveniently ex-
pressed as special cases of symmetric quasiequilibrium problems, compare, e.g.,
Aubin (1979), p. 282. In Fu (2003) this result was extended from the scalar
case to the vector case in Hausdorff locally convex spaces. Farajzadeh (2006)
supplied a further extension to Hausdorff topological vector spaces with several
assumptions being relaxed.

Our goal is to extend the problem considered in Noor and Oettli (1994), Fu
(2003) and Farajzadeh (2006) from the single−valued case to the multivalued
case, in Hausdorff topological vector spaces. Since we use mathematical tools
other than that employed in Noor and Oettli (1994), Fu (2003) and Farajzadeh
(2006), the results here for this more general problems are different from the
ones in these references, when applied to their particular cases. However, our
several assumptions are more relaxed than the corresponding ones in Noor and
Oettli (1994), Fu (2003) and Farajzadeh (2006).

In the sequel, if not otherwise specified, let X and Y be Hausdorff topological
vector spaces, Z be a topological vector space. Let K, D and C be nonempty
closed convex subsets of X , Y and Z, respectively, with the interior intC being
nonempty. Let S, A : K×D → 2K , T, B : K×D → 2D, F : K×D×K → 2Z and
G : D×K ×D → 2Z be multivalued mappings , with S(x, y) and T (x, y) being
nonempty and convex, ∀(x, y) ∈ K × D. The two symmetric quasiequilibrium
problems under our consideration are as follows

(SVQEP1) find (x̄, ȳ) ∈ K × D such that x̄ ∈ cl S(x̄, ȳ), ȳ ∈ cl T (x̄, ȳ) and

F (x, ȳ, x∗) ∩ (Z\ − intC) 6= ∅, ∀x ∈ S(x̄, ȳ), ∀x∗ ∈ A(x̄, ȳ),

G(y, x̄, y∗) ∩ (Z\ − intC) 6= ∅, ∀y ∈ T (x̄, ȳ), ∀y∗ ∈ B(x̄, ȳ);

(SVQEP2) find (x̄, ȳ) ∈ K × D such that x̄ ∈ cl S(x̄, ȳ), ȳ ∈ cl T (x̄, ȳ) and

F (x, ȳ, x∗) ⊆ Z\ − intC, ∀x ∈ S(x̄, ȳ), ∀x∗ ∈ A(x̄, ȳ),

G(y, x̄, y∗) ⊆ Z\ − intC, ∀y ∈ T (x̄, ȳ), ∀y∗ ∈ B(x̄, ȳ).

If F and G are single-valued, C is a closed convex cone with intC 6= ∅ and
A(x, y) = {x} and B(x, y) = {y}, for all (x, y) ∈ K ×D, then our two problems
reduce to problem (SVQEP) investigated in Farajzadeh (2006). If, in addition,
X and Y are locally convex and C and D are compact, the two problems reduce
to problem (SVQEP) of Fu (2003). If, furthermore, Z = R and C = R+, these
problems coincide with the scalar problem studied in Noor and Oettli (1994).

If Y = X, G(y, x̄, y∗) ≡ C, B(x, y) ≡ D and T (x, y) = S(x, y) then these
problems are reduced to multivalued vector quasiequilibrium problems consid-
ered by many authors. If, more specifically, F (x, y, x∗) =

(

H(y), x − x∗

)

where



Existence conditions in symmetric multivalued vector quasiequilibrium problems 521

H : X → 2L(X,Z) and (h, x) is the value of linear mapping h at x, then the two
problems become a multivalued vector quasivariational inequality.

The layout of this paper is as follows. In the remaining part of this section
we recall some definitions and preliminaries needed in the sequel. Section 2
is devoted to the main existence results for our problems. Examples are also
provided there to see that the imposed assumptions are essential, relaxed and
not hard to be checked, and hence the results are more advantageous than those
of recent works in many situations. In Section 3, applications of the main results
in some typical situations are presented.

Recall first some notions. Let X and Y be topological spaces and G : X →
2Y be a multifunction. G is called upper semicontinuous (usc) at x0 if for each
open set U ⊇ G(x0), there is a neighborhood N of x0 such that U ⊇ G(N).
We say that G satisfies a certain property in a subset A ⊆ X if G satisfies it at
every point of A. If A = X we omit “in X” in the statement.

Recall that a point x ∈ X is called a maximal element of F : X → 2Y ,
where X and Y are topological spaces, if F (x) = ∅. The main machinery for
proving existence results in this paper is the following result which is a slightly
weaker form of a theorem in Deguire et al. (1999).

Lemma 1 Let i = 1, 2, let Xi be a Hausdorff topological vector space, Ki ⊆ Xi

be nonempty convex subset and let Qi : K = K1×K2 → 2Ki have convex values.
Assume that the following conditions hold

(i) Q−1
i (xi) is open in K for all xi ∈ Ki and i = 1, 2;

(ii) xi /∈ Qi(x) for each x = (x1, x2) and i = 1, 2;

(iii) if K is not compact, then there exists a nonempty compact subset K of
K and, ∀i = 1, 2, a nonempty compact convex subset Bi of Ai such that,
for each x ∈ K \ K, there exists i ∈ {1, 2} such that Bi ∩ Qi(x) 6= ∅.

Then, there exists x̄ ∈ K such that Qi(x̄) = ∅ for all i = 1, 2.

2. Main results

The following relaxed quasiconvexity will be assumed in our main existence
theorems.

Definition 1 Let X and Z be vector spaces, let B ⊆ X and C ⊆ Z be nonempty
and convex, with intC 6= ∅ and let F : X × B → 2Z .

(i) F is said to be 0−level C−quasiconvex relative to B of type 1 if for any
x1, x2 ∈ X, any t ∈ [0, 1],

[

∃x∗

i ∈ B, i = 1, 2 : F (xi, x
∗

i ) ⊆ −intC
]

=⇒
[

∃x∗ ∈ B : F
(

(1 − t)x1 + tx2, x
∗
)

⊆ −intC
]

. (1)
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(ii) F is called 0−level C−quasiconvex relative to B of type 2 if (1) is replaced
by

[

∃x∗

i ∈ B, i = 1, 2 : F (xi, x
∗

i ) ∩−intC 6= ∅
]

=⇒
[

∃x∗ ∈ B : F
(

(1 − t)x1 + tx2, x
∗
)

∩ −intC 6= ∅
]

.

To see the nature of the above generalized convexity, let us consider the
simplest case, where B is a singleton, Z = R and F is single-valued depending
only on x ∈ X . Then (i) and (ii) coincide and become: if F (xi) < 0, i = 1, 2,
then ∀t ∈ [0, 1], F ((1 − t)x1 + tx2) < 0. This property is a relaxed 0-level
quasiconvexity, since F is called quasiconvex if F ((1 − t)x1 + tx2) ≤ max

i=1,2
F (xi).

A sufficient condition for the solution existence of problem (SVQEP1) is

Theorem 1 Assume that

(i) ∀(x, y) ∈ K × D, ∀(x∗, y∗) ∈ A(x, y) × B(x, y), F (x, y, x∗) 6⊆ −intC and
G(y, x, y∗) 6⊆ −intC;

(ii) ∀(x, y) ∈ K × D, F (., y, .) and G(., x, .) are 0−level C−quasiconvex rela-
tive to A(x, y) and B(x, y), respectively, of type 1;

(iii) ∀(x, y) ∈ K × D, the sets {(x̄, ȳ) ∈ K × D | F (x, ȳ, x∗) 6⊆ −intC, ∀x∗ ∈
A(x̄, ȳ)} and {(x̄, ȳ) ∈ K × D | G(y, x̄, y∗) 6⊆ −intC, ∀y∗ ∈ B(x̄, ȳ)} are
closed in K × D;

(iv) cl S(., .) and cl T (., .) are usc in K×D and, ∀(x, y) ∈ K×D, S−1(x) and
T−1(y) are open in K × D;

(v) if K × D is not compact, there exist a nonempty compact subset K × D
of K×D and a nonempty compact convex subset K0×D0 of K ×D such
that, for each (x, y) ∈ (K × D) \ (K ×D) there are x̄ ∈ K0 ∩ S(x, y) and
x∗ ∈ A(x, y) such that F (x̄, y, x∗) ⊆ −intC, or there are ȳ ∈ D0∩T (x, y)
and y∗ ∈ B(x, y) such that G(ȳ, x, y∗) ⊆ −intC.

Then problem (SVQEP1) is solvable.

Proof. For (x, y) ∈ K × D, set

E1 = {(x, y) ∈ K × D | x ∈ cl S(x, y)},

E2 = {(x, y) ∈ K × D | y ∈ cl T (x, y)},

P1(x, y) = {x̂ ∈ K | ∃x∗ ∈ A(x, y), F (x̂, y, x∗) ⊆ −intC},

P2(x, y) = {ŷ ∈ D | ∃y∗ ∈ B(x, y), G(ŷ, x, y∗) ⊆ −intC},

Q1(x, y) =

{

S(x, y) ∩ P1(x, y) if (x, y) ∈ E1,

S(x, y) otherwise,

Q2(x, y) =

{

T (x, y) ∩ P2(x, y) if (x, y) ∈ E2,

T (x, y) otherwise.
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We claim that Qi(., .) satisfies all the conditions of Lemma 1, i = 1, 2.
For x ∈ K we have

Q−1
1 (x) = {(x̄, ȳ) ∈ E1 | x ∈ S(x̄, ȳ) ∩ P1(x̄, ȳ)}

∪ {(x̄, ȳ) ∈ (K × D) \ E1 | x ∈ S(x̄, ȳ)}

= {(x̄, ȳ) ∈ E1 | (x̄, ȳ) ∈ S−1(x) ∩ P−1
1 (x)}

∪ {(x̄, ȳ) ∈ (K × D) \ E1 | (x̄, ȳ) ∈ S−1(x)}

= {E1 ∩ S−1(x) ∩ P−1
1 (x)} ∪ {[(K × D) \ E1] ∩ S−1(x)}

= {[(K × D) \ E1] ∪ P−1
1 (x)} ∩ S−1(x).

Therefore,

(K × D) \ Q−1
1 (x) = {K × D} \ {[((K × D) \ E1) ∪ P−1

1 (x)] ∩ S−1(x)}

= {[K × D] \ [((K × D) \ E1) ∪ P−1
1 (x)]} ∪ {[K × D] \ S−1(x)}

= {E1 ∩ [(K × D) \ P−1
1 (x)]} ∪ {[K × D] \ S−1(x)}. (2)

Since cl S(., .) is usc and has closed values, E1 is closed. We also have

(K × D) \ P−1
1 (x) = {(x̄, ȳ) ∈ K × D | ∀x̄∗ ∈ A(x̄, ȳ), F (x, ȳ, x̄∗) 6⊆ −intC},

which is closed by (iii). It follows from (2) that (K×D)\Q−1
1 (x) is closed. Thus

Q−1
1 (x) is open in K ×D, ∀x ∈ K. Similarly, Q−1

2 (y) is open in K ×D, ∀y ∈ D.
Due to the fact that F (., ȳ, .) is 0-level C- quasiconvex relative to A(x, y) of
type 1, P1(x, y) is convex and hence Q1(x, y) is convex, for all (x, y) ∈ K × D.
In a similar way we see that Q2(x, y) is convex, for all (x, y) ∈ K × D.

Since ∀(x, y) ∈ K × D, ∀x∗ ∈ A(x, y), F (x, y, x∗) 6⊆ −intC, one has x /∈
P1(x, y). If (x, y) ∈ E1 then x /∈ Q1(x, y). If (x, y) ∈ (K × D) \ E1, then
x /∈ cl S(x, y) and hence x /∈ Q1(x, y). Similarly, one has y /∈ Q2(x, y), ∀(x, y) ∈
K × D.

Because of (v), for each (x, y) ∈ (K×D)\(K×D), there exist x̄ ∈ K0∩S(x, y)
and x∗ ∈ A(x, y), F (x̄, y, x∗) ⊆ −intC. Therefore, K0 ∩ Q1(x, y) 6= ∅, or
there exist ȳ ∈ D0 ∩ T (x, y) and y∗ ∈ B(x, y), G(ȳ, x, y∗) ⊆ −intC and hence
D0 ∩ Q2(x, y) 6= ∅.

Now that all the assumptions of Lemma 1 are satisfied, there exists (x̄, ȳ) ∈
K × D such that Q1(x̄, ȳ) = Q2(x̄, ȳ) = ∅. Since S(x̄, ȳ) and T (x̄, ȳ) are non-
empty subsets, (x̄, ȳ) must be in E1×E2. Consequently, ∅ = Q1(x̄, ȳ) = S(x̄, ȳ)∩
P1(x̄, ȳ) and ∅ = Q2(x̄, ȳ) = T (x̄, ȳ)∩P2(x̄, ȳ). Then ∀x ∈ S(x̄, ȳ), ∀y ∈ T (x̄, ȳ),
x /∈ P1(x̄, ȳ) and y /∈ P2(x̄, ȳ), i.e., ∀x∗ ∈ A(x̄, ȳ), F (x, ȳ, x∗) 6⊆ −intC and
∀y∗ ∈ B(x̄, ȳ), G(y, x̄, y∗) 6⊆ −intC, which means that (x̄, ȳ) is a solution.

The following examples show that none of the assumptions of Theorem 1
can be dropped.
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Example 1 (Assumption (i) is essential). Let X = Y = Z = R, K =
D = [0, 1], C = R+, S(x, y) ≡ T (x, y) ≡ [0, 1], A(x, y) = {x}, B(x, y) = {y},
F (x, ȳ, x∗) = {x∗ − 2} and G(y, x̄, y∗) = {y∗ − 2}.

We check assumptions (ii) - (v). To see (ii), for given xi, x
∗

i ∈ A(x, y) = {x}
and yi, y

∗

i ∈ B(x, y) = {y}, we simply take x∗ = x∗

i , y
∗ = y∗

i . Assumption
(iii) is satisfied since the mentioned set is empty. (iv) is clearly fulfilled and
(v) is satisfied as K and D are compact. However, problem (SVQEP1) has
no solutions, since ∀(x̄, ȳ) ∈ K × D, ∀(x, x∗) ∈ S(x̄, ȳ) × A(x̄, ȳ), ∀(y, y∗) ∈
T (x̄, ȳ) × B(x̄, ȳ),

F (x, ȳ, x∗) = x∗ − 2 < 0,

G(y, x̄, y∗) = y∗ − 2 < 0.

The reason is that assumption (i) is violated.

Example 2 ((ii) is essential). Let X, Y, Z, C, A(x, y) and B(x, y) be as in Ex-
ample 1. Let K = D = [0, 2], S(x, y) = T (x, y) ≡ [0, 2] and

F (x, ȳ, x∗) =

{

{1} if x∗ = x,

{−1} if x∗ 6= x,

G(y, x̄, y∗) =

{

{1} if y∗ = y,

{−1} if y∗ 6= y.

Then assumptions (i), (iii)-(v) are clearly satisfied. However, ∀(x̄, ȳ) ∈ K × D,
for x∗ 6= x, y∗ 6= y one has

F (x, ȳ, x∗) = G(y, x̄, y∗) = −1 < 0,

i.e. problem (SVQEP1) is not solvable. To see the reason we check assumption
(ii) by picking x = 1, y = 1, x1 = x2 = y1 = y2 = 1

2 , α1 = α2 = 1
2 , x∗

1 = x∗

2 = 1 ∈
A(1, y), y∗

1 = y∗

2 = 1 ∈ B(y, 1). Then, ∀x∗ ∈ A(1, 1), ∀y∗ ∈ B(1, 1) and i = 1, 2,

F (xi, y, x∗

i ) = F (1
2 , 1, 1) = −1 < 0,

G(yi, x, y∗

i ) = G(1
2 , 1, 1) = −1 < 0,

but

F (α1x1 + α2x2, y, x∗) = F (1, 1, 1) = 1 > 0,

G(α1y1 + α2y2, x, y∗) = G(1, 1, 1) = 1 > 0,

i.e. assumption (ii) is not satisfied.
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Example 3 ((iii) is essential). Let X, Y, Z, K, D and C be as in Example 1.
Let

S(x, y) ≡ [0, 1
4 ] ∪ [34 , 1],

T (x, y) = [0, 1],

A(x, y) =

{

{x} if x 6= 1
2 ,

{x
2} if x = 1

2 ,

B(x, y) = {y},

F (x, ȳ, x∗) =

{

{−1} if x + x∗ = 1,

{1} otherwise,

G(y, x, y∗) ≡ {1}.

Then, assumptions (i), (iv) and (v) are easy to check. G(., x, .) clearly satisfies
(ii). Let (x, y) ∈ K × D and {x1, ..., xn} ⊆ K be arbitrary. If x 6= 1

2 , then
A(x, y) = {x} and if F (xi, y, x∗

i ) = F (xi, y, x) < 0 then xi + x = 1 and for
αi ≥ 0,

∑n

i=1 αi = 1,
∑n

i=1 αixi + x = 1. Hence F
(
∑n

i=1 αixi, y, x
)

= −1 < 0.
If x = 1

2 , then A(x, y) = {x
2}. From F (xi, y, x∗

i ) = F (xi, y, x
2 ) < 0 it follows

that xi + x
2 = 1 and, for αi ≥ 0,

∑n

i=1 αi = 1,
∑n

i=1 αixi + x
2 = 1. Therefore,

F
(
∑n

i=1 αixi, y, x
2

)

= −1 < 0. Thus F (., y, .) satisfies (ii). However, assumption
(iii) is violated, since for (0, 0) ∈ K × D, the set

{(x̄, ȳ) ∈ K × D | F (0, ȳ, x∗) ≥ 0, x∗ ∈ A(x̄, ȳ)} = [0, 1)× D

is not closed in K × D.
We verify that problem (SVQEP1) is not solvable. Indeed, ∀(x̄, ȳ) ∈ S(x̄, ȳ)×

T (x̄, ȳ) =
(

[0, 1
4 ] ∪ [34 , 1]

)

× [0, 1], ∃x ∈ S(x̄, ȳ), ∃x∗ ∈ A(x̄, ȳ) = {x̄}, such that
x + x∗ = 1 and hence F (x, ȳ, x∗) = −1 < 0.

Example 4 ((iv) cannot be dropped). Let X, Y, Z, C, K, D, A(x, y) and B(x, y)
be as in Example 2. Let, for x, x̄, x∗ ∈ K and y, ȳ, y∗ ∈ D, T (x, y) = [0, y+1)∩D,
F (x, ȳ, x∗) = G(y, x̄, y∗) ≡ {1} and

S(x, y) =

{

[ 32 , 2] if x ≤ 1,

[0, 1
2 ] otherwise.

Then, (i) is satisfied since ∀(x, y) ∈ K × D, ∀(x∗, y∗) ∈ A(x, y) × B(x, y) =
(x, y), F (x, y, x) = G(y, x, y) = {1}. Assumptions (ii) is clearly satisfied for
F (., y, .) and G(., x, .). To check (iii) we have, ∀(x, y) ∈ K × D,

U1 := {(x̄, ȳ) ∈ K × D | F (x, ȳ, x∗) ≥ 0, ∀x∗ ∈ A(x̄, ȳ)} = K × D.

U2 := {(x̄, ȳ) ∈ K × D | G(y, x̄, y∗) ≥ 0, ∀y∗ ∈ B(x̄, ȳ)} = K × D.

Therefore, Ui = K × D is closed in K × D, i = 1, 2. Finally, as K and D are
compact, assumption (v) is obviously fulfilled. However, problem (SVQEP1)
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has no solution, since E = ∅. The reason is that assumption (iv) is violated,
since (although cl T (., .) are continuous, T−1(y) is open in K × D for y ∈ D)
cl S is not usc in K × D.

Example 5 ((v) cannot be omitted). Let X = Y = Z = K = D = R, C =
R+, S(x, y) = T (x, y) ≡ R, A(x, y) = {x}, B(x, y) = {y} and

F (x, ȳ, x∗) = {x − x∗},

G(y, x̄, y∗) = {y − y∗}.

Then, it is easy to see that assumptions (i)-(iv) are fulfilled. However, prob-
lem (SVQEP1) has no solutions, since ∀(x̄, ȳ) ∈ K × D, ∃(x, y) ∈ S(x̄, ȳ) ×
T (x̄, ȳ), ∃(x∗, y∗) ∈ A(x̄, ȳ) × B(x̄, ȳ) = {(x̄, ȳ)},

F (x, ȳ, x∗) = x − x∗ < 0,

G(y, x̄, y∗) = y − y∗ < 0.

To see that assumption (v) is violated let K × D ⊆ K × D and K0 × D0 ⊆
K × D be compact. Then, there is (x, y) ∈ R2 \ K × D such that ∀(x̄, ȳ) ∈
K0 × D0, ∀(x∗, y∗) ∈ A(x, y) × B(x, y) = {(x, y)},

F (x̄, y, x∗) = x̄ − x∗ = x̄ − x ≥ 0,

G(ȳ, x, y∗) = ȳ − y∗ = ȳ − y ≥ 0.

i.e. (v) is not fulfilled.

Passing to problem (SVQEP2) we have

Theorem 2 Assume five conditions corresponding to that of Theorem 1: in
(i) and (iii) “ 6⊆ −intC” is replaced by “ ⊆ Z \ −intC”; in (ii) “type 1” is
replaced by “type 2”; (iv) remains the same; and in (v) “ ⊆ −intC” is replaced
by “ 6⊆ Z \ −intC”.
Then problem (SVQEP2) has solutions.

Proof. We can adopt the same lines of proof as in Theorem 1 with new multi-
functions P1(x, y) and P2(x, y) defined as:

P1(x, y) = {x̂ ∈ K : ∃ x∗ ∈ A(x, y, ), F (x̂, y, x∗) 6⊆ Z \ −int C},

P2(x, y) = {ŷ ∈ D : ∃ y∗ ∈ B(x, y), G(ŷ, y, y∗) 6⊆ Z \ −int C}.

Remark 1 Since our two problems coincide if F and G are single-valued, Exam-
ples 1–5 indicate also that each of the five assumptions of Theorem 2 is essential.
They explain also that in general it is not hard to check the assumptions. The
following example shows that our assumptions are very relaxed by proving a
case of the problem considered in Fu (2003) and Farajzadeh (2006) but the
results there cannot be applied while ours can.
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Example 6 Let X, Y, Z, C, K, D, S, T, A and B be as in Example 1. Let

F (x, ȳ, x∗) = f(x, ȳ) − f(x∗, ȳ),

G(y, x̄, y∗) = g(x̄, y) − g(x̄, y∗),

where

f(x, y) =

{

1 if x < 1
2 ,

−1 if x ≥ 1
2 ,

g(x, y) =

{

1 if y < 1
2 ,

−1 if y ≥ 1
2 .

Then assumptions (i), (iv) and (v) are clearly fulfilled (Theorems 1 and 2 coin-
cide in this case). To check (ii), we have

F (x, ȳ, x∗) =











2 if x < 1
2 , x∗ ≥ 1

2 ;

0 if x,∗ x < 1
2 or x, x∗ ≥ 1

2 ;

−2 if x ≥ 1
2 , x∗ < 1

2 .

For x, y ∈ [0, 1], {x1, · · · , xn} ⊆ R and {x∗

1, · · · , x∗

n} ⊆ A(x, y) = {x}, if F (xi, y,
x∗

i ) < 0, then xi ≥
1
2 and x∗

i = x < 1
2 . Hence, for αi ≥ 0,

∑n

i=1 αi = 1, taking
x∗ = x we have

F

(

n
∑

i=1

αixi, y, x∗

)

= −2 < 0.

As
∑n

i=1 αixi ≥
1
2 , the same argument is valid for G. Therefore, (ii) is satisfied.

To see (iii) being fulfilled consider any x, y ∈ [0, 1]. If x ≥ 1
2 , then F (x, ȳ, x∗) ≥

0, ∀ȳ ∈ [0, 1] and for x∗ ≥ 1
2 . If x < 1

2 , then F (x, ȳ, x∗) ≥ 0, ∀ȳ and for x∗ ∈
[0, 1]. The argument for G is similar. Hence, setting

U = {(x̄, ȳ) ∈ K ×D | F (x, ȳ, x∗) ≥ 0, G(y, x̄, y∗) ≥ 0, for (x∗, y∗) = (x̄, ȳ)}

we see that

U = [12 , 1] × [12 , 1], if x ≥ 1
2 , y ≥ 1

2 ,

U = [12 , 1] × D, if x ≥ 1
2 , y < 1

2 ,

U = K × [12 , 1] if x < 1
2 , y ≥ 1

2 ,

U = K × D if x < 1
2 , y < 1

2 .

Thus, ∀(x, y) ∈ K × D, U is closed in K × D. By Theorem 1 (or, the same,
Theorem 2 problem (SVQEP1) has solutions. However, since

f−1
(

[0, +∞)
)

= (−∞, 1
2 ) × R,

g−1
(

[0, +∞)
)

= R × (−∞, 1
2 )
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are not closed in R2, f and g are not demicontinuous and the results in Fu
(2003) and Farajzadeh (2006) cannot be employed. Recall here that a mapping
f : X → Z is said to be demicontinuous if f−1(M) is closed in X for each closed
half space M in Z. Checking directly we see that the solution set is [12 , 1]×[ 12 , 1].

3. Applications

Since our symmetric quasiequilibrium problems include many rather general
problems as particular cases as mentioned in Section 1, Theorem 1 and 2 imply
directly new results for these problems. In this section we present only several
typical applications showing clearly the advantages of the symmetric structure
of the problem setting.

3.1. A lower and upper bounded quasiequilibrium problem

Let X and K be as in Section 1. Let S : K → 2K , f : K × K → R, α, β ∈ R.
The lower and upper bounded quasiequilibrium problem consists of
(BQEP) finding x̄ ∈ K such that x̄ ∈ clS(x̄), ∀x ∈ S(x̄),

α ≤ f(x̄, x) ≤ β.

Corollary 1 Assume that

(i) ∀x ∈ K, α ≤ f(x, x) ≤ β;

(ii) f(., .)
(

and −f(., .)
)

is α−level (β−level, respectively) R+−quasiconvex
relative to K of type 1;

(iii) ∀(x, y) ∈ K × K, the sets {(x̄, ȳ) ∈ K × K | f(x̄, x) ≥ α} and {(x̄, ȳ) ∈
K × K | f(x̄, x) ≤ β} are closed in K × K;

(iv) cl S(.) is usc in K and, ∀x ∈ K, S−1(x) is open in K;

(v) if K is not compact, there exist a nonempty compact subset K of K and a
nonempty compact convex subset K0 of K such that for each x ∈ K \K,
there is x̄ ∈ K0 ∩ S(x),

f(x, x̄) < α,

or there is ȳ ∈ K0 ∩ S(x),

f(x, ȳ) > β.

Then (BQEP) has solutions.

Proof. Setting Y = X, D = K, Z = R, C = R+, S(x, y) = T (x, y) = S(x), A(x,
y) = {x}, B(x, y) = {y}, F (x, ȳ, x∗) = f(x∗, x)−α and G(y, x̄, y∗) = β−f(x̄, y),
problem (BQEP) becomes a particular case of (SVQEP1) and the corollary is a
direct consequence of Theorem 1.
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3.2. A coincidence point problem

Let X, Y, K and D be as in Section 1. Let U : D → 2K and V : K → 2D

be multifunctions with nonempty convex images. We consider the following
coincidence point problem
(CP) find (x̄, ȳ) ∈ K × D such that x̄ ∈ cl U(ȳ), ȳ ∈ cl V (x̄).

Corollary 2 Assume that

(a) cl U(.) and cl V (.) are usc and, ∀(x, y) ∈ K ×D, V −1(y) and U−1(x) are
open in K and D, respectively;

(b) K and D are compact.

Then problem (CP) has solutions.

Proof. We set Z = R, C = R+, S(x, y) = U(y), T (x, y) = V (x), A(x, y) = {x},
B(x, y) = {y}, F (x, ȳ, x∗) ≡ G(y, x̄, y∗) ≡ {1}. Then (CP) becomes a special
case of (SVQEP1).

To apply Theorem 1 we see that assumptions (i)-(iii) are obviously satisfied.
Assumption (iv) is fulfilled by (a) and (v) - by (b). Hence Theorem 1 yields the
solvability of (CP).
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