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Abstract: Opial presented in 1967 a theorem, which can be
applied in order to prove the weak convergence of sequences (xk) in
a Hilbert space, generated by iterative schemes of the form xk+1 =
Uxk for a nonexpansive and asymptotically regular operator U with
nonempty Fix U . Several iterative schemes have, however, the form
xk+1 = Ukxk, where (Uk) is a sequence of operators with a common
fixed point. We show that under some conditions on the sequence
(Uk) the sequence (xk) converges weakly to a common fixed point
of operators Uk. We show also that the Opial’s theorem and the
Krasnoselskii–Mann theorem are the corollaries descending from the
obtained results. Finally, we present some applications of the results
to the convex feasibility problems.
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1. Introduction

Let H be a real Hilbert space equipped with a scalar product 〈·, ·〉 which induces
the norm ‖ · ‖. Let C ⊂ H be a closed and convex subset. Several optimiza-
tion problems have the form: find an element x∗ ∈ C which satisfies some
additional condition leading to a solution set being a closed and convex subset,
e.g. the convex minimization problem, the convex feasibility problem (see, e.g.,
Bauschke, Borwein, 1996), the split feasibility problem (see, e.g., Censor, Elfv-
ing, 1994). Iterative methods, which try to solve such problems consist very
often in adaptive construction of the operator U : C → H with Fix U being the
solution set of the optimization problem with the property that Ukx converges
(at least weakly) to an element x∗ ∈ FixU , for arbitrary x ∈ C. The Opial’s
theorem (Opial, 1967) gives the conditions for the operator U , under which the
weak convergence holds (nonexpansivity and asymptotic regularity). Several
iterative methods have, however, the form xk+1 = Ukxk where Uk : C → H is a
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sequence of operators with a common fixed point. Furthermore, the nonexpan-
sivity of Uk sometimes fails or is hard to prove. Therefore, we cannot apply the
Opial’s theorem in order to prove the weak convergence of the sequence (xk) in
this case.

2. Main result

Let C ⊂ H and D ⊂ C be a closed and convex subsets. We say that an operator
U : C → H is nonexpansive if ‖Ux − Uy‖ ≤ ‖x − y‖ for all x, y ∈ H, and Fejér

monotone with respect to D if ‖Ux − z‖ ≤ ‖x − z‖ for all x ∈ C and all
z ∈ D. We say that a sequence (xk) ⊂ C is Fejér monotone with respect to D
if ‖xk+1 − z‖ ≤ ‖xk − z‖ for all z ∈ D, k = 1, 2, ....

Denote Sk = UkUk−1...U1 for a sequence of operators Uk : C → C, k =
1, 2, ... . We say that a sequence of operators Uk : C → C is asymptotically

regular if limk→∞ ‖Sk+1x − Skx‖ = 0 for any x ∈ C. This definition coincides
with the definition of an asymptotically regular sequence (xk) (see Bauschke,
Borwein, 1996, Definition 6) and with the definition of an asymptotically regular
operator (see Opial, 1967, Section 1, or Stark, Yang, 1998, Section 2.5), i.e.
an operator U : C → C is asymptotically regular if the constant sequence of
operators Uk = U is asymptotically regular, i.e. limk→∞ ‖Uk+1x − Ukx‖ = 0
for any x ∈ C.

Let x ∈ C. Consider a sequence (xk) ⊂ C, defined by the recurrence

x1 = x
xk+1 = Ukxk

(1)

for a sequence of operators Uk : C → C, k = 1, 2, ... .

Theorem 1 Let C ⊂ H be a closed and convex subset, U : C → H be a

nonexpansive operator with nonempty Fix U , let x ∈ C be arbitrary and let the

sequence (xk) ⊂ C be generated by the recurrence (1), where the sequence (Uk)
is asymptotically regular. Further, let (xk) be Fejér monotone with respect to

Fix U and let the inequality

‖Ukxk − xk‖ ≥ α‖Uxk − xk‖ (2)

be satisfied for a constant α > 0, k = 1, 2, ... . Then, (xk) converges weakly to

an element of Fix U .

Remark 1 Bauschke and Borwein (1996, Example 7), have obtained sufficient
conditions for asymptotic regularity of a sequence (xk), which is an assumption
in Theorem 1. Roughly speaking, they have supposed that Uk are nonexpansive
and strongly attracting (see Bauschke, Borwein, 1996, Definition 2.1). Note
that we have only supposed the nonexpansivity of the operator U but not of
operators Uk.
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The proof of Theorem 1 is a modification of the original Opial’s proof (Opial,
1967, Theorem 1). First we recall some facts from Opial (1967).

Lemma 1 If xk converges weakly to an element y ∈ H, then for any y′ ∈ H,

y′ 6= y, the following inequality holds:

lim inf
k

‖xk − y′‖ > lim inf
k

‖xk − y‖. (3)

Proof. See Opial (1967, Lemma 1)

Lemma 2 Let U : C → H be a nonexpansive operator, z ∈ C be a weak cluster

point of a sequence (xk) ⊂ C. If ‖Uxk − xk‖ → 0 then z ∈ Fix U .

Proof. The Lemma is a special case of Opial (1967, Lemma 2).

Lemma 3 Let D ⊂ H be a convex and closed subset and let a sequence (xk) ⊂ H
be Fejér monotone with respect to D. Then there exists the unique element

y∗ ∈ D such that

lim
k

‖xk − y∗‖ = inf
y∈D

lim
k

‖xk − y‖. (4)

Proof. The Lemma can be proved using similar techniques as in the first part of
the proof of Opial (1967, Theorem 1). See also Stark, Yang (1998, Section 2.8),
where the Lemma was proved similarly to the proof of the existence and the
uniqueness of the metric projection of a given point onto a closed and convex
subset.

Proof of Theorem 1. The sequence (xk) is bounded since it is Fejér monotone
with respect to Fix U , consequently, there exists a weak cluster point y ∈ C
of (xk) (see, e.g., Rolewicz, 1984, Theorem 5.3.1). Let (xnk

) ⊂ (xk) be a
subsequence which is weakly convergent to y. Since the sequence (Uk) is a-
symptotically regular we have by assumptions that

α‖Uxk − xk‖ ≤ ‖Ukxk − xk‖ = ‖Skx − Sk−1x‖ → 0 (5)

for a nonexpansive operator U : C → H and for a constant α > 0. Hence, ‖Uxk−
xk‖ → 0. It follows from Lemma 2 that y ∈ Fix U . Since U is nonexpansive,
Fix U is closed and convex. Let y∗ ∈ Fix U be such that

lim
k

‖xk − y∗‖ = inf
u∈Fix U

lim
k

‖xk − u‖.

The existence and the uniqueness of y∗ follows from Lemma 3. We show that
xnk

converges weakly to y∗. Suppose that y∗ 6= y. Since (xk) is Fejér monotone
with respect to Fix U , we have by Lemmas 1 and 3

lim
k

‖xk − y∗‖ = lim
k

‖xnk
− y∗‖ > lim

k
‖xnk

− y‖ ≥ lim
k

‖xk − y∗‖.

The contradiction shows that y = y∗. We have shown that y∗ is the unique
weak cluster point of (xk). Consequently, xk converges weakly to y∗.
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Remark 2 The assumptions in Theorem 1 can be weakened. It follows from
the proof of the Theorem that it is enough to suppose that

‖Uxk − xk‖ → 0 (6)

instead of the asymptotic regularity of (Uk) and of inequality (2). Note that
condition (6) does not denote here the asymptotic regularity of the operator U
because the sequence (Uk) is not constant in general.

Corollary 1 (Opial’s Theorem) Let C ⊂ H be a closed and convex subset,

U : C → C be a nonexpansive and asymptotically regular operator with Fix U 6=
∅. Then for any x ∈ C the sequence (Ukx) converges weakly to an element of

Fix U .

Proof. Let x ∈ C and let xk be defined by xk = Ukx. We have for any z ∈ Fix U

‖xk − z‖ = ‖Uxk−1 − Uz‖ ≤ ‖xk−1 − z‖,

consequently, (xk) is Fejér monotone with respect to Fix U . Now we see that all
assumptions of Theorem 1 are satisfied for Uk = U , k = 1, 2, ..., and for α = 1.
Hence, Ukx = Ukxk and the sequence (xk) converges weakly to an element of
Fix U , for any x ∈ C.

Corollary 2 Let U : H → H be a nonexpansive operator with nonempty

Fix U , let x ∈ H be arbitrary and let the sequence (xk) ⊂ H be generated by the

recurrence

x1 = x

xk+1 = Ukxk = xk + µkλk(Tkxk − xk),

where µk ∈ [ε, 2 − ε] for some small ε > 0, Tk : H → H, is such that Fix Tk ⊃
Fix U and for all z ∈ Fix U

〈z − xk, Tkxk − xk〉 ≥ λk‖Tkxx − xk‖
2 (7)

with λk ≥ γ > 0, k = 1, 2, ... . Furthermore, suppose that

‖Tkxk − xk‖ ≥ β‖Uxk − xk‖ (8)

for a constant β > 0, k = 1, 2, ... . Then (xk) converges weakly to an element

y ∈ Fix U .

Proof. Let z ∈ Fix U . Then we have by (7)

‖xk+1 − z‖2 = ‖xk + µkλk(Tkxk − xk) − z‖2

= ‖xk − z‖2 + µ2
kλ2

k‖Tkxk − xk‖
2 − 2µkλk〈z − xk, Tkxk − xk〉

≤ ‖xk − z‖2 + µ2
kλ2

k‖Tkxk − xk‖
2 − 2µkλ2

k‖Tkxk − xk‖
2

= ‖xk − z‖2 − µk(2 − µk)λ2
k‖Tkxk − xk‖

2,
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i.e. (xk) is Fejér monotone with respect to Fix U and µkλk‖Tkxk − xk‖ → 0.
Since

‖Skx − Sk−1x‖ = ‖Ukxk − xk‖ = µkλk‖Tkxk − xk‖

we see that (Uk) is an asymptotically regular sequence. By assumption (8) we
have for α = εγβ

‖Ukxk − xk‖ = µkλk‖Tkxk − xk‖ ≥ εγ‖Tkxk − xk‖ ≥ α‖Uxk − xk‖.

We see that all assumptions of Theorem 1 are satisfied. Consequently, (xk)
converges weakly to a point y ∈ Fix U .

Now we apply Corollary 2 to a sequence of (Uk) being relaxations of firmly
nonexpansive operators. Let T : C → H, where C ⊂ H is a closed and convex
subset. Recall that T is called firmly nonexpansive if for all x, y ∈ C

〈Tx − Ty, x− y〉 ≥ ‖Tx − Ty‖2.

Furthermore, Tµ = (1 − µ)I + µT , where µ ∈ [0, 2], is called a relaxation of the
operator T . If µ ∈ (0, 2) then we say that Tµ is a strict relaxation of T . First,
we present a useful property of a firmly nonexpansive operator.

Lemma 4 Let C ⊂ H be a closed and convex subset and let T : C → H be a

firmly nonexpansive operator with nonempty Fix T . Then for all z ∈ Fix T and

for all x ∈ C

〈z − x, Tx − x〉 ≥ ‖Tx − x‖2. (9)

Proof. Let z ∈ Fix T and x ∈ C. Then we have by the firm nonexpansivity of T

〈z − x, Tx − x〉 = 〈z − Tx, Tx− x〉 + ‖Tx − x‖2

= 〈Tz − Tx, z − x〉 + 〈Tz − Tx, Tx − Tz〉+ ‖Tx− x‖2

≥ ‖Tx− x‖2,

i.e. condition (9) is satisfied.

Corollary 3 Let T : H → H be a nonexpansive operator with nonempty

Fix T , let x ∈ H be arbitrary and let the sequence (xk) ⊂ H be generated by the

recurrence

x1 = x

xk+1 = Ukxk = xk + µk(Tkxk − xk),

where µk ∈ [ε, 2 − ε] for some small ε > 0, and (Tk) is a sequence of firmly

nonexpansive operators Tk : H → H, k = 1, 2, ... with
⋂

k FixTk ⊃ Fix T .

Furthermore, suppose that

‖Tkxk − xk‖ ≥ β‖Txk − xk‖ (10)
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for a constant β > 0, k = 1, 2, ... . Then (xk) converges weakly to an element

y ∈ Fix T .

Proof. Let z ∈ Fix T . Since Tk is firmly nonexpansive, we have by Lemma 4
that inequality (7) is satisfied for λk = γ = 1. By Corollary 2, (xk) converges
weakly to an element y ∈ Fix T .

Corollary 4 Let T : H → H be a firmly nonexpansive operator with nonempty

Fix T , x ∈ H and let the sequence (xk) ⊂ H be generated by the recurrence

x1 = x

xk+1 = xk + µ(Txk − xk)

where µ ∈ (0, 2). Then (xk) converges weakly to an element y ∈ Fix T .

Proof. Set µk = µ and Tk = T , k = 1, 2, ..., in Corollary 3. Since a firmly
nonexpansive operator is nonexpansive we see that all assumptions of Corollary
3 are satisfied. Consequently, (xk) converges weakly to a point y ∈ Fix T .

Remark 3 Let λ ∈ (0, 2). An operator Tµ = (1−µ)I +µT is a strict relaxation
of a firmly nonexpansive operator T if and only if Tµ is averaged, i.e. Tµ =
(1 − α)I + αU , where α ∈ (0, 1) and a U is a nonexpansive operator (see, e.g.,
Byrne, 2004, Lemma 2.3 or Goebel, Kirk, 1990, Theorem 12.1). Therefore,
Corollary 4 is equivalent to the Krasnoselskii–Mann Theorem (see, e.g., Byrne,
2004, Theorem 2.1, or the original paper of Krasnoselskii, 1955, Theorem 1).

3. Applications to convex feasibility problems

Let Ci ⊂ H, i ∈ I = {1, ..., m}, be closed and convex subsets (constraints). The
convex feasibility problem (CFP) is to find x ∈ C =

⋂
i∈I Ci if such an element

exists (the system {Ci}i∈I is consistent). However, in several applications the
system {Ci}i∈I is not supposed to be consistent. In these cases one introduces
a proximity function, which measures the grade of violation of the constraints
and one minimizes this proximity function.

Example 1 Let us introduce a proximity function for the CFP defined by
the equality f(x) = 1

2

∑
i∈I ωi‖PCi

x − x‖2, where w = (ω1, ..., ωm)⊤ ∈ ∆m.
The subset ∆m denotes here the standard simplex, i.e. ∆m = {u ∈ R

m :
u ≥ 0, e⊤u = 1}, where e = (1, ..., 1)⊤. The CFP can be formulated as the
minimization of f(x) with respect to x ∈ H. Since f is convex and differentiable,
we easily obtain that Argminx∈H f(x) = Fix Pw, where Pw =

∑
i∈I ωiPCi

.
Now we see that the CFP is equivalent to finding a fixed point of Pw. One
of important methods for the CFP is the simultaneous projection method (SP-
method) which has the form:

xk+1 = xk + µk(Pwk
xk − xk), (11)
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where µk ∈ [0, 2] and wk ∈ ∆m, k = 1, 2, ... . Under mild assumptions on the
sequence of weights (wk) and on the sequence of relaxation parameters (µk) the
sequence (xk) generated by (11) converges weakly to an element x∗ ∈ C if C 6= ∅

(see, e.g., Combettes, 1997, Theorem 4.1, or Censor, Zenios, 1997, Theorems
5.6.1 and 10.4.1 for finite dimensional case). If we do not suppose that C 6= ∅

then the convergence requires more restrictive assumptions. It is known that
in this case the sequence (xk) converges weakly to Fix Pw for µk ∈ [ε, 2 − ε],
where ε > 0, and for constant wk = w ∈ ri∆m = {u ∈ R

m : u > 0, e⊤u = 1} if
Fix Pw 6= ∅ (see Combettes, 1994, Theorem 4, or Stark, Yang, 1998, Corollary
2.10-1). We show that the convergence follows also simply from Corollary 3.
Set Tk = T = Pw in Corollary 3 and suppose that FixT 6= ∅. Observe that T is
firmly nonexpansive as a convex combination of firmly nonexpansive operators
PCi

, i ∈ I, T is nonexpansive as a relaxation of a firmly nonexpansive operator
(see, e.g., Goebel, Kirk, 1990, Theorem 12.1, or Combettes, 1994, Proposition
3ii)) and that Fix Tk = Fix T . We see that all assumptions of Corollary 3 are
satisfied. Therefore, the sequence (xk) generated by (11) converges weakly to
an element x∗ ∈ Fix Pw.

Example 2 Consider the following problem, known as the split feasibility

problem (SFP): Let C ⊂ R
n, Q ⊂ R

m be nonempty, closed and convex subsets,
and A be an m × n real matrix. Find x ∈ C satisfying Ax ∈ Q, if such an
element exists. In general, the problem has the form:

minimize f(x) = 1
2‖PQ(Ax) − Ax‖2

subject to x ∈ C

and is equivalent to finding a fixed point of the operator PC(I−γA⊤(I−PQ)A),
where γ > 0. This problem was introduced by Censor and Elfving (1994) and
was studied by Byrne (2002, 2004). The SFP has many practical applications
(see, e.g., Byrne, 2002). Byrne has proposed the following CQ-method for
solving the split feasibility problem: xk+1 = Rµxk, where Rµ = PC(I− µ

L
A⊤(I−

PQ)A) for µ ∈ (0, 2) and L ≥ λmax(A
⊤A). The number λmax(B) denotes here

the maximal eigenvalue of a symmetric matrix B. Suppose that Fix Rµ 6= ∅.
In this case the CQ-method converges to a fixed point of the operator Rµ (see
Byrne, 2002, Theorem 2.1 or Byrne, 2004, Section 8). Now we consider the
following generalization of the CQ-method for the SFP: xx+1 = Ukxk, where
Uk = Rµk

for µk ∈ [ε, 2 − ε] and for some small ε > 0. Denote U = Rε. Of
course, Fix Rµ = Fix U for all µ > 0. For any µ ∈ (0, 2) the operator Rµ is
averaged (Byrne, 2004, Section 8), therefore Rµ is a strict relaxation of a firmly
nonexpansive operator (see, e.g., Byrne, 2004, Lemma 2.3, or Goebel, Kirk,
1990, Theorem 12.1) and (xk) is Fejér monotone with respect to Fix U (see,
e.g., Bauschke, Borwein, 1996, Lemma 2.4(iv)). In particular, one can prove
that

‖Ukxk − z‖2 ≤ ‖xk − z‖2 −
2 − µk

2 + µk

‖Ukxk − xx‖
2
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(details are omitted). Consequently, (Uk) is asymptotically regular. Observe
that the function f : R+ → R+, f(t) = ‖PC(x + ts) − x‖, where x ∈ C and
s ∈ R

n is nondecreasing. Hence,

‖Ukxk − xk‖ = ‖Rµk
xk − xk‖

= ‖PC(xk −
µk

L
A⊤(I − PQ)Axk) − xk‖

≥ ‖PC(xk −
ε

L
A⊤(I − PQ)Axk) − xk‖

= ‖Uxk − xk‖.

Of course, U is nonexpansive. Now we see that all assumptions of Theorem
1 are satisfied. Therefore, the sequence (xk) converges to a fixed point of the
operator Sµ.

Example 3 Let A, B ⊂ H be closed and convex subsets. Consider the problem
of finding an element of the intersection A ∩ B or, more general, to solve the
following problem

minimize f(x, y) = 1
2‖x − y‖2

subject to x ∈ A, y ∈ B.
(12)

We suppose that this problem has a solution, i.e. f attains its minimum on
A × B. This problem has many practical applications (see, e.g., Stark, Yang,
1998, for details). It is known that (x∗, y∗) is a solution of problem (12) if and
only if x∗ = PAy∗ and y∗ = PBx∗, i.e. x∗ ∈ Fix PAPB (see, e.g., Bauschke,
Borwein, 1994, Lemma 2.2.(i)). Of course, x∗ = y∗ if and only if A ∩ B 6=
∅. There are several methods generating sequences which converge weakly
to a solution of problem (12). One of them is the von Neumann alternating
projection method:

x1 ∈ A – arbitrary
xk+1 = PAPBxk

(13)

(see, e.g, Bauschke, Borwein, 1994, Section 4). Observe that T = PAPB is
nonexpansive as a product of nonexpansive operators PA and PB. Furthermore,
one can show that T is asymptotically regular (see, e.g., Stark, Yang, 1998,
Lemma 2.5-3). Therefore, the weak convergence of the sequence (xk) generated
by (13) follows from the Opial’s theorem (Corollary 1). Consider the following
generalization of method (13)

x1 ∈ A – arbitrary
xk+1 = PA(xk + µkλk(Txk − xk)),

(14)

where T = PAPB with Fix T 6= ∅, λk ≥ γ for some γ > 0 and µk ∈ [ε, 2 − ε]
for ε > 0. If we set µk = λk = 1, k = 1, 2, ..., in method (14) we obtain the
alternating projection method (13).
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Suppose that A is an affine subspace. Then the operator T = PAPB re-
stricted to A is firmly nonexpansive (see Combettes, 1994, Proposition 3i). If
λk ∈ [ε, 2 − ε] for some small ε > 0 then it follows from Corollary 3 that the
sequence (xk) generated by (14) converges weakly to Fix T (see also Combettes,
1994, Theorem 1). We obtain an even better result if we are able to find a good
upper bound δ̄ of δ = infx∈A,y∈B ‖x− y‖. Let z ∈ Fix T and xk ∈ A\Fix T and

set λk = 1+ (‖Txk−PBxk‖−δ̄k)2

‖Txk−xk‖2 , where δ̄k ∈ [δ, ‖Txk −PBxk‖] and µk ∈ [ε, 2− ε]

for ε > 0, in recurrence (14). Of course, λk ≥ 1. One can prove that inequality
(7) for Tk = T is satisfied (see Cegielski, Suchocka, 2007). If we now apply
Corollary 2 for U = T , β = γ = 1, we obtain the weak convergence of (xk) to
Fix T .

Let us come back to the general case (A ⊂ H is closed and convex). Let
z ∈ Fix T and xk ∈ A\FixT . Denote ak = PBxk − xk, bk = Txk − xk and
ck = PBxk−Txk and set λk = (‖ck‖

2−‖ak‖·‖ck‖+〈ak, bk〉)/‖bk‖
2 in recurrence

(14). Then λk ≥ 1
2 and inequality (7) for Tk = T is satisfied (see Cegielski,

Suchocka, 2007). Using similar techniques as in the proof of Corollary 2 one can
prove the weak convergence of a sequence (xk) generated by (14) to Fix T (see
Cegielski, Suchocka, 2007, for details).
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