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Abstract: We study optimal control of systems governed by a
coupled system of hemivariational inequalities, modeling a dynamic
thermoviscoelastic problem, which describes frictional contact be-
tween a body and a foundation. We employ the Kelvin-Voigt vis-
coelastic law, include the thermal effects and consider the general
nonmonotone and multivalued subdifferential boundary conditions.
We consider optimal control problem for boundary and distributed
parameter control systems, time optimal control problem and ma-
ximum stay control problem. We deliver conditions that guarantee
the existence of optimal solutions.
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1. Introduction

The aim of this paper is to present new existence results for optimal control
problems for models governed by the system of two coupled evolution hemivari-
ational inequalities: one of hyperbolic type for the displacement and the other of
parabolic hemivariational inequality for the temperature. This system describes
the dynamic contact between a linear thermoviscoelastic body and a founda-
tion. Our efforts are of importance in the development of control theory for a
large class of mechanical and engineering problems involving nonmonotone and
multivalued relations. In this paper main interest lies in general nonmonotone
and multivalued subdifferential boundary conditions. More precisely, it is sup-
posed that on the boundary of the body under consideration, the subdifferential
relations hold, the first one between the normal component of the velocity and
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the normal component of the stress, the second one between the tangential com-
ponents of these quantities and the third one between temperature and the heat
flux vector. These three subdifferential boundary conditions are natural gene-
ralizations of the normal damped response condition, the accociated friction
law and the well known Fourier law of heat conduction, respectively. In order
to formulate the mechanical problems we use the notion of hemivariational in-
equality which allows to treat situations with the nonsmooth, nondifferentiable
and nonconvex energy functionals. The notion of hemivariational inequality
was introduced in the early 1980s by Panagiotopoulos as a generalization of
variational inequality. For examples, applications and detailed explanations
concerning the boundary conditions we refer the Reader to Panagiotopoulos
(1993) and Naniewicz and Panagiotopoulos (1995).

In this paper the state of the system is described by a fully dynamic coupled
system of two hemivariational inequalities. The body is supposed to satisfy
the Kelvin-Voigt constitutive law with added thermal effects. The existence
and uniqueness results for such hemivariational inequalities have been obtained
only recently, see Denkowski and Migórski (2005). Because of the multivalued
multidimensional boundary conditions, the aformentioned problem is embedded
into a more general class of problems for second order evolution inclusions. In
this paper all subdifferentials, considered for locally Lipschitz functions, are
understood in the sense of Clarke. This allows to incorporate in our model
several types of boundary conditions considered earlier e.g. in Awbi et al. (2000),
Panagiotopoulos (1993) and Naniewicz and Panagiotopoulos (1995).

It should be mentioned that in applications, control of frictional processes
is one of the main issues. In several mechanical dynamical systems, friction has
to be minimized, so that the wear is reduced and the lifetime and the efficiency
of the system is increased. The economic loss caused by friction and wear is
estimated at five percent of the US gross national product (see Sextro, 2002).
This loss is caused by insufficient control of contact processes in machines, cars,
mechanical equipment (e.g. brakes, machine tools, bearings, motors, turbines,
etc.) and is mainly due to frictional wear, frictional heat losses, softening and
damage of contacting surfaces. Therefore, accurate prediction of the evaluation
of frictional contact processes and their control is of major economic importance.

Optimal control of contact frictional problems has been considered in Barbu
(1993), who dealt with optimal control of variational inequalities, and in Amas-
sad et al. (2002), who considered quasistatic problem with Tresca friction law.
The optimal control problems for hemivariational inequalities have been studied
in Chapter 8 of Panagiotopoulos (1993), Miettinen (1993) and Panagiotopoulos
and Haslinger (1992) (elliptic problems), Denkowski and Migórski (1998) (shape
design for elliptic hemivariational inequalities), Migórski and Ochal (2000) (par-
abolic problems), Ochal (2001), Migórski (2002) (hyperbolic hemivariational in-
equalities), Denkowski (2002), Denkowski and Migórski (2004) and the referenes
therein.
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In this paper we examine optimal control problems governed by a coupled
system of evolution inclusions. For such systems we deal with the Bolza prob-
lem. We give conditions under which they admit optimal solutions. We remark
that since the system of evolution inclusions has generally many solutions, the
state of the control problem is not uniquely determined. The results on con-
trol problems cover in particular that of Lions (1971) (for control problems
for partial differential equations) and Barbu (1993) (for control problems for
variational inequalities). For more material on hemivariational inequalities we
refer the Reader to Naniewicz and Panagiotopoulos (1995), Migórski and Ochal
(2004, 2005), Migórski (2005) and the references therein.

The content of the paper is as follows. After the preliminary material of
Section 2, in Section 3 we present the physical setting and the variational for-
mulation of the problem. In Section 4 we formulate the problem in terms of a
coupled system of evolution inclusions and recall the results on existence and
uniqueness of solutions to such inclusions. The main results on existence of so-
lutions to optimal control problems are delivered in Sections 5, 6 and 7. These
sections are devoted to the boundary and distributed parameter control sys-
tem, the time optimal control problem and the maximum stay control problem,
respectively.

2. Notation and preliminaries

In this section we introduce notation (see Clarke, 1983; Han and Sofonea, 2002;
Denkowski et al., 2003) and recall some definitions and auxiliary results needed
in the sequel.

We denote by Sd the linear space of second order symmetric tensors on R
d,

d = 2, 3 (in applications), or equivalently, the space R
d×d
s of symmetric matrices

of order d. We define the inner products and the corresponding norms on R
d

and Sd by

u · v = uivi, ‖v‖ = (v · v)1/2 for all u, v ∈ R
d,

σ : τ = σijτij , ‖τ‖Sd
= (τ : τ)1/2 for all σ, τ ∈ Sd.

The summation convention over repeated indices is used.
Let Ω ⊂ R

d be a bounded domain with a Lipschitz boundary Γ and let n
denote the outward unit normal vector to Γ. The assumption that Γ is Lipschitz
continuous ensures that n is defined a.e. on Γ. The deformation operator
ε : H1(Ω; Rd) → L2(Ω;Sd) is defined by ε(u) = {εij(u)}, εij(u) = 1

2 (∂jui +
∂iuj), where ∂j = ∂/∂xj, i, j = 1, . . . , d. The spaces L2(Ω; Rd), L2(Ω;Sd) and
H1(Ω; Rd) are Hilbert spaces endowed with the corresponding inner products

〈u, v〉L2(Ω;Rd) =

∫

Ω

u · v dx, 〈σ, τ〉L2(Ω;Sd) =

∫

Ω

σ : τ dx,

〈u, v〉H1(Ω;Rd) = 〈u, v〉L2(Ω;Rd) + 〈ε(u), ε(v)〉L2(Ω;Sd).
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For every v ∈ H1(Ω; Rd) we denote by γ0v its trace on Γ, where γ0 : H1(Ω; R d)
→ H1/2(Γ; R d) ⊂ L2(Γ; R d) is the trace map. If d = 1, then the trace operator
from H1(Ω) into L2(Γ) is denoted by γs

0 . Given v ∈ L2(Γ; R d) we denote by
vN and vT the usual normal and tangential components of v on the boundary
Γ, i.e. vN = v · n and vT = v − vNn. Similarly, for a regular tensor field
σ : Ω → Sd, we define its normal and tangential components by σN = (σn) · n
and σT = σn−σNn, respectively. With no confusion the letter T will appear in
the time interval and will be used as the subscript in the tangential components
of vectors and tensors.

We recall the definitions of the generalized directional derivative and the
generalized gradient of Clarke for a locally Lipschitz function h : X → R, where
X is a Banach space (see Clarke, 1983). The generalized directional deriva-
tive of h at x ∈ X in the direction v ∈ X , denoted by h0(x; v), is defined by

h0(x; v) = lim sup
y→x, λ↓0

h(y + λv) − h(y)

λ
. The generalized gradient of h at x, de-

noted by ∂h(x), is a subset of a dual space X∗ given by ∂h(x) = {ζ ∈ X∗ :
h0(x; v) ≥ 〈ζ, v〉X∗×X for all v ∈ X}. The locally Lipschitz function h : X → R

is called regular (in the sense of Clarke) at x ∈ X if for all v ∈ X the one-
sided directional derivative h′(x; v) exists and satisfies h0(x; v) = h′(x; v) for all
v ∈ X .

3. Evolution hemivariational inequalities

In this section we first describe the classical model of thermoviscoelasticity and
then we present its variational formulation.

Let Ω be an open bounded domain in R
d, d = 2, 3, with a Lipschitz continu-

ous boundary Γ = ∂Ω. Let Γ be divided into three mutually disjoint measurable
parts ΓD, ΓN and ΓC such that m(ΓD) > 0. We consider a viscoelastic body,
occupying volume Ω, which is supposed to be stress free and at a constant
temperature, conveniently set as zero. We assume that the temperature changes
accompanying the deformations are small and they do not produce any changes
in the material parameters, which are regarded temperature independent. We
confine ourselves to the classical linear thermoviscoelasticity theory and study
the evolution of the system state in a time interval [0, T ] with T > 0. We
suppose that the body is clamped on ΓD, the volume forces of density f1(x, t) =
(f1

1 (x, t), . . . , fd
1 (x, t)) act in Ω and the surface tractions of density f2(x, t) =

(f1
2 (x, t), . . . , fd

2 (x, t)) are applied on ΓN . Moreover, the body is subjected to a
heat source term per unit volume g = g(x, t) and it comes in contact with a rigid
foundation over the potential contact surface ΓC . We also put Q = Ω × (0, T ).

We denote by u(x, t) = (u1(x, t), . . . , ud(x, t)) the displacement vector, by
σ = {σij} the stress tensor, by ε(u) = {εij(u)} the linearized (small) strain
tensor, where i, j = 1, . . . , d and by θ = θ(x, t) the temperature. We assume with
no loss of generality that the material density and the specific heat at constant
deformation are constants, both set equal to one. The system of equations of
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motion assuming small displacements and the law of conservation of energy
takes the form

u′′i − ∂jσij = f1i in Q, i = 1, . . . , d,

θ′ + ∂iqi = −cij∂ju
′
i + g in Q.

Further, the heat flux vector q = (q1, . . . , qd) satisfies the Fourier law of heat
conduction qi = −kij∂jθ in Q. The behavior of the body is governed by the
thermoviscoelastic constitutive equation of the Kelvin-Voigt type

σij = aijkl∂lu
′
k + bijkl∂luk − cijθ in Q, i, j = 1, . . . , d,

where {aijkl} and {bijkl}, i, j, k, l = 1, . . . , d are the viscosity and elasticity
tensors, respectively, {cij}, i, j = 1, . . . , d being the so-called coefficients of
thermal expansion.

Our main interest lies in the contact and friction boundary conditions on
the surface ΓC . As concerns the contact condition we assume that the normal
stress σN and the normal velocity u′N satisfy the nonmonotone normal damped
response condition of the form

−σN ∈ ∂jN (x, t, u′N ) on ΓC × (0, T ).

The friction relation is given by

−σT ∈ ∂jT (x, t, u′T ) on ΓC × (0, T )

and describes the multivalued law between the tangential force σT on ΓC and
the tangential velocity u′T , see also Migórski (2005). Moreover, we suppose
that between the boundary temperature and the heat flux vector the following
relation holds: q · n ∈ ∂j(x, t, θ), which we write as

−
∂θ

∂nK
∈ ∂j(x, t, θ) on ΓC × (0, T ),

where ∂θ
∂nK

= kij ∂jθ ni. Here jN : ΓC×(0, T )×R → R, jT : ΓC×(0, T )×R
d → R

and j : ΓC × (0, T )×R → R are locally Lipschitz functions in their last variables
and ∂jN , ∂jT , ∂j represent their Clarke subdifferentials. Finally, for the sake
of simplicity we assume that θ = 0 on (ΓD ∪ ΓN ) × (0, T ).

Denoting by u0, u1 and θ0 the initial displacement, the initial velocity and
the initial temperature, respectively, the classical formulation of the problem
can be stated as follows (P):
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find a displacement field u : Q→ R
d and a temperature θ : Q→ R such that


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u′′i − ∂j (aijkl∂lu
′
k) − ∂j (bijkl∂luk) + ∂j (cijθ) = f1i in Q

θ′ − ∂i (kij∂jθ) + cij∂ju
′
i = g in Q

u = 0 on ΓD × (0, T )

σn = f2 on ΓN × (0, T )

−σN ∈ ∂jN (x, t, u′N ) on ΓC × (0, T )

−σT ∈ ∂jT (x, t, u′T ) on ΓC × (0, T )

−
∂θ

∂nK
∈ ∂j(x, t, θ) on ΓC × (0, T )

θ = 0 on (ΓD ∪ ΓN ) × (0, T )

u(0) = u0, u′(0) = u1, θ(0) = θ0 in Ω.

We pass to the variational formulation of the above problem. We introduce the
following spaces

E =
{

v ∈ H1(Ω; Rd) : v = 0 on ΓD

}

,

V =
{

η ∈ H1(Ω) : η = 0 on ΓD ∪ ΓN

}

.

On E we consider the inner product and the corresponding norm given by

(u, v)E = 〈ε(u), ε(v)〉L2(Ω;Sd), ‖v‖E = ‖ε(v)‖L2(Ω;Sd).

From the Korn inequality, it follows that ‖·‖H1(Ω;Rd) and ‖·‖E are the equivalent

norms on E. Let H = L2(Ω; Rd) and Z = Hδ(Ω; Rd) with a fixed δ ∈ (1/2, 1).
Denoting by i : E → Z the embedding injection and by γ : Z → L2(Γ; Rd) the
trace operator, for all v ∈ E, we have γ0v = γ(iv). For simplicity we omit
the notation of the embedding and write γ0v = γv for v ∈ E. Moreover, by
γ∗ : L2(Γ; Rd) → Z∗ we denote the adjoint operator to γ. Identifying H with its
dual, we have the following evolution fivefold of spaces with dense, continuous
and compact embeddings

E ⊂ Z ⊂ H ⊂ Z∗ ⊂ E∗.

We also introduce the following spaces of vector valued functions E = L2(0, T ;E),
Z = L2(0, T ;Z), H = L2(0, T ;H) and E = {v ∈ E : v′ ∈ E∗}, where the time
derivative is understood in the sense of vector valued distributions. Endowed
with the norm ||v||E = ||v||E + ||v′||E∗ , the space E becomes a separable reflexive
Banach space. We have

E ⊂ E ⊂ Z ⊂ H ⊂ Z∗ ⊂ E∗

with dense and continuous embeddings. The duality for the pair (E , E∗) is

denoted by 〈w, z〉E∗×E =
∫ T

0
〈w(s), z(s)〉E∗×E ds. It is well known (see, e.g.,
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Denkowski et al., 2003) that the embeddings E ⊂ C(0, T ;H) and {v ∈ E : v′ ∈
E} ⊂ C(0, T ;E) are continuous and E ⊂ Z is compact.

Similarly, we introduce Y = Hδ(Ω) with the same δ ∈ (1/2, 1) and we have
the evolution fivefold of spaces

V ⊂ Y ⊂ L2(Ω) ⊂ Y ∗ ⊂ V ∗

with dense, continuous and compact embeddings. Let V = L2(0, T ;V ), Y =
L2(0, T ;Y ) and W = {η ∈ V : η′ ∈ V∗}. We obtain

W ⊂ V ⊂ Y ⊂ L2(0, T ;L2(Ω)) ⊂ Y∗ ⊂ V∗,

where all the embeddings are dense and continuous. Furthermore, we know that
the embeddings W ⊂ C(0, T ;L2(Ω)) and {η ∈ V : η′ ∈ W} ⊂ C(0, T ;V ) are
continuous and W ⊂ Y is compact.

Similarly as before, we denote by γs : Y → L2(Γ) the trace operator for
scalar valued functions, by γ∗s : L2(Γ) → Y ∗ its adjoint and we write γs

0v =
γsv for v ∈ V . We assume the following regularity for the density of heat
sources, the body forces and surface tractions: g ∈ V∗, f1 ∈ L2(0, T ;E∗),
f2 ∈ L2(0, T ;L2(ΓN ; R d)), and we define f ∈ E∗ by

〈f(t), v〉E∗×E = 〈f1(t), v〉E∗×E + (f2(t), γ0v)L2(ΓN ;R d) (1)

for v ∈ E and a.e. t ∈ (0, T ). The fact that f ∈ E∗ follows easily from the
continuity of the trace operator. To obtain the variational formulation of the
problem, we use a standard technique multiplying the first equation in (P) by
v ∈ E and using the Green formula. Then, taking into account the boundary
condition on ΓN we have

〈u′′(t) +Au′(t) +Bu(t) + C1θ(t), v〉E∗×E +

+

∫

ΓC

(

j0N (x, t, u′N ; vN ) + j0T (x, t, u′T ; vT )
)

dΓ ≥ 〈f(t), v〉E∗×E

for all v ∈ E and a.e. t ∈ (0, T ), where A : E → E∗, B : E → E∗ and C1 : V →
E∗ are given by

〈Aw, v〉E∗×E =

∫

Ω

aijkl
∂wk

∂xl

∂vi

∂xj
dx,

〈Bw, v〉E∗×E =

∫

Ω

bijkl
∂wk

∂xl

∂vi

∂xj
dx,

〈C1θ, v〉E∗×E = −

∫

Ω

cijθ
∂vi

∂xj
dx

for all w, v ∈ E and θ ∈ V .
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Next, let η ∈ V . Multiplying the second equation in (P) by η, using again the
Green formula and the heat flux boundary condition, we arrive at the following
inequality

〈θ′(t) + C2θ(t) + C3u
′(t), η〉V ∗×V +

∫

ΓC

j0(x, t, θ(t); η) dΓ ≥ 〈g(t), η〉V ∗×V

for all η ∈ V and a.e. t ∈ (0, T ), where the operators C2 : V → V ∗ and
C3 : E → V ∗ are defined by

〈C2θ, η〉V ∗×V =

∫

Ω

kij
∂θ

∂xi

∂η

∂xj
dx,

〈C3w, η〉V ∗×V =

∫

Ω

cij
∂wi

∂xj
η dx

for all θ, η ∈ V and w ∈ E. Hence we obtain the following variational
formulation of the problem (P), which consists of two inequalities which are
called hemivariational inequalities: find a displacement field u : (0, T ) → E with
u′ : (0, T ) → E and u′′ : (0, T ) → E∗ and a temperature θ : (0, T ) → V with
θ′ : (0, T ) → V ∗ such that


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〈u′′(t) +Au′(t) +Bu(t) + C1θ(t), v〉E∗×E +

+

∫

ΓC

(

j0N (x, t, u′N (t); vN ) + j0T (x, t, u′T (t); vT )
)

dΓ ≥ 〈f(t), v〉E∗×E

for v ∈ E, a.e. t

〈θ′(t) + C2θ(t) + C3u
′(t), η〉V ∗×V +

+

∫

ΓC

j0(x, t, θ(t); η) dΓ ≥ 〈g(t), η〉V ∗×V for η ∈ V, a.e. t

u(0) = u0, u
′(0) = u1, θ(0) = θ0.

(2)

In the next section we embed the inequality problem (2) into a more general
class of problems for evolution inclusions for which we prove an existence result.

4. Existence and uniqueness of weak solutions to hemi-

variational inequalities

The goal of this section is to formulate a system of coupled evolution inclusions
related to the system (2) of hemivariational inequalities. We start with the
formulation of the hypotheses on the data of the problem (2).

H(a) : aijkl ∈ L∞(Ω), aijkl = ajikl = alkij , aijkl(x)χijχkl ≥ α1χijχij , for all
χ = {χij} ∈ Sd, a.e. x ∈ Ω with α1 > 0.

H(b) : bijkl ∈ L∞(Ω), bijkl = bjikl = blkij , bijkl(x)χijχkl ≥ 0, for all χ =
{χij} ∈ Sd, a.e. x ∈ Ω.

H(c) : cij ∈ L∞(Ω), cij = cji.
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H(k) : kij ∈ L∞(Ω), kij = kji, kij(x)ξiξj ≥ α2ξiξj for all ξ = {ξi} ∈ R
d, a.e.

x ∈ Ω with α2 > 0.

H(jN ) : jN : ΓC × (0, T )× R → R is such that

(i) jN (·, ·, r) is measurable for all r ∈ R;
(ii) jN (x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ ΓC × (0, T );
(iii) |η| ≤ cN (1 + |r|) for all η ∈ ∂jN (x, t, r), r ∈ R, a.e. (x, t) ∈ ΓC × (0, T )

with cN > 0;
(iv) j0N (x, t, r;−r) ≤ dN (1 + |r|) for all r ∈ R, a.e. (x, t) ∈ ΓC × (0, T )

with dN ≥ 0.

H(jT ) : jT : ΓC × (0, T )× R
d → R is such that

(i) jT (·, ·, ξ) is measurable for all ξ ∈ R
d;

(ii) jT (x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ ΓC × (0, T );
(iii) ‖η‖ ≤ cT (1 + ‖ξ‖) for all η ∈ ∂jT (x, t, ξ), ξ ∈ R

d, a.e. (x, t) ∈ ΓC × (0, T )
with cT > 0;

(iv) j0T (x, t, ξ;−ξ) ≤ dT (1 + ‖ξ‖) for all ξ ∈ R
d, a.e. (x, t) ∈ ΓC × (0, T )

with dT ≥ 0.

H(j) : j : ΓC × (0, T )× R → R is such that

(i) j(·, ·, r) is measurable for all r ∈ R;
(ii) j(x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ ΓC × (0, T );
(iii) |η| ≤ c (1 + |r|) for all η ∈ ∂j(x, t, r), r ∈ R, a.e. (x, t) ∈ ΓC × (0, T )

with c > 0;
(iv) j0(x, t, r;−r) ≤ d (1 + |r|) for all r ∈ R, a.e. (x, t) ∈ ΓC × (0, T )

with d ≥ 0.

H(f) : f1 ∈ L2(0, T ;E∗), f2 ∈ L2(0, T ;L2(ΓN ; R d)), g ∈ V∗, u0 ∈ E, u1 ∈ H

and θ0 ∈ L2(Ω).

In the hypotheses H(jN ), H(jT ) and H(j) the Clarke subdifferentials are taken
with respect to the last variables of jN , jT and j, respectively.

Let us consider the functionals J1 : (0, T )×L2(ΓC ; R d) → R and J2 : (0, T )×
L2(ΓC) → R defined by

J1(t, v)=

∫

ΓC

(

jN (x, t, vN (x))+jT (x, t, vT (x))
)

dΓ, v ∈ L2(ΓC ; R d), t ∈ (0, T ),

J2(t, θ) =

∫

ΓC

j(x, t, θ(x)) dΓ, θ ∈ L2(ΓC), t ∈ (0, T ).

Under the assumptions H(jN ), H(jT ) and H(j) from Lemmas 4 and 5 of
Denkowski and Migórski (2005) we know that J1 and J2 are well defined, J1(t, ·),
J2(t, ·) are Lipschitz on every bounded subsets and satisfy suitable growth and
sign conditions. We now formulate the following system of evolution inclusions:
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find u ∈ E with u′ ∈ E and θ ∈ W such that










u′′(t) +Au′(t) +Bu(t) + C1θ(t) + γ∗∂J1(t, γu
′(t)) ∋ f(t) a.e. t

θ′(t) + C2θ(t) + C3u
′(t) + γ∗s∂J2(t, γsθ(t)) ∋ g(t) a.e. t

u(0) = u0, u
′(0) = u1, θ(0) = θ0.

(3)

By Proposition 6 in Denkowski and Migórski (2005), we have

Proposition 1 Under hypotheses H(jN ), H(jT ) and H(j), every solution to
the problem (3) is a solution to the system (2) of hemivariational inequali-
ties. The converse also holds, provided jN (x, t, ·), jT (x, t, ·) and j(x, t, ·) (or
−jN (x, t, ·), −jT (x, t, ·) and −j(x, t, ·)) are regular in the sense of Clarke.

The following is the main existence result for the problem (3). For the proof
we refer the Reader again to Denkowski and Migórski (2005).

Theorem 1 Under the hypotheses H(a), H(b), H(c), H(k), H(jN ), H(jT ),
H(j) and H(f) the problem (3) has a solution.

Under some additional assumptions on the subdifferential terms we can get (see
Theorem 15 of Denkowski and Migórski, 2005) the uniqueness of solutions to
the problem (3).

H(J) : J1 : (0, T )×L2(ΓC ; R d) → R and J2 : (0, T )×L2(ΓC) → R satisfy the
following relaxed monotonicity conditions

(z1 − z2, v1 − v2)L2(ΓC ;R d) ≥ −m1‖v1 − v2‖
2
L2(ΓC ;R d)

for all zi ∈ ∂J1(t, vi), vi ∈ L2(ΓC ; R d), i = 1, 2 and a.e. t with m1 > 0,

(η1 − η2, θ1 − θ2)L2(ΓC) ≥ −m2‖θ1 − θ2‖
2
L2(ΓC)

for all ηi ∈ ∂J2(t, θi), θi ∈ L2(ΓC), i = 1, 2 and a.e. t with m2 > 0.

(H1) : α1 > m1 ‖γ‖2 and α2 > m2 ‖γs‖2, where ‖γ‖ = ‖γ‖L(E,L2(Γ;Rd)) and
‖γs‖ = ‖γs‖L(V,L2(Γ)).

For the examples of functionals, which satisfy H(J) we refer the Reader to
Migórski (2005) and Migórski and Ochal (2005).

Theorem 2 Besides the hypotheses of Theorem 1, we assume additionally H(J)
and (H1). Then the problem (3) admits a unique solution.

From Proposition 1 and Theorem 2 we have

Corollary 1 If the hypotheses of Theorem 2 are satisfied, and jN , jT and
j or −jN , −jT and −j are regular with respect to their third variables, then
the system (2) of hemivariational inequalities has a unique solution u ∈ E with
u′ ∈ E and θ ∈ W.
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5. Optimal control problem

In this section we shall study an optimal control problem for a system described
by the evolution inclusions (3). We suppose that in the problem (3) the control
variable is denoted by ϕ = (f, g, u0, u1, θ0) ∈ Φ and Φ = E∗×V∗×E×H×L2(Ω)
represents the space of controls. Recall that f is given by (1) and corresponds
to the density of volume forces f1 ∈ L2(0, T ;E∗) and the density of surface
tractions f2 ∈ L2(0, T ;L2(ΓN ; R d)). For every ϕ ∈ Φ we introduce the solution
set S(ϕ) = {y ∈ S : y = y(ϕ) is a solution of (3)}, where S = E × E ×W and
y = y(ϕ) = (u(ϕ), u′(ϕ), θ(ϕ)) denotes the solution to (3) corresponding to ϕ.
It is known from the previous section that under the hypotheses of Theorem
2, for every ϕ ∈ Φ, the problem (3) admits a unique solution y = y(ϕ) ∈ S,
while under assumptions of Theorem 1 the set S(ϕ) can contain more than one
element.

The control problem is formulated as follows. Given Φad, a nonempty subset
of Φ (representing the set of admissible controls), and an objective functional
F : Φ×S → R, F = F (ϕ, y) find a control ϕ∗ ∈ Φad and a state y∗ = y(ϕ∗) ∈ S
such that

F (ϕ∗, y∗) = inf{F (ϕ, y) : ϕ ∈ Φad, y = y(ϕ)}. (4)

We remark that since f depends on the density of surface tractions on the
boundary ΓN × (0, T ), the boundary control problems are incorporated in the
formulation of (4). Moreover, the problem (4) also covers the control via initial
conditions, see Lions (1971).

The proof of existence of optimal solutions for (4) is based on a result on the
continuous dependence on the data in the weak topologies for solutions of (3).

Proposition 2 Assume that the hypotheses of Theorem 1 hold. Then the mul-
tivalued map Φ ∋ ϕ 7→ S(ϕ) ⊂ S is upper semicontinuous, where both Φ and S
are endowed with their weak topologies.

Proof. Let {(fk, gk, u
k
0 , u

k
1 , θ

k
0 )} be a sequence in E∗×V∗×E×H×L2(Ω) which

converges weakly in this space to (f, g, u0, u1, θ0). From Theorem 1 we know
that for every k ∈ N there exists a solution (uk, u

′
k, θk) ∈ E × E × W of the

problem






























u′′k(t) +Au′k(t) +Buk(t) + C1θk(t) + γ∗∂J1(t, γu
′
k(t)) ∋ fk(t) a.e. t

θ′k(t) + C2θk(t) + C3u
′
k(t) + γ∗s∂J2(t, γsθk(t)) ∋ gk(t) a.e. t

uk(0) = uk
0 , u

′
k(0) = uk

1 , θk(0) = θk
0 .

(5)

By Lemma 14 of Denkowski and Migórski (2005), we have the following estimate

‖uk‖C(0,T ;E) + ‖u′k‖E + ‖θk‖C(0,T ;L2(Ω)) + ‖θk‖W ≤ (6)

≤ c
(

1 + ‖uk
0‖E + ‖uk

1‖H + ‖θk
0‖L2(Ω) + ‖fk‖E∗ + ‖gk‖V∗

)
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with a positive constant c independent of k. Since {(fk, gk, u
k
0 , u

k
1 , θ

k
0 )} is bound-

ed in E∗ × V∗ × E ×H × L2(Ω), by passing to a subsequence, if necessary, we
may assume that



















uk → u weakly in E

u′k → u′ weakly in E

u′′k → u′′ weakly in E∗

θk → θ weakly in W .

(7)

We will show that (u, u′, θ) is a solution to the limit problem. Due to the
continuity of the embedding E ⊂ C(0, T ;H) from the convergences uk → u and
u′k → u′ both weakly in E, we obtain

uk(t) → u(t), u′k(t) → u′(t) both weakly in H for all t ∈ [0, T ].

Hence uk(0) → u(0) weakly in H gives u(0) = u0. From the convergences
uk

1 → u1 weakly in H and u′k(0) → u′(0) weakly in H we obtain u′(0) = u1.
Analogously, exploiting the continuity of the embedding W ⊂ C(0, T ;L2(Ω)) we
deduce θk(t) → θ(t) weakly in L2(Ω) for all t ∈ [0, T ] which implies θ(0) = θ0.

Next, from the compactness of the embeddings E ⊂ Z and W ⊂ Y, we
may assume that u′k → u′ in Z and θk → θ in Y. Let us define the operator
N1 : E → 2E

∗

by

N1v = {w ∈ Z∗ : w(t) ∈ γ ∗∂J1(t, γv(t)) a.e. t}, v ∈ E .

Let A, B, C1, C2 and C3 be the Nemitsky operators corresponding to A, B, C1,
C2 and C3, respectively. The first relation in (5) can be written as

u′′k + Au′k + Buk + C1θk + wk = fk with wk ∈ N1u
′
k. (8)

Using the boundedness of N1 (see Denkowski and Migórski, 2005, Lemma 11(i)),
we may suppose

wk → w weakly in Z∗.

Since u′k → u′ in Z, from Lemma 11(iii) of Denkowski and Migórski (2005),
we easily get w ∈ N1u

′. Next, since the operators A, B ∈ L(E , E∗) and C1 ∈
L(V , E∗) are weakly-weakly continuous, by (7) we pass to the limit in (8) and
obtain

u′′(t) + Au′(t) + Bu(t) + C1θ(t) + w = f(t) with w ∈ N1u
′. (9)

Subsequently, we consider the operator N2 : V → 2V
∗

defined by

N2θ = {η ∈ Y∗ : η(t) ∈ γ ∗
s ∂J2(t, γsθ(t)) a.e. t}, θ ∈ V .
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The second inclusion in (5) can be written as follows

θ′k + C2θk + C3u
′
k + ηk = gk with ηk ∈ N2θk. (10)

From the boundedness of N2 (see Denkowski and Migórski, 2005, Lemma 12(i)),
we may assume that ηk → η weakly in Y∗. Using the convergence θk → θ in
Y and Lemma 12(iii) of Denkowski and Migórski (2005), we deduce η ∈ N2θ.
Similarly as before, we use the weak-weak continuity of C2 ∈ L(V ,V∗) and
C3 ∈ L(E ,V∗) and pass to the weak-V∗ limit in (10). We have

θ′ + C2θ + C3u
′ + η = g with η ∈ N2θ. (11)

The equations (9) and (11), together with the initial conditions u(0) = u0,
u′(0) = u1 and θ(0) = θ0, imply that (u, u′, θ) is a solution to the limit problem
corresponding to (5). This proves the theorem.

We need two more hypotheses:

H(Φad) : Φad is a weakly compact subset of Φ.

H(F ) : F is lower semicontinuous with respect to weak-(Φ× S) topology.

We are now in a position to deliver an existence result for the optimal control
problem (4).

Theorem 3 If the hypotheses of Theorem 1 hold and H(Φad) and H(F ) are
satisfied, then the problem (4) has an optimal solution.

Proof. Let {(ϕn, yn)} be a minimizing sequence for the problem (4), that is,
ϕn ∈ Φad, yn ∈ S(ϕn) and

lim
n→∞

F (ϕn, yn) = inf{F (ϕ, y) : ϕ ∈ Φad, y = y(ϕ)} = m ∈ [−∞,+∞).

By the compactness of Φad we may choose a subsequence {ϕn} such that
ϕn → ϕ∗ weakly in Φ with ϕ∗ ∈ Φad. From Proposition 2 we obtain yn → y∗

weakly in S with y∗ = y(ϕ∗). Thus, due to H(F ) we have m ≤ F (ϕ∗, y∗) ≤
lim inf
n→∞

F (ϕn, yn) = m, so m ∈ (−∞,+∞) which completes the proof.

As examples, we may consider the following cost functionals or their combi-
nations:

F1(ϕ, y) =

∫ T

0

L(t, u(t), u′(t), θ(t)) dt +G(ϕ)



624 Z. DENKOWSKI, St. MIGÓRSKI, A. OCHAL

with prescribed functions L and G,

F2(ϕ, y) =
r

∑

i=1

(

∥

∥u(ti) − w1
i

∥

∥

2

E
+

∥

∥u′(ti) − w2
i

∥

∥

2

E

)

,

F3(ϕ, y) =

∫ T

0

∫

Γ

(

‖u(x, t) − w3‖2 + ‖u′(x, t) − w4‖2
)

dxdt,

F4(ϕ, y) =

r
∑

i=1

‖θ(ti) − w5
i ‖

2
L2(Ω),

where ϕ = (f, g, u0, u1, θ0), y = (u, u′, θ), 0 < t1 < t2 < . . . tr ≤ T are points of
measurements and w1

i , w2
i , w3, w4 and w5

i are fixed targets,

F5(ϕ, y) =

∫ T

0

∫

Ω

̺(x, t)|σD(u)(x, t) − σg(x, t)|
2 dxdt,

where σD = σ − 1
d(tr σ)I is the stress deviator, tr σ is the trace of σ and I is

the identity matrix, ̺ is a smooth weight function and σg is a given target.

6. Time optimal control problem

In this section we consider a time optimal control problem. The task is to reach
a moving target set in minimal time. The target set is moving independently of
the solution set to the controlled system of evolution inclusions.

We consider a system described by the following inclusions































u′′(t) +Au′(t) +Bu(t) + C1θ(t)+

+γ∗∂J1(t, γu
′(t)) ∋ f(t) +G1(t)ψ1(t) a.e. t

θ′(t) + C2θ(t) + C3u
′(t)+

+γ∗s∂J2(t, γsθ(t)) ∋ g(t) +G2(t)ψ2(t) a.e. t

u(0) = u0, u
′(0) = u1, θ(0) = θ0.

(12)

The data A, B, C1, C2, C3, J1, J2, f , g, u0, u1 and θ0 are as in Section 4 and
they are fixed. We admit (ψ1, ψ2) as control parameters which provide “source-
like” densities of volume forces and heat sources by means of operators G1 and
G2. We denote by y = y(ψ1, ψ2) = (u(ψ1, ψ2), u

′(ψ1, ψ2), θ(ψ1, ψ2)) a solution
correspoding to a control (ψ1, ψ2) ∈ Ψ1 × Ψ2 = L2(0, T ;Y1 × Y2), where Yi is
a space of control variables and Gi represents a controller, i = 1, 2. Thus we
consider the solution map

S : L2(0, T ;Y1 × Y2) ∋ (ψ1, ψ2) 7→ S(ψ1, ψ2) ⊂ E × E ×W ,

where S(ψ1, ψ2) is the solution set of the controlled system (12) corresponding to
(ψ1, ψ2). We observe that if (u, u′, θ) ∈ S(ψ1, ψ2), then (u, u′, θ) ∈ C(0, T ;E ×
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H × L2(Ω)). We introduce the following assumption concerning the controllers
and spaces of controls.

H(G) : G1 ∈ L∞(0, T ;L(Y1, Z
∗)), G2 ∈ L∞(0, T ;L(Y2, Y

∗)), Y1 and Y2 are
separable reflexive Banach spaces of controls.

Moreover, an additional hypothesis on the elasticity tensor is needed.

H(b)1 the coefficients bijkl satisfy H(b) and bijkl(x)χijχkl ≥ βχijχij , for all
χ = {χij} ∈ Sd, a.e. x ∈ Ω with β > 0.

Proposition 3 Suppose the hypotheses H(a), H(b)1, H(c), H(k), H(jN ),
H(jT ), H(j), H(f), H(G) hold. If {(ψn

1 , ψ
n
2 )} ⊂ Ψ1 × Ψ2, ψ

n
i → ψi weakly

in Ψi, i = 1, 2, yn ∈ S(ψn
1 , ψ

n
2 ), then there exists a subsequence of {yn}, de-

noted by the same symbol, such that yn → y in C(0, T ;E × H × L2(Ω)) and
y ∈ S(ψ1, ψ2).

Proof. Let {(ψn
1 , ψ

n
2 )} ⊂ Ψ1 × Ψ2, ψ

n
i → ψi weakly in Ψi, i = 1, 2 and yn ∈

S(ψn
1 , ψ

n
2 ) 6= ∅ (by Theorem 1). From the a priori estimate (6), we obtain

‖un‖C(0,T ;E) + ‖u′n‖E + ‖θn‖C(0,T ;L2(Ω)) + ‖θn‖W ≤

≤ c2(1 + ‖u0‖E + ‖u1‖H + ‖θ0‖L2(Ω) + ‖f‖E∗ + ‖g‖V∗+

+‖G1‖L∞(0,T ;L(Y1,Z∗))‖ψ
n
1 ‖L2(0,T ;Y1) + ‖G2‖L∞(0,T ;L(Y2,Y ∗))‖ψ

n
2 ‖L2(0,T ;Y2)),

where a positive constant c2 is independent of n. Hence {(un, u
′
n, θn)} is bounded

in reflexive Banach space E×E×W , so, by passing to a subsequence if necessary,
we have

(un, u
′
n, θn) → (u, u′, θ) weakly in E × E ×W .

We introduce the linear continuous Nemitsky operators G1 : L2(0, T ;Y1) → Z∗

and G2 : L2(0, T ;Y2) → Y∗ given by (G1ψ1)(t) = G1(t)ψ1(t) for ψ1 ∈ Ψ1 and
(G2ψ2)(t) = G2(t)ψ2(t) for ψ2 ∈ Ψ2. We have G1ψ

n
1 → G1ψ1 weakly in Z∗ and

hence also weakly in E∗, and G2ψ
n
2 → G2ψ2 weakly in Y∗ and hence weakly in

V∗. Similarly as in Proposition 2 we can show that y ∈ S(ψ1, ψ2). In order to
prove the assertion, first we notice that from the following formulae































u′′n(t) +Au′n(t) +Bun(t) + C1θn(t) + wn(t) = f(t) +G1(t)ψ
n
1 (t) a.e. t

wn(t) ∈ γ∗∂J1(t, γu
′
n(t)) a.e. t

θ′n(t) + C2θn(t) + C3u
′
n(t) + ηn(t) = g(t) +G2(t)ψ

n
2 (t) a.e. t

ηn(t) ∈ γ∗s∂J2(t, γsθn(t)) a.e. t

un(0) = u0, u
′
n(0) = u1, θn(0) = θ0
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and































u′′(t) +Au′(t) +Bu(t) + C1θ(t) + w(t) = f(t) +G1(t)ψ1(t) a.e. t

w(t) ∈ γ∗∂J1(t, γu
′(t)) a.e. t

θ′(t) + C2θ(t) + C3u
′(t) + η(t) = g(t) +G2(t)ψ2(t) a.e. t

η(t) ∈ γ∗s∂J2(t, γsθ(t)) a.e. t

u(0) = u0, u
′(0) = u1, θ(0) = θ0,

we get for t ∈ [0, T ]

∫ t

0

〈u′′n(s) − u′′(s), u′n(s) − u′(s)〉 ds+

∫ t

0

〈A(u′n(s) − u′(s)), u′n(s) − u′(s)〉 ds+

+

∫ t

0

〈B(un(s)−u(s)), u′n(s)−u′(s)〉 ds+

∫ t

0

〈C1(θn(s)−θ(s)), u′n(s)−u′(s)〉 ds+

+

∫ t

0

〈wn(s) − w(s), u′n(s) − u′(s)〉 ds+

∫ t

0

〈θ′n(s) − θ′(s), θn(s) − θ(s)〉 ds+

+

∫ t

0

〈C2(θn(s)−θ(s)), θn(s)−θ(s)〉 ds+

∫ t

0

〈C3(u
′
n(s)−u′(s)), θn(s)−θ(s)〉 ds+

+

∫ t

0

〈ηn(s) − η(s), θn(s) − θ(s)〉 ds =

=

∫ t

0

〈G1(s)ψ
n
1 (s) −G1(s)ψ1(s), u

′
n(s) − u′(s)〉 ds+

+

∫ t

0

〈G2(s)ψ
n
2 (s) −G2(s)ψ2(s), θn(s) − θ(s)〉 ds.

Exploiting H(jN )(iii) and H(jT )(iii), we have ‖wn−w‖Z∗ ≤ ‖wn‖Z∗ +‖w‖Z∗ ≤
c3 (1 + ‖u′n‖Z + ‖u′‖Z) with c3 > 0 and subsequently

∫ t

0

〈wn(s)−w(s), u′n(s)−u′(s)〉 ds ≤

∫ t

0

‖wn(s)−w(s)‖Z∗‖u′n(s)−u′(s)‖Z ds ≤

≤ ‖wn − w‖Z∗‖u′n − u′‖Z ≤ c3 (1 + ‖u′n‖Z + ‖u′‖Z) ‖u′n − u′‖Z for t ∈ [0, T ].

Analogously, from H(j)(iii), we get

∫ t

0

〈ηn(s) − η(s), θn(s) − θ(s)〉 ds ≤

∫ t

0

‖ηn(s) − η(s)‖Y ∗‖θn(s) − θ(s)‖Y ds ≤

≤ ‖ηn − η‖Z∗‖θn − θ‖Y ≤ c4 (1 + ‖θn‖Y + ‖θ‖Y) ‖θn − θ‖Y

for t ∈ [0, T ] with c4 > 0. Next, using the last two inequalities, the following
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relations
∫ t

0

〈u′′n(s) − u′′(s), u′n(s) − u′(s)〉E∗×E ds =
1

2
‖u′n(t) − u′(t)‖2

H

∫ t

0

〈A(u′n(s) − u′(s)), u′n(s) − u′(s)〉E∗×E ds ≥ α1‖u
′
n − u′‖2

L2(0,t;E)

∫ t

0

〈B(un(s) − u(s)), u′n(s) − u′(s)〉E∗×E ds ≥ β‖un(t) − u(t)‖2
E

∫ t

0

〈θ′n(s) − θ′(s), θn(s) − θ(s)〉V ∗×V ds =
1

2
‖θn(t) − θ(t)‖2

L2(Ω)

∫ t

0

〈C2(θn(s) − θ(s)), θn(s) − θ(s)〉V ∗×V ds ≥ α2‖θn − θ‖2
L2(0,t;V )

and 〈C1η, v〉E∗×E + 〈C3v, η〉V ∗×V = 0 for all v ∈ E, η ∈ V (see Denkowski and
Migórski, 2005, Lemma 3(vi)), we obtain, for all t ∈ [0, T ]

‖un(t) − u(t)‖2
E + ‖u′n(t) − u′(t)‖2

H + ‖θn(t) − θ(t)‖2
L2(Ω) ≤

≤ c3 (1 + ‖u′n‖Z + ‖u′‖Z) ‖u′n−u
′‖Z + c4 (1 + ‖θn‖Y + ‖θ‖Y) ‖θn−θ‖Y+

+‖G1(ψ
n
1 − ψ1)‖Z∗‖u′n − u′‖Z + ‖G2(ψ

n
2 − ψ2)‖Y∗‖θn − θ‖Y ≤

≤ c5 (1 + ‖u′n‖Z + ‖u′‖Z + ‖G1(ψ
n
1 − ψ1)‖Z∗) ‖u′n − u′‖Z+

+c5 (1 + ‖θn‖Y + ‖θ‖Y + ‖G2(ψ
n
2 − ψ2)‖Y∗) ‖θn − θ‖Y

with a positive constant c5 independent of n. Since G1ψ
n
1 → G1ψ1 weakly in Z∗,

u′n → u′ weakly in E and strongly in Z, G2ψ
n
2 → G2ψ2 weakly in Y∗, θn → θ

weakly in W and strongly in Y (recall that E ⊂ Z and W ⊂ Y compactly), we
deduce

(un, u
′
n, θn) → (u, u′, θ) in C(0, T ;E ×H × L2(Ω)),

which concludes the proof.

Corollary 2 Under the assumptions of Proposition 3 it is obvious that for
every fixed (ψ1, ψ2) ∈ Ψ1 × Ψ2, S(ψ1, ψ2) is a compact subset of C(0, T ;E ×
H × L2(Ω)).

We are now in a position to consider a time optimal control problem. We
need the following hypotheses concerning the target set N (e.g. changing in time
a set of desirable states for (u, u′, θ)) and the control constraint sets Ui, i = 1, 2.

H(N) : N : [0, T ] → 2E×H×L2(Ω) \ {∅} is a measurable multifunction with

closed graph in [0, T ]× E ×H × L2(Ω).

H(U) : Ui : [0, T ] → 2Yi \ {∅}, i = 1, 2 is a multifunction such that for all
t ∈ [0, T ], Ui(t) is a closed convex subset of Yi and t 7→ ‖Ui(t)‖Yi

:= sup{‖u‖Yi
:

u ∈ Ui(t)} belongs to L∞(0, T ).
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We assume the following controllability type hypothesis:

(Hc) There exists (ψ1, ψ2) ∈ Ψ1 × Ψ2 = L2(0, T ;Y1 × Y2) such that ψi(t) ∈
Ui(t), i = 1, 2 and for some appropriate τ ∈ (0, T ) we have y(τ) ∈ N(τ), where
y = y(ψ1, ψ2) is a solution to (12) corresponding to (ψ1, ψ2).

A control-state triple (ψ1, ψ2, y) is called admissible if ψi ∈ L2(0, T ;Yi),
ψi(t) ∈ Ui(t), i = 1, 2 for a.e. t and y ∈ S(ψ1, ψ2). We define the optimal time
as follows

t0 = inf{τ ∈ (0, T ) : τ is such that (Hc) holds} (13)

and we consider the following time optimal control problem
{

find an admissible triple (ψ1, ψ2, y) such that y(t0) ∈ N(t0),
where t0 is the optimal time given by (13).

(14)

An admissible triple (ψ1, ψ2, y) satisfying (14) is called the time optimal
solution.

Now we establish the existence result for the problem (14).

Theorem 4 If assumptions H(a), H(b)1, H(c), H(k), H(jN ), H(jT ), H(j),
H(f), H(G), H(N), H(U) and (Hc) hold, then the problem (14) admits a time
optimal solution.

Proof. First we note that from Theorem 1 for every (ψ1, ψ2) ∈ Ψ1 × Ψ2 the
solution set S(ψ1, ψ2) of (12) is nonempty.

From the definition of t0, we know that there exists a sequence {tn} ⊂ (0, T )
such that tn → t0 as n → ∞ and tn is as in (Hc). By (Hc) we know that
for all n ∈ N, there exist a control (ψn

1 , ψ
n
2 ) ∈ Ψ1 × Ψ2, ψ

n
i ∈ Ui(t) for a.e.

t ∈ (0, T ) and a state yn ∈ S(ψn
1 , ψ

n
2 ) such that yn(tn) ∈ N(tn). From H(U),

we get that for i = 1, 2, the sequence {ψn
i } is bounded in L2(0, T ;Yi), thus we

may assume that ψn
i → ψi weakly in Ψi, as n → ∞. Since for i = 1, 2 and

a.e. t ∈ (0, T ), Ui(t) is a weakly compact subset of Yi, by applying Proposition
4.7.44 of Denkowski et al. (2003), we have

ψi(t) ∈ conv (w−Yi)−lim sup
n→∞

{ψn
i (t)} ⊂ conv Ui(t) a.e. t ∈ (0, T ),

which, together with the fact that Ui(t) is a closed and convex subset of Yi,
implies ψi(t) ∈ Ui(t) for a.e. t ∈ (0, T ), i = 1, 2. From Proposition 3, at least
for a subsequence, we have

yn → y in C(0, T ;E ×H × L2(Ω)) and y ∈ S(ψ1, ψ2).

Because y ∈ C(0, T ;E ×H × L2(Ω)) and tn → t0, we immediately get

‖yn(tn) − y(t0)‖E×H×L2(Ω) ≤

≤ ‖yn(tn) − y(tn)‖E×H×L2(Ω) + ‖y(tn) − y(t0)‖E×H×L2(Ω) ≤

≤ sup
t∈[0,T ]

‖yn(t) − y(t)‖E×H×L2(Ω) + ‖y(tn) − y(t0)‖E×H×L2(Ω) → 0,
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as n → ∞. Hence, yn(tn) → y(t0) in E × H × L2(Ω). Since yn(tn) ∈ N(tn),
from H(N), it follows that y(t0) ∈ N(t0). This means that t0 is the optimal
time for (14) and (ψ1, ψ2, y) is a required time optimal solution.

7. Maximum stay control problem

In this section our task is to regulate the system governed by evolution inclusions
(12) so as to maximize its stay in a preferred region N(·) of the state space. We
consider the following function

ϑ : C(0, T ;E×H×L2(Ω)) ∋ y 7→ ϑ(y) = m ({t ∈ [0, T ] : y(t) ∈ N(t)}) ∈ R+,

where m is the Lebesgue measure on R.
A maximum stay problem is as follows: find an admissible triple (ψ1, ψ2, y)

such that it solves the following maximization problem

sup{ϑ(y) : y ∈ S(ψ1, ψ2), (ψ1, ψ2) ∈ Ψ1 ×Ψ2, ψi(t) ∈ Ui(t), i = 1, 2}. (15)

Theorem 5 Under the hypotheses of Theorem 4, the problem (15) has a solu-
tion.

Proof. Let us introduce the function

ρ : Ψ1 × Ψ2 ∋ (ψ1, ψ2) 7→ sup{ϑ(y) : y ∈ S(ψ1, ψ2)} ∈ R+.

Then the problem (15) can be written as

sup{ρ(ψ1, ψ2) : (ψ1, ψ2) ∈ L2(0, T ;Y1 × Y2) and ψi(t) ∈ Ui(t), i = 1, 2}.

First we show that ρ is upper semicontinuous on L2(0, T ;Y1×Y2) endowed with
the weak topology. To this end, we will use Theorem 5 of Chapter 1 in Aubin
and Cellina (1984) on the upper semicontinuity of marginal functions. We will
prove that

(a) the solution map S : L2(0, T ;Y1 × Y2) → 2C(0,T ;E×H×L2(Ω)) is upper
semicontinuous in (w−L2(0, T ;Y1 × Y2)) × C(0, T ;E ×H × L2(Ω))–topology;

(b) the function ϑ : C(0, T ;E×H ×L2(Ω)) → R+ is upper semicontinuous.

Proof of (a). We show that the set

S−(∆) = {(ψ1, ψ2) ∈ L2(0, T ;Y1 × Y2) : S(ψ1, ψ2) ∩ ∆ 6= ∅}

is weakly closed in L2(0, T ;Y1 × Y2) for every closed set ∆ ⊂ C(0, T ;E ×H ×
L2(Ω)). Let {(ψn

1 , ψ
n
2 )} ⊂ S−(∆), (ψn

1 , ψ
n
2 ) → (ψ1, ψ2) weakly in L2(0, T ;Y1 ×

Y2). Thus for all n ∈ N, there is yn ∈ S(ψn
1 , ψ

n
2 ) ∩ ∆. From Proposition 3, by

passing to a subsequence, if necessary, we have yn → y in C(0, T ;E×H×L2(Ω))
and y ∈ S(ψ1, ψ2). Furthermore, since {yn} ⊂ ∆ and ∆ is a closed set in
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C(0, T ;E ×H × L2(Ω)), we get y ∈ ∆. Hence, (ψ1, ψ2) ∈ S−(∆), which gives
the upper semicontinuity of S in the desired topology.

Proof of (b). Let {yn} ⊂ C(0, T ;E ×H × L2(Ω)), yn → y in C(0, T ;E ×H ×
L2(Ω)). Define

Dn = {t ∈ [0, T ] : yn(t) ∈ N(t)} = {t ∈ [0, T ] : d(yn(t), N(t)) = 0}.

By H(N), the multifunction N(·) is measurable, so t 7→ d(yn(t), N(t)) is mea-
surable on [0, T ] and also Dn is a measurable subset of [0, T ]. We observe that

K−lim sup
n→∞

Dn ⊂ D, (16)

where D = {t ∈ [0, T ] : y(t) ∈ N(t)} is also measurable. Indeed, by the
definition of the Kuratowski limit of sets, for every t ∈ K−lim sup

n→∞

Dn, there

exists tnk
∈ Dnk

, tnk
→ t, as k → ∞. So ynk

(tnk
) ∈ N(tnk

). From H(N) and
the convergence yn → y in C(0, T ;E×H×L2(Ω)), we obtain y(t) ∈ N(t). This
means that t ∈ D and therefore (16) holds. Moreover, since

lim sup
n→∞

m(Dn) ≤ lim sup
n→∞

m (∪k≥nDk) = lim
n→∞

m (∪k≥nDk)

= m (∩n≥1 ∪k≥n Dk) ≤ m(K−lim sup
n→∞

Dn) ≤ m(D),

we deduce that ϑ is upper semicontinuous.
Applying now Theorem 5 of Aubin and Cellina (1984), by (a), (b) and

Corollary 2 we deduce that ρ is upper semicontinuous on L2(0, T ;Y1 × Y2) en-
dowed with the weak topology. On the other hand, since Ui : [0, T ] → 2Yi \ {∅},
i = 1, 2 is integrably bounded with closed, convex values (see H(U)), the
set Ui(t) is weakly compact in Yi for all t ∈ [0, T ], i = 1, 2. By Theo-
rem 4.5.25 of Denkowski et al. (2003), we know that the set of selections
{(ψ1, ψ2) ∈ L2(0, T ;Y1 × Y2) : ψi(t) ∈ Ui(t) a.e. t, for i = 1, 2} is a weakly
compact subset of L2(0, T ;Y1×Y2). Hence the Weierstrass theorem implies the
existence of a solution to the problem (15).
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Migórski, S. (2002) Optimal control for a class of hyperbolic hemivariational
inequalities. In: M.H. Hamza, ed., Proceedings of the International Con-
ference “Control and Applications”, Cancun, Mexico, Acta Press, 75–80.
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in Mechanics and Engineering. Springer-Verlag, Berlin.
Panagiotopoulos,P.D. and Haslinger, J. (1992) Optimal control and iden-

tification of structures involving multivalued nonmonotonicities. Existence
and approximation results. European Journal of Mechanics. A. Solids, 11,
425–445.

Sextro, E. (2002) Dynamical Contact Problems with Friction. Springer-
Verlag, New York.


