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Abstract: We derive global in time a priori bounds on higher-
level energy norms of strong solutions to a semilinear wave equa-
tion: in particular, we prove that despite the influence of a nonlinear
source, the evolution of a smooth initial state is globally bounded in
the strong topology ∼ H2 × H1. And the bound is uniform with
respect to the corresponding norm of the initial data.

It is known that an m-accretive semigroup generator monotoni-
cally propagates smoothness of the initial condition; however, this re-
sult does not hold in general for Lipschitz perturbations of monotone
systems where higher order Sobolev norms of the solution may blow-
up asymptotically as t → ∞. Due to nonlinearity of the system, the
only a priori global-in-time bound that follows from classical meth-
ods is that on finite energy: ∼ H1 × L2.

We show that under some correlation between growth rates of
the damping and the source, the norms of topological order above
the finite energy level remain globally bounded. Moreover, we also
establish this result when damping exhibits sublinear or superlinear
growth at the origin, or at infinity, which has immediate applications
to asymptotic estimates on the decay rates of the finite energy.

The approach presented in the paper is not specific to the wave
equation, and can be extended to other hyperbolic systems: e.g. plate,
Maxwell, and Schrödinger equations.

Keywords: wave equation, localized nonlinear damping, non-
linear source, stability, uniform boundedness, higher energy, strong
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1. Introduction

Stability and energy decay rates for dissipative wave equations, as well as other
hyperbolic-like structures (plates, shells), have attracted considerable attention
in the past years, see books by Haraux (1981, 1987), Lagnese (1983), Komornik
(1994), Lasiecka (2002) and references therein. The problem of interest in this
paper is a semilinear wave equation driven by a nonlinear source f ∈ C1(R) and
monotone nonlinear dissipation g ∈ C(R):

wtt(x, t) − ∆w(x, t) + χ(x)g(wt(x, t)) = f(w(x, t)), {x, t} ∈ Ω × [0, T [ (1)

on a smooth domain Ω ⊂ R
n. The growth of the source feedback map f(s)

can reach the critical Sobolev’s exponent, while the dissipation χg(wt) is geo-
metrically restricted to the support of the cutoff function χ(x). Equation (1)
will be equipped with appropriate homogenous boundary conditions (Neumann,
Dirichlet, Robin, or an appropriate combination thereof) which we will specify
later.

Let us first discuss the above problem within the framework of finite energy
space, which corresponds to the usual topology: H1(Ω) for the acoustic pres-
sure (or displacement) component w, and L2(Ω) for the time rate of change
wt. It is by now a standard result that finite energy solutions exist locally in
time. In order to avoid a potential finite-time blowup, one needs to put some
stability-dissipativity restrictions on f , such as, for instance, condition (5) be-
low. This assumption can be relaxed if one is interested only in global (in time)
existence of solutions. However, since the main focus of this paper is on the
decay rates of finite energy to 0, such a stability assertion is necessary. Among
other implications, this assumption gives us global Hadamard wellposedness for
the problem.

When discussing long-term behavior of equation (1), the first question is:

Question 1. Under what conditions on the dissipation do the solutions
decay uniformly (in finite energy norm) to zero?

This is a classical uniform stabilization problem that has been considered
extensively in the literature. It is known that while “strong stabilization” does
hold without any additional conditions imposed on the dissipation (due to Holm-
gren’s uniqueness theorem), the uniform stabilization does require appropriate
equipartition of potential and kinetic energy, which imposes certain growth re-
striction on the damping. In the case of geometrically constrained dissipation,
not only must the support of the cutoff χ(x) occupy a sufficiently “large” sub-
set of a boundary collar, but also the growth bounds imposed on g at infinity
must be of linear type (from above and below). In this case the rate of decay
depends solely on the growth of the damping near the origin (Lasiecka, Tataru,
1993). A comprehensive treatment of decay rates for equation (1) was presented
in Lasiecka and Toundykov (2006) and Toundykov (2007), which extends the
results obtained earlier in Lasiecka, Tataru (1993) for the case of boundary
damping.
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One of the results in Lasiecka and Toundykov (2006) shows that linearly-
bounded growth of the dissipative feedback map g (possibly restricted in space
by cutoff χ(x)) yields exponential decay of the finite energy norms. Any de-
viation of g from linear-like behavior near the origin weakens the decay rates
to algebraic or logarithmic (or iterated logarithmic: (log log) etc). This result
settles the issue completely in the case of dissipation that is linearly bounded
at infinity. The next natural question to address is:

Question 2. What can be said about the decay rates of the energy when the
damping is either sublinear or superlinear at infinity?

It is the lack of equipartition between the potential and kinetic energy com-
ponents that destroys uniformity (in the same finite energy topology) of the
decay rates: either we have too much of kinetic damping (superlinear case) or
too little (sublinear case).

In this situation, asymptotic behavior of the finite energy strongly depends
on topological properties of the flow; to claim decay rates at the phase-space
level, one must establish global-in-time bounds on solutions in topology strictly
above the order of the finite energy itself. These higher-order norms are what
we shall henceforth refer to as the “higher energy” which can be associated with
H2(Ω)×H1(Ω) topology (later on we will make the definition of “high energy”
more precise).

This dependence on higher norms is necessary even in some 1-dimensional
settings (Vancostenoble and Martinez, 2000) with localized dissipation. Lasiecka
and Toundykov (2006) present a detailed account on how additional regularity
of “high energy” solutions reflects on stability when the dissipative feedback
behaves sub- or super-linearly at infinity. However, this raises yet another, and
fundamental, question:

Question 3. When are higher-order norms globally bounded in time? Fur-
thermore, can we expect such a regularity estimate to be uniform with respect to
the high-energy norm of the initial state?

We know that given sufficiently smooth initial data, higher energy of so-
lutions remains bounded on every finite interval (see Proposition a-3 in the
Appendix). However, it is far from being clear whether the bound remains
unform for all times. This problem, classical within the realm of dynamical sys-
tems, has a simple solution when the system is contractive (no source present
in the model). Indeed, nonlinear semigroup theory (Barbu, 1993) provides an
affirmative answer. However, in a non-contractive case there is no natural me-
chanism to ensure stability of higher energies, since dissipativity of the source is
guaranteed only at the level of finite energy space.

At the level of higher-order norms the nonlinear source term actively “pumps”
energy into the system. In general, the best one can claim is that the higher
energies obey an exponential bound that blows up as t → ∞. Thus, even though
it is relatively easy to prove that the finite energy is globally bounded (and uni-
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formly with respect to norm of the initial state), the norms in finer topologies
do not need to obey any global estimates.

These considerations lead to yet another question:

Question 4. What additional conditions can one impose on the damping
and the source, to guarantee that the higher energies of solutions stay globally
(uniformly) bounded?

In general, information on global behavior of solutions to PDE in higher-
order spaces has, of course, its own merits. However, in our case, an additional
motivation is to use this uniform regularity to measure the decay rates of finite
energy solutions, under super- or sub-linear damping at infinity. The expected
answer must be conditional and should depend on the interaction between the
source and the damping, in particular it relies on

• how strong the source is at the higher energy level

• how fast the solutions decay to zero at the lower (“finite”) energy level.

It is the balance between these two factors that provides an answer to Ques-
tion 4: we set up an optimization problem between rapid decays and high regu-
larity needed to compensate for the effect of the source. One can schematically
illustrate this situation by the following relational loop

Regularity of
High Energy

=⇒ Decay Rates of
Finite Energy

=⇒ Regularity of
High Energy

which, when expressed quantitatively, naturally leads to a fixed point-type ar-
gument that involves optimization of regularity and decay estimates. In this
paper we show how to resolve this optimization problem and state what con-
ditions can be imposed on the interaction between the source and damping, in
order to affirmatively answer Question 4 (see Theorem 2 below).

1.1. The model

Throughout the paper we shall mostly focus on the n = 3-dimensional set-
up. It captures all the technical difficulties that arise in higher dimensions,
and straightforwardly simplifies to lower-dimensional models. We will, however
derive some of the results for 2-dimensional domains as well.

Let Ω ⊂ R
n=3 be a smooth bounded connected domain with connected

boundary Γ. Let QT := Ω×]0, T [ and ΣT := Γ×]0, T [; the form ‖ · ‖ without
a subscript will denote the norm in L2(Ω). This paper aims at investigating
long-term behavior of solutions to the following system:

wtt − ∆w + χ(x)g(wt) = f(w) in QT

w(0) = w0, wt(0) = w1 in Ω
(2)

with boundary conditions of Dirichlet or Robin type:(
α

∂w

∂ν
+ βw

) ∣∣∣∣
ΣT

= 0, α ≥ 0, β > 0. (3)
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Nonlinear functions g and f represent Nemytski operators associated with scalar
continuous real-valued functions g(s) and f(s), respectively.

Map g is continuous, monotone increasing, zero at the origin, and represents
interior dissipation, that is localized to a subset of the domain by the cutoff map
χ(x). For the system to be well-posed, the scalar function f must correspond to
a locally Lipschitz Nemytski operator H1(Ω) → L2(Ω); in particular, we shall
assume

|f ′(s)| ≤ C(1 + |s|k) (4)

where 0 ≤ k ≤ 2/(2 − n) if n ≥ 3, or 0 ≤ k < ∞ if n = 2.
Note that the polynomial bound on f may include the critical Sobolev ex-

ponent for the embedding H1 → L2, that represents the threshold above which
finite-energy norms may blow up in finite time (e.g. see Georgiev and Todorova,
1994; Serrin, Todorova and Vitillaro, 2003).

In addition, we need to impose further stability conditions to ensure global
existence and filter out non-trivial steady states:

sup
s6=0

f(s)/s < λ1, and f(0) = 0 (5)

where λ1 is the smallest eigenvalue of the operator A = −∆ defined on a subset
of L2(Ω) functions that have two distribution derivatives and satisfy boundary
conditions of the form (3).

1.1.1. On boundary conditions

The analysis of decay rates in Lasiecka and Toundykov (2006) also addresses
models with mixed Dirichlet/Neumann/Robin boundary conditions. In this case
the solutions may develop singularities near the junction where different types
of boundary dynamics meet each other (e.g. Grisvard, 1985, 1989).

Present discussion can be generalized to the mixed case as well, provided
one takes into account that the domain of the corresponding Laplacian is not
necessarily a subset of H2(Ω). We would have to restrict the use of Sobolev
embeddings throughout the proofs, in order to be consistent with the available
elliptic regularity.

To keep the presentation focused we will not address the mixed setting,
however, the approach presented below can be generalized to accommodate
more complex boundary dynamics (see Lasiecka and Toundykov, 2006).

1.1.2. Geometry of the domain

The cutoff function χ ∈ L∞
(
Ω; [0, ∞[

)
, potentially restricts the action of the

velocity feedback g(wt). We are primarily interested in the case when χ is
supported only on a sub-collar of Ω: i.e. there exists a nonempty segment of
the boundary ΓC , and some fixed γ > 0 such that

Ωχ :=
{
x ∈ Ω : dist (x, ΓC) ≤ γ

}
⊆ suppχ. (6)
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Also assume that χ has a positive a.e. uniform bound from below on
Ωχ: ess infΩχ(χ) > 0. The remaining portion of the boundary (possibly over-
lapping with ΓC) is denoted ΓU :

Γ = ΓC ∪ ΓU . (7)

The part ΓC is assumed to have positive measure, be connected, and relatively
open. If ΓC 6= Γ then the same assertions apply to ΓU , otherwise take ΓU =
∅. When nonempty, we assume that ΓU satisfies the necessary geometrical
assumptions for the damping to be effective:

Assumption 1 (Geometry of the unobserved segment) If the unobserved portion
ΓU of the boundary is nonempty then

(a) Assert that for some x0 ∈ R
n , (x − x0) · ν(x) ≤ 0 on ΓU with ν being

the outward normal field.

(b) If a Neumann-type boundary condition holds (3) with α > 0, then we need
Ω to be strictly convex near ΓU . More specifically:

ΓU = {x ∈ R
n : ℓ(x) = 0}, ∇ℓ 6= 0 on ΓU

with the surface z = ℓ(x) having a convex epigraph. See Lasiecka and
Toundykov (2006) as well as Lasiecka, Triggiani and Zhang (2000), p. 302,
for more details.

1.2. Known results: uniform decay of finite energy and local stability
of higher norms

System (2), (3), with at most critical source, and stability assumption (5),
generates a nonlinear semigroup flow on the phase space

H = D(A1/2) × L2(Ω) ⊂ H1(Ω) × L2(Ω)

(e.g. see Chueshov, Eller and Lasiecka, 2002, Theorem 7.2). We begin with
the following regularity result, which provides some improvement over the clas-
sical theory when g is superlinear at infinity, we state and prove it for the
3-dimensional case.

Proposition 1 Let g be monotone continuous, g(0) = 0. Assume that f ∈
C1(R) satisfies |f ′(s)| ≤ Cf (1+ |s|2). Suppose that {w0, w1} ∈ D(A)×D(A1/2).
Then

{w, wt} ∈ L∞
(
0, T ; D(A)× D(A1/2)

)
∀T < ∞ (8)

The proof can be found in the Appendix.

Remark 1 (Notation) In some instances, for example in Chueshov, Eller and
Lasiecka (2002), the (local) bound of type (8) is denoted, with a slight abuse of
notation, by L∞

(
[0,∞); X). However, let us point out that in either case the

estimate is not global and may blowup as T → ∞.
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The ultimate goal of the present discussion will be to establish conditions
under which the estimate in (8) can be made independent of T .

We define the finite-energy of the state at time t to be a topological equiva-
lent of its phase-space norm:

E(t) = E(w(t), wt(t)) =
1

2
‖w(t), wt(t)‖2

H
=

1

2
‖A1/2w(t)‖2 +

1

2
‖wt(t)‖2

where A is the corresponding Laplace operator on Ω. Note that due to a
Poincaré-type estimate, the potential energy is equivalent to the gradient

cΩ‖∇w‖ ≤ ‖A1/2w‖ ≤ CΩ‖∇w‖. (9)

We briefly summarize known results on the decay of finite-energy solutions:

Theorem 1 (Lasiecka and Toundykov, 2006) Let g be continuous monotone
increasing, g(0) = 0 and f ∈ C1(R) satisfy (5). Also assume that the geometrical
observability condition (Assumption 1) holds. Then the energy of the system (2),
(3) is non-negative and obeys the following relations:

a) For a sufficiently large (fixed) T > 0 one can find a concave function h and
a constant Cdec > 0 such that

E(T ) + (h + Id)−1

(
1

Cdec
E(T )

)
≤ E(0) .

b) Asymptotic decay of the finite energy is given by

E(t) ≤ S

(
t

T
− 1

)
∀t ≥ T

where S(t) solves the following (monotone) ODE

Ṡ + h−1

(
S

Cdec

)
= 0, S(0) = E(0) .

Map h is a concave function (defined in Lasiecka, Toundykov, 2006, Section
3.2) that depends on the damping. Parameter Cdec > 0 satisfies:

• If g(s) is linearly bounded at infinity then parameter Cdec depends only
on initial energy E(0) and constant T (which, in turn, relates to the
diameter of Ω). Thus, decay is uniform with respect to the norm of the
initial state.

• If g(s) is either superlinear or sublinear at infinity then Cdec depends
on a global bound on the higher energy:

‖wt‖
L∞

(
0,∞; Lp(Ω)

) and/or ‖∇w‖
L∞

(
0,∞; Lp(Ω)

) (10)

for a certain p > 2, which may depend on damping g. So, a priori
(when f 6= 0) we may only claim that decay is uniform with respect to
the global bound on the entire trajectory in higher topology.
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As was pointed out earlier, the estimate (10) on higher norms for superlinear
and sublinear dissipation is known to be necessary in some models of this type
(e.g. see Vancostenoble and Martinez, 2000). The underlying physical reason is
that in an over-damped or under-damped system, there respectively appears an
excess of kinetic or potential energy, which must be contained by means other
than the dissipation. Naturally, one would like to know when such additional
regularity is available, to begin with.

1.3. Main result: Global uniform bounds on higher energies

This section presents the main result of the paper. In some sense it states that
due to the structure of the dynamics, higher-order norms of the solution cannot
blowup asymptotically if the finite energy decays fast enough.

The results can be extended to general nonlinear damping; however, to make
the statement clearer let us concentrate on a few specific instances of linear,
superlinear and sublinear growths. Each of the three growth types will be
considered in two cases: either near the origin (g(s) for |s| < 1) or at infinity
(for |s| ≥ 1). Let m, M > 0 be fixed, then

(Linearly bounded) m|s| ≤ |g(s)| ≤ M |s|. (11)

(Sublinear) |g(s)| = |s|θ, some 0 ≤ θ < 1. (12)

(Superlinear) |g(s)| = |s|r, some r > 1. (13)

Remark 2 There is no need for g to have a polynomial structure, rather, lower
and upper polynomial bounds would suffice. The proofs, however, will become
more cumbersome. To keep the presentation concise we shall focus only on the
aforementioned polynomial representations of non-linearly-bounded behaviors.

Theorem 2 (Main theorem: global bounds on higher-level energy) Assume:

1. g ∈ C(R) is monotone increasing with g(0) = 0.

2. f ∈ C1(R) satisfies (5) and |f ′(s)| ≤ C|s|k. Here 0 ≤ k ≤ 2
2−n when

dimension n ≥ 3, and 0 ≤ k < ∞ when n = 2. (If the bound on the
derivative necessarily includes a constant term: |f ′(s)| ≤ C(1+|s|k1), then
conditions of the theorem for both k = 0 and k = k1 must be satisfied).

3. The unobserved segment ΓU (when non-empty) satisfies the geometric As-
sumption 1, and:

4. Take smooth initial condition {w0, w1} ∈ D(A) × D(A1/2).

THEN: (i) the higher order energy is globally bounded: ‖∇wt‖ + ‖wtt‖ < C
for all t ≥ 0; (ii) this estimate is uniform with respect to the higher energy of
the initial state C = C(‖∆w0‖ + ‖∇w1‖)
PROVIDED one of the following cases applies:
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a) Linearly bounded damping ((11) ∀s ∈ R).

b) Sublinear damping at the origin ((12) ∀|s| ≤ 1) with sub-linearity expo-
nent θ ∈]0, 1[; and linearly bounded damping at infinity ((11) ∀|s| > 1). In
addition assume

• In 3 dimensions 2/(k + 4) < θ, with k ≤ 2

• In 2 dimensions 1/(k + 2) < θ, with k < ∞.

c) Superlinear damping at the origin ((13) ∀|s| ≤ 1) with super-linearity
exponent r > 1; and linearly bounded damping at infinity ((11) ∀|s| > 1). In
addition

• In 3 dimensions r < (4 + k)/2, with k ≤ 2

• In 2 dimensions r < 2 + k, with k < ∞.

d) Sublinear damping at infinity ((12) ∀|s| > 1) and linearly bounded at
the origin ((11) ∀|s| ≤ 1). In addition, we require

• In 3 dimensions (k + 1)/3 < θ, with k ≤ 2

• In 2 dimensions 0 < θ, with k < ∞.

e) Superlinear damping at infinity ((13) ∀|s| > 1) and linearly bounded at
the origin ((11) ∀|s| ≤ 1). In addition

• In n = 3 dimensions assume r < (11 + 2
√

10)/9 ≈ 1.925, and the
following restrictions apply:

if 1 < r ≤ 5/3 then k ≤ (14 − 6r)/(3r + 1)

if 5/3 < r < 17/9 then k < (20/3)− (5/3r) − 3r

if 17/9 ≤ r < (11 + 2
√

10)/9 then k < 2 − [9(r − 1)2/(2r)].

• In n = 2 dimensions assume r ≤ (3 +
√

5)/2 ≈ 2.618, and the following
restrictions apply:

if 1 < r < 2 then k < (3 − r)/(r − 1)

if r = 2 then k ≤ 1 (closed range)

if 2 < r < 1 +
√

2 then k < 5 − 2r

if 1 +
√

2 ≤ r < (3 +
√

5)/2 then k < 1 − (r − 1)2/r.

Remark 3 The condition (k + 1)/3 < θ for sublinear damping at infinity in
Theorem 2 agrees with the special case k = 0 derived in Lasiecka and Toundykov
(2006), Theorem 3.

Also note that results of Theorem 2 for sublinear and superlinear damping
near the origin yield a larger range of admissible exponents when the source term
is stronger. The reason for such unexpected behavior is that asymptotic decay
of ‖w‖H1(Ω) and higher powers of f contribute to ‖f(w)‖ being small, which
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in some sense diminishes the influence of the source. However, this effect is
relatively weak and helps only when the damping is linearly bounded at infinity,
i.e. when the decay of finite energy does not involve higher-order norms.

1.4. Examples

When studying stability, the most interesting cases of equation (2) are where
the damping is not linearly bounded at infinity. Then, the asymptotic behavior
of the finite energy E(t) directly relates to the smoothness of the flow. Below
we provide some examples of sub- and super-linear dissipation at infinity, and
show how Theorem 2 helps us determine energy decay rates.

1.4.1. Sublinear damping at infinity

Suppose |g(s)| ∼ |s|θ, some 0 < θ < 1, at infinity (with linear bounds near zero)
and |f(s)| ≤ C|s|k+1. Then (see Theorem 2) whenever

• 0 ≤ k < 3θ − 1 in n = 3 dimensions

• or any k ≥ 0 in n = 2 dimensions

we can claim global bounds on the higher-level norms. Hence, finite energy will
decay, Lasiecka and Toundykov (2006) at the rate 1/(q − 1), where

q = (p − θ − 1)/(p− 2)

provided supt≥0 ‖wt‖Lp(Ω) < ∞. Since this higher norm is globally bounded we
can set p = 6 (in 3 dimensions), and conclude

E(t) ∼ Ct−4/(1−θ) as t → ∞ (n = 3).

Alternatively, in n = 2 dimensions, due to Sobolev embedding H1 → Lp, 2 ≤
p < ∞, we can chose p to be arbitrarily large, thus obtaining arbitrarily fast
polynomial decay (however, necessarily sub-exponential).

Let us emphasize again that the result in Lasiecka and Toundykov (2006)
confirms such rates only when the entire trajectory is globally bounded in higher
topology. However, Theorem 2 refines this statement by saying that the decay is
uniform with respect to the higher-order norm of the initial state only, because
the smoothness of the flow follows automatically.

1.4.2. Superlinear damping at infinity

Suppose damping is linearly bounded at the origin, whereas at infinity it grows
as g(s) = C 3

√
|s|s, |s| ≥ 1, i.e. has the order r = 4/3 < 5/3. Suppose the

growth rate k of the source satisfies

k ≤ 14 − 6(4/3)

3(4/3) + 1
=

6

5
, |f(s)| ∼ |s|k+1.
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For instance, if the source is quadratic: e.g. |f(s)| = |s|s, then, according
to Theorem 2, even in 3 dimensions the regularity of the initial state will be
propagated in a uniform fashion. In particular, a smooth initial condition would
imply

supt≥0 (‖wtt(t)‖ + ‖∇wt(t)‖) < ∞ .

From the original equation (2) we have

‖∆w‖ ≤ ‖wtt‖+C‖w4/3
t ‖+‖f(w)‖ ≤ ‖wtt‖+CΩ,E(0)‖∇wt‖+C(E(0)) < ∞.

Consequently, via the Sobolev embedding results, ‖∇w‖L6 is globally bounded
and the finite energy decays as, see Lasiecka and Toundykov (2006, Theorem 2):

E(t) ∼ Ct4r/(r−1) = Ct−16 when t → ∞.

Take a stronger damping: |g(s)| ≤ |s|1.9 (almost at the threshold asserted by
Theorem 2 in 3 dimensions). Then we can still estimate the energy decay
according to the same law

E(t) ∼ Ct4r/(r−1) ≈ Ct−8.45 when t → ∞
provided initial data is smooth and |f(s)| ≤ |s|1.08, e.g. when the source is
linear.

Remark 4 One may observe that in the above examples we get relatively fast
algebraic decay rates. The reason for the “rapid” decrease in the energy is that
Theorem 2 provides us with conditions which outright yield an extra unit of global
smoothness, allowing us to take full advantage of the embedding H1 → Lp. It
might be possible instead to establish weaker conditions that imply global bounds
on the flow in spaces D(A1/2+η)×D(Aη) (which is still above the finite energy).

2. Proof of Theorem 2

The result of Theorem 2 follows immediately in the case of f = 0. Then the reg-
ularity estimate presented in Proposition 1 can be readily extended to a global
bound, due to the contractive character of the flow: if g does not grow too rapidly
at ∞ (i.e. the domain of the generator coincides with D(A)×D(A1/2)) one may
appeal to the classical theory of m-accretive operators (Barbu, 1993; Showalter,
1997), alternatively the same outcome follows from the proof of Proposition 1
for any monotone dissipation. Henceforth we will assume the more interesting
case of f 6= 0.

2.1. Governing inequalities

Let v ≡ wt, and introduce the high-level energy functional:

E(t) = E(v(t), vt(t)) ≡ ‖vt‖2
L2(Ω) + ‖A1/2v‖L2(Ω), t ≥ 0. (14)

We begin with the following “fixed point”-type estimate
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Proposition 2 (A priori bound on the higher energy) Under the assumptions
of Theorem 2, the following energy relation holds for any T > 0

E
(
T
)
≤ E(0) + C

∫ T

0

E(t)
1
2+γk( 1

2−
2
π )E(t)1/2+γk/π (15)

where
• In n = 3 dimensions γ = 3/2 and max{2k, 2} ≤ π ≤ 6.
• In n = 2 dimensions γ = 1 and max{2k, 2} ≤ π < ∞.

Proof. To carry out the next step we may, without loss of generality, assume that
g is differentiable. Alternatively, one may consider (Lipschitz) Yosida approx-
imations of monotone function g, repeat the argument below and pass to the
limit in order to arrive at the same result: estimate (17) (see Barbu, 1993, for
more details). Differentiation of (2) in time shows that the strong formulation
of the original problem weakly satisfies the equation

vtt + Av + χg′(wt)vt = f ′(w)v.

Now, L2(Ω)-inner product with vt yields

1

2

d

dt
‖vt‖2 +

1

2

d

dt
‖A1/2v‖2 +

∫

Ω

≥0︷ ︸︸ ︷
χg′(wt)v

2
t =

∫

Ω

f ′(w)vvt ≤ C

∫

Ω

|w|k |v| |vt|.

(16)

Since g is monotone, the integrand χg′(wt)v
2
t is non-negative. Discard this

positive term and integrate over [0, T ]. Pick a constant π ≥ max{2k, 2}, then
apply Holder estimates on the RHS of (16): first with conjugate exponents
{2, 2}, then again with {π/(2k), π/(π − 2k)} (possibly {∞, 1} if k = 0, or
{1,∞} if π = 2k):

E
(
T
)
≤E(0) + C

∫ T

0

‖vt‖‖wkv‖ ≤ E(0) + C

∫ T

0

‖vt‖‖w‖k
Lπ(Ω)‖v‖L(2π)/(π−2k)(Ω)

(17)

To derive the next few auxiliary inequalities we will invoke: (i) the definition (14)
of the high-level energy; (ii) Sobolev embeddings; (iii) interpolation estimates;
as well as (iv) a Poincaré-type inequality. Recall that we have the following

embedding Hγ(1− 2
π ) →֒ Lπ, where in 3 dimensions γ = 3/2 and max{2k, 2} ≤

π ≤ 6, whereas in 2 dimensions γ = 1 and max{2k, 2} ≤ π < ∞ (for a general
reference on Sobolev embeddings see, for instance Adams, 1975):

‖vt(t)‖ ≤ E(t)1/2

‖w(t)‖k
Lπ ≤ CΩ‖w(t)‖k

Hγ(1−2/π) ≤ CΩE(t)(γk/2)(1−2/π)
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‖v(t)‖L2π/(π−2k) ≤ CΩ‖v(t)‖H2γk/π ≤ CΩ‖v(t)‖1−2γk/π‖v(t)‖2γk/π
H1

≤ CΩE(t)(
1
2−

γk
π )E(t)γk/π .

Apply the last three estimates to (17):

E
(
T
)
≤ E(0) + C

∫ T

0

E(t)1/2+γk( 1
2−

2
π )E(t)1/2+γk/π . (18)

Which completes the proof of Proposition 2.

Corollary 1 Suppose that

E(t) ≤ C

(
sup

θ∈[0,t]

E(θ)

)bpK

b(t) (19)

for some exponent p̂K ≥ 0 and a continuous function b(t) (the strange notation
p̂K is merely a convenience; this choice will be clearer later on). Then the higher
energy is globally bounded: supt∈R+

E(t) < ∞, provided both of the following
conditions hold:

b(t)
1
2+γk( 1

2−
2
π ) ∈ L1(R+), and p̂K

[
1

2
+ γk

(
1

2
− 2

π

)]
+

(
1

2
+

γk

π

)
≤ 1

where
• In n = 3 dimensions γ = 3/2 and max{2k, 2} ≤ π ≤ 6;

• In n = 2 dimensions γ = 1 and max{2k, 2} ≤ π < ∞.

Proof. The local bound E(t) ≤ const for t ∈ [0, T ], any T > 0, was estab-
lished in Proposition 1. We must, however, prove that this bound is global and
independent of the length of the observed time-interval. For convenience let

Ē(t) := sup
θ∈[0,t]

E(θ). (20)

Now start with the estimate (15) and apply the following derivations:

• Since the RHS of (15) is monotone with respect to the upper limit of
integration T , we may replace E(T ) on the LHS by Ē(T ).

• Replace E(t) in the integrand with Ē(t).

• Note that E(0) = Ē(0).

• Use the hypothesis (19) with T = t to rewrite the term E(t) in the inte-

grand on the RHS of (15).

We get

Ē
(
T
)
≤ Ē(0) + C

∫ T

0

b(t)
1
2 +γk( 1

2−
2
π )Ē(t)pK [ 1

2+γk( 1
2−

2
π )]+(1/2+γk/π)dt.
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Now a standard Gronwall-type estimate confirms that Ē(T ) is bounded uni-
formly in T , provided pK [1/2 + γk(1/2 − 2/π)] + (1/2 + γk/π) ≤ 1, and
b(t)1/2+γk(1/2−2/π) is integrable on [0,∞).

2.2. Decay of finite energy

In order to make use of the Corollary (1) we must determine explicitly function
b(t) and the exponent p̂K that appear in (19). This information stems from our
knowledge of finite-energy decay rates:

Lemma 1 (Decay of finite energy, Lasiecka and Toundykov, 2006) Adopt the
hypotheses of Theorem 2. Then there exists a (sufficiently large) T > 0, so that
for any T1 ≥ T the decay of finite energy over the interval [T, T1] is given by

E(t) ≤ S
(
T−1t − 1

)
, T ≤ t ≤ T1 (21)

where C depends on initial energy E(0), and function S(t) solves a certain ODE
of monotone type. When the damping g can be piece-wise bounded above and
below by polynomials (including sub-linear exponents), the ODE satisfied by S
reduces to:

Ṡ +
(
K−1S

)q
= 0, S(0) = E(0) (22)

for some q ≥ 1. Constant K satisfies the estimate

K = K(T1) ≤ C

(
sup

θ∈[0,T1]

E(θ)

)pK

. (23)

Moreover,

I. Suppose g is linearly bounded at infinity: (11) ∀|s| ≥ 1, then one can
take pK = 0. If, in addition,

i) Sublinear damping at the origin: (12) ∀|s| < 1 with sub-linearity
exponent 0 < θ < 1. In this case q = (1 + θ)/(2θ).

ii) Superlinear damping at the origin: (13) ∀|s| < 1 with super-
linearity exponent r > 1. Then q = (r + 1)/2.

II. If damping g is sublinear at infinity: (12) ∀|s| > 1 with sub-linearity
exponent 0 < θ < 1, then

K = K(t) = C‖wt‖2λ
L∞(0,t;Lp(Ω)) ≤ CE(t)pK , pK = γλ (1 − 2/p) (24)

where

• In n = 3 dimensions, we take p ∈]2, 6] and γ = 3/2

• In n = 2 dimensions, we can take any p > 2 and γ = 1.
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The corresponding optimal (for the energy decay) values for q and λ are

q =
p − θ − 1

p − 2
, λ =

p(1 − θ)

2(p − 1 − θ)
. (25)

III. If damping g is superlinear at infinity: (13) ∀|s| > 1 with super-linearity
exponent 1 < r, then

K = K(t) = C‖∇w‖2(1−µ)/(2−µ)
L∞(0,t;Lp(Ω)) . (26)

The optimal values for the parameters µ and q are

q =
r(p − 1) − 1

r(p − 2)
, µ =

2(p − r − 1)

(r + 1)(p − 2)
. (27)

Furthermore

K(t) ≤ C1Ē(t)pK + C2 (28)

where pK is given by

pK =max

{
1

2
,

γ

2
(r − 1)

}
· γ
(

1 − 2

p

)
2(1 − µ)

(2 − µ)
(29)

• In 3 dimensions, γ = 3/2, 1 < r ≤ 3 and p ∈ [1 + r, 6]

• In 2 dimensions, γ = 1, 1 < r and p ≥ 1 + r.

Remark 5 Let us note that in the 3-dimensional case, when dissipation is not
linearly bounded at infinity, we impose the upper bound p ≤ 6 only to be consis-
tent with our use of Sobolev embeddings. Finite-energy decay rates themselves
only improve as p grows, Lasiecka and Toundykov (2006).

Proof. The local bound (21) with (22), (23) follows directly from the proof of
asymptotic rates in Lasiecka and Toundykov (2006). The argument is identical,
with the only difference being that our inability to place fixed a priori bounds
on the parameter K forces to restrict the decay result to a bounded interval
[0, T1]. The decay of finite energy is governed by ODE

Ṡ + h−1 (S/Cdec) = 0, S(0) = E(0). (30)

The general algorithm for constructing map h is given in Lasiecka and Toundykov
(2006). Let us summarize the special cases that are of interest to us:

I. Linearly bounded dissipation at infinity. In that case exponent q
corresponds to exponent of the inverse of the concave function h in the
scalar estimate

s2 + g(s)2 ≤ h(sg(s)) ∀|s| < 1. (31)
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a) Sublinear damping at the origin. When g satisfies (12) for |s| <
1 with sublinear exponent θ, the estimate (31) is sharp for h(s) =
2s2θ/(1+θ). Hence we can take sq = Ch−1(s) = Cs(1+θ)/(2θ), i.e. q =
(1 + θ)/(2θ).

b) Superlinear damping at the origin. If g satisfies (13) for |s| < 1
with exponent r > 1, then (31) follows for h(s) = 2s2/(1+r). So we let
q = (r + 1)/2.

II. Sublinear damping at infinity

1. The optimal form for the function h in (30) was derived in Lasiecka and
Toundykov (2006). Let us review the argument: one fixes a regularity
index p > 2, assuming that ‖wt‖Lp(Ω) is uniformly bounded on the
interval where we employ the decay estimate (which, so far, is finite).

2. Fix some λ ∈ [0, 1) and find a scalar function hλ(s) that satisfies: (i)
|s| ≤ hλ(g(s)s) for all |s| > 1; and (ii) the map s 7→ hλ(s)2(1−λ)p/(p−2λ)

is concave on R
+.

3. In the case when hλ can be estimated by a monomial, we can directly

define sq = C[h
2(1−λ)
λ ]−1(s). For a given p, the optimal value of λ is

dictated by the desire to bring exponent q closer to 1 (which ultimately
yields a more rapid decay). Direct computation (see Lasiecka and
Toundykov, 2006, Lemma 3) verifies that identities (24) and (25) hold.

III. Superlinear damping at infinity. We can proceed as follows (Lasiecka
and Toundykov, 2006):

1. Pick regularity index p ≥ 1+ r (where r is the super-linear exponent of
the damping), asserting that ‖∇w‖Lp(Ω) remains uniformly bounded
on the interval where we would like the finite-energy decay estimate to
hold.

2. Fix some µ ∈ [0, 1] and find a scalar map hµ(s) that satisfies: (i) |g(s)| ≤
hµ(g(s)s) for all |s| > 1; and (ii) the function s 7→ hλ(s)2p/[p(2−µ)−2(1−µ)]

is concave on R
+.

3. When hλ can be estimated by a monomial, we similarly let

sq := const
[
h

(2−µ)
µ

]−1

(s). For a given p, the optimal value of µ fol-

lows when we try to bring exponent q closer to 1. Direct computation
(see Lasiecka and Toundykov, 2006, Lemma 3) verifies (26) and (27).

Using this information, we need to estimate K by E(t) via the appropriate
Sobolev embedding H1 →֒ Lp. However, in the superlinear at infinity case
we must first relate K, i.e. the Lp(Ω) estimate on ∇w, to the higher order
energy ‖wtt‖+‖∇wt‖. Computing L2(Ω) norms in the strong formulation



Stability of higher-level energy norms of wave equation solutions 697

of the original equation (2) gives

‖w‖D(A) ≤ ‖vt‖L2(Ω) + ‖v‖r
L2r + C(E(0)).

From the Sobolev embedding Hγ(1− 1
r )(Ω) →֒ L2r(Ω) (where γ = 3/2 if

n = 3 and γ = 1 if n = 2) and interpolation estimates, we derive

‖w(t)‖D(A) ≤ C1E(t)1/2 + CΩE(t)(r−γ(r−1))/2
E(t)γ(r−1)/2 + C(E(0)).

(32)

Note: because K is the supremum value over the observed time-interval,
we cannot take advantage of the decay given by the factor E(t)(r−γ(r−1))/2

in (32), and we can merely bound E(t) by a constant dependent on the
initial condition. For the same reason we will not gain anything by singling
out finite energy E(t) in the interpolation of ‖∇w‖, so we just write

‖∇w‖Lp(Ω) ≤ C(E(0))‖w‖γ(1−2/p)
D(A) ; now apply this last relation, along

with (32), to inequality (26) in order to obtain (29).

This completes the proof of Lemma 1.

The next result is a direct combination of Lemma 1 and Corollary 1.

Corollary 2 (Global bounds on higher energy under algebraic decay) Adopt
the hypotheses of Theorem 2. Suppose the damping exhibits non-linearly bounded
behavior (12) or (13) either at the origin or at infinity.

Let q and pK be given by Lemma 1. Then the higher energy E(t) stays
globally bounded if

[(
1

q − 1

)(
1

2
+ γk

(
1

2
− 2

π

))]
> 1

pK · q
[(

1

q − 1

)(
1

2
+ γk

(
1

2
− 2

π

))]
+

(
1

2
+

γk

π

)
≤ 1

(33)

• In 3 dimensions, γ = 3/2, 1 < r ≤ 3, and π ∈ [max{2k, 2}, 6].

• In 2 dimensions, γ = 1, 1 < r, and π ∈ [max{2k, 2},∞[

Proof. Linearly bounded dissipation is much easier to handle, so this corollary
concerns only the case when q > 1 in (22), which results in algebraic decay
rates of the finite energy. Let K(t) and pK be given by Lemma 1 depending on
the nature of the dissipation. Note that in the case of superlinear damping at
infinity, we can ignore without loss of generality constant C2 in (28): quantity
K(t) ultimately contributes to the exponent p̂K in (19) of Corollary 1, and
according to the same Corollary we would like to mollify p̂K . Hence K(t) =
C2 = const requires weaker assumptions than imposed by the principal term in
(28). Combine (21) with (22):

E(t) ≤ C

(
K(t)q

(t/T − 1)

) 1
q−1

≤ CT Ē(t)pK
q

q−1

(
1

t

) 1
q−1

, t > T.
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Thus, using the notation of Corollary 1

p̂K = pK
q

q − 1
and b(t) =

{
const t < T

t−1/(q−1) t ≥ T
.

Value of b(t) near the origin could be set to E(0), but it is irrelevant for the
proof, as behavior on [0, T ] does not affect the integrability condition. Now
substitute these identities into the hypothesis (19).

We split the remaining discussion into cases based on the behavior of dissi-
pation g.

2.3. Linearly-bounded damping at infinity

Throughout this subsection we assume that the damping is linearly bounded at
infinity: (11) for |s| > 1. From Lemma 1 it then follows that the decay does not
depend on the higher norms of the solutions, i.e. pK = 0 in (19).

2.3.1. Linear bounds at the origin

If in addition to linear-like growth at infinity the damping also satisfies linear
bounds near the origin, then (22) can be applied with q = 1, implying that
the decay of finite energy is exponential. So, any power of function b(t) (as in
estimate (19) of Corollary 1) is integrable on R+. Thus, by Corollary 1 higher
energy is bounded for any source up to and including the critical exponent level
(k + 1 = 3 in 3 dimensions, or any k > 0 in 2 dimensions).

2.3.2. Sublinear damping at the origin

Suppose, in addition to linear bounds at infinity, that g behaves sub-linearly
near zero: (12) for |s| < 1 with polynomial-type growth of order 0 < θ < 1.
From Lemma 1 we have pK = 0 and q = (1 + θ)/(2θ). Substitute pK and q into
(33) of Corollary 2 to obtain conditions that would guarantee global bounds on
higher energy:

2θ

(1 − θ)

(
1

2
+ γk

(
1

2
− 2

π

))
> 1,

1

2
+

γk

π
≤ 1 .

Observe that as π increases, it is easier to satisfy both inequalities. In 3 dimen-
sions, γ = 3/2 and the maximal value for π is 6. Simplifying, we get

2/(4 + k) < θ, k ≤ 2 .

Note that the condition k ≤ 2 coincides with the critical restriction on the
growth of the source map. Thus, for instance, when the source attains the
critical level: f(s) ∼ −s3, we have k = 2 and it suffices to assume θ > 1/3.
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The argument for n = 2 dimensions is analogous. Now we use γ = 1 and
since π can be chosen arbitrarily large it suffices to ensure 1/(k + 2) < θ.

Note that in each case we have obeyed the condition π ≥ max{2k, 2} origi-
nally imposed in Proposition 2.

2.3.3. Superlinear damping at the origin

Suppose, in addition to linear bounds at infinity, that g behaves super-linearly
near zero: (12) for |s| < 1| with polynomial bound of order r > 1.

According to Lemma 1, we have pK = 0 and q = (1+ r)/2. Substitute these
relations into Corollary 2:

2

(r − 1)

(
1

2
+ γk

(
1

2
− 2

π

))
> 1,

1

2
+

γk

π
≤ 1 .

Large values of π weaken the restrictions on k and r. Thus, in n = 3 dimensions
(γ = 3/2) we take the critical Sobolev exponent π = 6 and find

r < (4 + k)/2, k ≤ 2

(again, k ≤ 2 is redundant, since it is assumed a priori in 3D). For example,
when the source is critical: f(s) ∼ −s3, it suffices to have at any sub-cubic
dissipation: r < 3.

The derivation for n = 2 dimensions is similar: set γ = 1, then we may take
π → ∞ and solve for strict inequalities, obtaining r < 2 + k.

Again, in both 2- and 3-dimensional settings we have been consistent with
the requirement π ≥ 2k.

2.4. Linearly-bounded damping at the origin

Throughout this subsection we will assume that g(s) is linearly bounded in the
vicinity of s = 0, i.e. (11) holds for |s| < 1.

2.4.1. Sublinear damping at infinity

Suppose, in addition to linear bounds at the origin, g satisfies (12) for |s| > 1
with exponent 0 < θ < 1. As before, start with case n = 3. From the estimates
(24) and (25) of Lemma 1, we get

pK =
γ(1 − θ)(p − 2)

2(p − 1 − θ)
, and q =

p − θ − 1

p − 2
.

Substitute these identities into (33):
[
(p − 2)

(1 − θ)

(
1

2
+ γk

(
1

2
− 2

π

))]
> 1 (34)

γ(1 − θ)

2

[
(p − 2)

(1 − θ)

(
1

2
+ γk

(
1

2
− 2

π

))]
+

(
1

2
+

γk

π

)
≤ 1 , (35)
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where p > 2 can in general be arbitrarily large, but recall that in 3 dimensions
we are working under restriction p ≤ 6 in order to be consistent with Sobolev
embeddings used to compute pK in (24).

We also remind that γ is a constant originated from Sobolev embeddings:
γ = 3/2 in 3 dimensions and γ = 1 in 2 dimensions. The above system of
inequalities can be resolved as follows:

1. If we could bring the LHS of (34) arbitrarily close (from above) to 1, then
inequality (35) could be replaced by a strict estimate

γ(1 − θ)

2
+

(
1

2
+

γk

π

)
< 1 (36)

which is easier to satisfy for large values of π.

2. Thus, optimal ranges for θ and k can be obtained if we manage to bring
the LHS of (34) close to 1, yet retain the ability to maximize π.
For large π (e.g. π = 6 in 3D and any π < ∞ in 2D) this optimal setup
easily follows if we merely pick a suitable p that makes LHS of (34) equal
1+δ for any given (small) δ > 0. Such a p is always available: one can check
that regardless of the dimension, the necessary range is 2 < p < 4 − 2θ,
provided π ≥ 4.

3. Thus, we can simply substitute (34) into (35) and solve the result (36) for
maximal possible π. In 3 dimensions we set π = 6, γ = 3/2, which yields

(k + 1)/3 < θ, k ≤ 2.

For instance, if g(s) grows as 3
√

s at infinity, then we require the source
f(s) to be strictly sub-quadratic: |f(s)| ≤ |s|2−δ, any δ > 0.

4. When n = 2 we may select π > max{2k, 2} so large that the term γk/π
in (36) can be disregarded. From there we readily obtain θ > 0, i.e. in 2
dimensions, under sublinear damping at infinity we may choose any source
as long as the damping is not saturated.

2.4.2. Superlinear damping at infinity

Suppose g satisfies (13) with exponent 1 < r.
According to the results (27) and (29) of Lemma 1 we have

pK = max

{
1

2
,

γ

2
(r − 1)

}
· γ
(

1 − 2

p

)
p(r − 1)

r(p − 1) − 1
, and q =

r(p − 1) − 1

r(p − 2)
.

For convenience define

M(r) := max {1, γ(r − 1)} ; N(k, p, r; π) :=

[
r(p − 2)

(r − 1)

(
1

2
+ γk

(
1

2
− 2

π

))]
.
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Substitute the above identities into (33). After a few cancellations we get:

N(k, p, r; π) > 1 (37)

M(r)
γ

2

(
r − 1

r

)
N(k, p, r; π) +

(
1

2
+

γk

π

)
≤ 1. (38)

Another condition stated in Lemma 1 was that superlinear dissipation required
the additional regularity p to be at least 1 + r:

r − 1 ≤ p − 2. (39)

We will recast the system of inequalities (37) - (39) in the following way:

i) All the terms in (38) are non-negative, so, in particular, it has to hold when
N reaches its minimum at p = 1+ r. Thus, substituting (39) into (38), and
simplifying, gives a necessary condition:

k
[
M(r)γ2 (r − 1) (π − 4) + 4γ

]
≤ π [2 − M(r)γ (r − 1)] . (40)

ii) Once we know that (38) is not contradicted by infp,π N, we may need to
further increase N(k, p, r; π) (by adjusting p and/or π) until inequality (37)
is also satisfied. This procedure is consistent if we do not violate what
was previously achieved in step (i), namely that (38) continues to hold
even when N = 1 + δ for some small δ > 0. Equivalently, use the strict
inequality:

M(r)
γ

2

(
r − 1

r

)
+

(
1

2
+

γk

π

)
< 1 ⇐⇒ k <

π

2γ

(
1 − M(r)γ

(r − 1)

r

)
.

(41)

iii) Finally, in the end we will check whether our choice of π guarantees that
N > 1 for some suitable p.

A convenient observation is that

M(r)γ2 (r − 1) (π − 4) + 4γ ≥ 0. (42)

The reason for this claim is that the only other alternatives are:

• Suppose M(r)γ2 (r − 1) (π − 4) + 4γ < 0, and 2 − M(r)γ(r − 1) ≥ 0. In
this case we necessarily conclude π < 2, which is outside the admissible
range.

• Alternatively, one could have M(r)γ2 (r − 1) (π − 4) + 4γ < 0, and 2 −
M(r)γ(r − 1) < 0, but substituting these relations into (40) implies that
we must place a bound on k from below, thus excluding the fundamental
case of a linear source. For this reason we shall not consider this scenario.
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Thus, we may solve an equivalent problem:

A) From (40), (41), with (42) we readily obtain

k ≤ π [2 − M(r)γ (r − 1)]

M(r)γ2 (r − 1) (π − 4) + 4γ
, k <

π

2γ

(
1 − M(r)γ

(r − 1)

r

)
(43)

B) To guarantee k ≥ 0, we must have

M(r)γ(r − 1) ≤ 2 (unless π = 2 and γ = 1)

M(r)γ(r − 1) < r
(44)

Case π ց 2, γ = 1 is special because it yields cancellation, which removes
the corresponding singularity at M(r)γ(r − 1) = 2.

C) In the end we will need to check that we have been consistent with (42),
and that the choice of π does not contradict existence of p that could yield
(37). For instance, note that both conditions would hold if π is large enough
(e.g. π ≥ 4).

Two-dimensional case
Set γ = 1, and recall that max{2k, 2} ≤ π < ∞.

1. Suppose 1 < r ≤ 2, then M(r) = 1 and both conditions in (44) hold. In-
equalities in (43) give:

k ≤ π(3 − r)

π(r − 1) + 4(2 − r)
, k <

π

2r
.

Since r − 2 ≥ 0 then both bounds improve as π → ∞, thus it is sufficient to
have

k < (3 − r)/(r − 1) if r < 2; and k ≤ 1 if r = 2 (45)

Note also that for large values of π, we can always find p ≥ 1+ r so that (37)
holds.

2. Suppose 2 < r, then M(r) = r − 1. From (43) derive

k ≤ π
(
2 − (r − 1)2

)

(r − 1)2π + 4(1 − (r − 1)2)
(46)

k < (π/2)
(
1 − (r − 1)2/r

)
. (47)

Since (r − 1)2 > 1, then the RHS of the first estimate decreases with π,
whereas the RHS of the second one increases. This behavior reflects in some
sense the trade-off between the exponents of E(t) and E(t) in (15). The
largest range for k can be found when the two bounds coincide: equating the
RHSs we solve for π to find

π =
2r(2r − 5)

r2 − 3r + 1
if r < 1 +

√
2, π = 2 if r ≥ 1 +

√
2. (48)
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Recall that a priori we have π ≥ max{2, 2k} so we must “truncate” π from
below for r ≥ 1+

√
2. Requirements (44) give two upper bounds: r ≤ 1+

√
2

and r < (3 +
√

5)/2, from which we would normally choose the (stronger)
1 +

√
2 bound. However, observe that the optimal value π = 2 found in (48)

(which precisely comes into force as r exceeds 1 +
√

2) yields cancellation of
singularities in (46). Thus, in the view of (48) we can state

r < (3 +
√

5)/2

Substituting π into either (46) or (47) gives

k < 5 − 2r, 2 < r < 1 +
√

2 (49)

Note that on the interval 2 < r < 1 +
√

2 we have π ≥ max{2k, 2}, as
required. Substituting k and π into (37), likewise, shows that a sufficiently
large p would always satisfy (37). Also for r ∈]2, 1 +

√
2[ and π as in (48),

inequality (42) holds as well. So all the necessary side-conditions are met.
The value π = 2 produces

k < 1 − (r − 1)2/r, 1 +
√

2 ≤ r < (3 +
√

5)/2 (50)

Again it is not hard to verify that all the a priori conditions on π and p are
satisfied.

Inequalities (45) - (49) confirm the statement of Theorem 2 for superlinear
damping at infinity in 2 dimensions.

Three-dimensional case
Recall that in three dimensions we set γ = 3/2, π ∈ [max{2, 2k}, 6] and p ∈
[1 + r, 6].

1. Suppose r ≤ 5/3, then M(r) = 1 and inequalities (43) give:

k ≤ π(2 − (3/2)(r − 1))

(9/4)(r − 1)π + 6 − 9(r − 1)
, k <

π

3

(
1 − 3(r − 1)

2r

)

since 6 − 9(r − 1) ≥ 0, then both bounds improve as π increases. Take the
maximal value π = 6 to find

k ≤ (14 − 6r)(3r + 1), k < (3 − r)/r.

Since r > 1, the first of the two bounds is always smaller, and we end up
with

1 < r ≤ 5/3 =⇒ k ≤ (14 − 6r)/(3r + 1) (51)
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2. Suppose r > 5/3, then M(r) = (3/2)(r − 1). In this case (43) is equivalent
to:

k ≤
(

2

3

)
π(8 − 9(r − 1)2)

9(r − 1)2π + 4 [4 − 9(r − 1)2]
, and k <

π

3

(
1 − 9(r − 1)2

4r

)
.

(52)

Inequalities (44) translate into

r ≤ 1 + 2
√

2/3 and r <
(
11 + 2

√
10
)

/9 ≈ 1.925

from which we choose the second (stronger) bound. Since 4−9(r−1)2 < 0 for
r > 5/3, then we again have a tradeoff: the first inequality in (52) improves
as π increases, whereas the second one becomes more stringent. Solving for
optimal π (keeping in mind π ≤ 6) yields:

π =
4(9r2 − 20r + 5)

9r2 − 22r + 9
if

5

4
< r ≤ 17

9
; π = 6 if

17

9
< r <

11 + 2
√

10

9
. (53)

The fact that π had to be truncated down to 6 past r = 17/9, means that the
second inequality in (52) at π = 6 provides the stronger bound. Substituting
the expression for π into (52) gives

5/3 < r ≤ 17/9 =⇒ k < (20/3)− (5/3r) − 3r

17/9 < r < (11 + 2
√

10)/9 =⇒ k < 2 − [9(r − 1)2/(2r)]
(54)

Finally, let us comment that π according to (53) never goes below 5 for our
range of r. One can easily check that in this case condition (37) holds (for
a suitable p in the range [1 + r, 6]); for the same reason inequality (42) is
satisfied as well, and π always exceeds 2k.

Inequalities (51) - (54) confirm the statement of Theorem 2 for superlinear
damping at infinity in 3 dimensions. The proof of Theorem 2 is now complete.

3. APPENDIX: Local (in time) bounds on higher energy

In this section we establish local in time a priori bounds on the higher norms of
the solution, as claimed in Proposition 1. In fact, we will prove a more general
result, for systems with mixed boundary conditions when the functions in the
domain of the corresponding Laplacian may develop singularities at the junction
of distinct boundary dynamics.
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Proposition a-3 Let g to be a continuous monotone increasing function with
g(0) = 0. Assume the source map f ∈ C1(R) satisfies

|f ′(s)| ≤ Cf (1 + |s|2).

The boundary conditions may be of mixed type: e.g. Γ = Γ1 ∪ Γ2 and
(

αi
∂w

∂ν
+ βiw

) ∣∣∣∣
Γi

= 0, i = 1, 2, (a-55)

where
⋃

Γi is a (non-overlapping) covering of Γ. We assert that there is either
a Dirichlet, or a Robin-type segment of positive measure.

Pick smooth initial condition: {w0, w1} ∈ D(A) × D(A1/2), where A = −∆
defined on L2(Ω) functions, which possess corresponding distributional deriva-
tives and satisfy the above boundary conditions.

Then, wave equation (2) with mixed boundary conditions (a-55) has a strong
solution which has the following regularity:

{w, wt} ∈ L∞
(
0, T ; D(A)× D(A1/2)

)
∀T < ∞.

Proof. We note right away that result of Proposition a-3 follows immediately in
some special cases:

I. If f = 0 and damping g does not grow too rapidly at infinity, i.e. g :
H1(Ω) → L2(Ω), then the domain of the corresponding nonlinear genera-
tor, A, of the semi-flow for (2) is given by D(A) = D(A) × D(A1/2). The
flow in this case is non-expansive and a smooth initial state produces a
trajectory which stays within the domain in a bounded fashion:

‖{w, wt}‖D(A) ≤ ‖{w0, w1}‖D(A).

II. Adding a Lipschitz source will yield the same bound but with an exponen-
tial weight:

‖{w, wt}‖D(A) ≤ eωt‖{w0, w1}‖D(A) (a-56)

where ω depends on f (e.g. Barbu, 1993, p. 204 and Theorem 1.5, p. 216).

III. If the source is locally Lipschitz, then due to the a priori bounds on the
finite-energy E(t) (see Lasiecka and Toundykov, 2006) for the dissipative
wave equation, one can establish analogous exponential estimate, with ω
dependent on the norm of the initial data.

However, when growth of g exceeds the polynomial bound of order p∗/2,
where p∗ is the critical Sobolev embedding exponent H1(Ω) → L2(Ω) (e.g. 3 in
our 3-dimensional setup), then the domain of the semigroup generator should
be described in a more precise fashion:

D(A) =
{
{w, v} : v ∈ D(A1/2), Aw + χg(v) ∈ L2(Ω)

}
. (a-57)
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In particular, it is not enough to remain in D(A) to guarantee w ∈ D(A).
Thus, we actually begin with a more regular initial data: in D(A) × D(A1/2),
and show that this additional regularity is still preserved by the dynamics.

In the general case, when f 6= 0, and when g does not necessarily map
D(A1/2) into L2(Ω), the desired estimate can be obtained formally if we mul-
tiply the equation by −∆wt and integrate by parts. To make the argument
rigorous, one could either consider spectral approximations of ∆wt, or invoke
the theory of nonlinear m-accretive operators (Barbu, 1993; Showalter, 1997).
The subsequent argument follows the latter approach and was originally pro-
posed to us by Viorel Barbu. In essence, we will approximate damping g and
the multiplier ∆wt by appropriate Yosida approximations.

Yosida approximations of A and g
Operator A = −∆ is m-accretive (of subgradient type) on L2(Ω). For λ > 0
define the approximate identity Jλ := (I + λA)−1, and introduce the Yosida
approximation of A:

Aλ = λ−1
(
I − Jλ

)
= JλA .

Each Aλ is a bounded linear m-accretive on L2(Ω) and Aλu → Au in L2(Ω) as
λ ց 0, for all u ∈ D(A) (e.g. see Barbu, 1993, Proposition 3.5, p. 104).

A priori we do not assume g to be differentiable, however, its Yosida ap-
proximation is Lipschitz continuous. In particular, g can be extended to an
m-accretive operator B : D(A1/2) → [D(A1/2)]′, with Yosida approximation
Bµ, which is a Nemytski operator corresponding to a monotone Lipschitz func-
tion gµ(s) = g ◦ (I + µg)−1(s).

Approximate equations
Consider an approximation of (2)

wµ
tt + Awµ + χ(x)Bµ(wµ

t ) = f(wµ). (a-58)

Function gµ is linearly bounded at infinity, hence the domain of the semigroup
generator coincides with D(A) × D(A1/2). Because the finite energy of the
system is always globally bounded (with respect to E(0)), f can be replaced
by an appropriately chosen Lipschitz perturbation (dependent on the initial
energy), e.g. see Chueshov, Eller and Lasiecka (2002, Theorem 7.2). From the
theory of ω-m-monotone operators it now follows that (e.g. see Barbu, 1993,
(1.15) p. 204 and Theorem 1.5 p. 216)

‖{wµ, wµ
t }‖D(A) = ‖Awµ‖ + ‖A1/2wµ

t ‖ ≤ eωt
(
‖Aw0‖ + ‖A1/2w1‖

)

(we could take ω = 0 in the purely monotone case: f ≡ 0).
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Energy identity for Yosida approximation
Multiply the approximate equation (a-58) by Aλwµ

t ∈ L2(Ω). Examine the
result term by term:

(wµ
tt, Aλwµ

t ) =
d

dt

1

2

∥∥∥A1/2
λ wµ

t

∥∥∥
2

, (Awµ, Aλwµ
t ) =

d

dt

1

2

∥∥∥A1/2A
1/2
λ wµ

∥∥∥
2

.

Next, we claim that

(Bµu, Aλu) ≥ 0 ∀u ∈ L2(Ω). (a-59)

Proceed in two steps:

i. First let us show that (Bµu, Au) ≥ 0 for all u ∈ D(A). Recall that gµ is
Lipschitz, hence a.e. differentiable and (gµ(u), Au) =

∫
Ω

g′µ(u)|∇u|2 + BT .
where the boundary terms are given by

BT = −
∫

Γ

∂u

∂ν
gµ(u).

From (a-55) we know that any given segment Γi ⊂ Γ of the boundary
satisfies conditions of either Dirichlet, Neumann, or Robin type:

• [Dirichlet] u
∣∣
Γi

= 0 =⇒ gµ(u)
∣∣
Γi

= 0 =⇒ BT
∣∣
Γi

= 0

• [Neumann]
∂u

∂ν

∣∣
Γi

= 0 =⇒ BT
∣∣
Γi

= 0

• [Robin]
∂u

∂ν

∣∣
Γi

= −βu, hence BT
∣∣
Γi

=

∫

Γi

βgµ(u)u ≥ 0, by monotonic-

ity of gµ.

Thus, BT ≥ 0 and, consequently (gµ(u), Au) ≥ 0.

ii. Finally, to verify (a-59) recall that by monotonicity of Bµ we have (Aλu, Bµu−
BµJλu) = 1

λ(u − Jλu, Bµu − BµJλ) ≥ 0. From here:

(Aλu, Bµu) =(Aλu, Bµu − BµJλu) + (Aλu, BµJλu) ≥
≥(Aλu, BµJλu) = (AJλu, BµJλu) ≥ 0

since Jλu ∈ D(A) for any u ∈ L2(Ω).

These steps confirm (a-59).

Thus, multiplication of the approximate equation (a-58) by Aλwµ
t produces

the following relation:

d

dt

1

2

∥∥∥A1/2
λ wµ

t

∥∥∥
2

+
d

dt

1

2

∥∥∥A1/2A
1/2
λ wµ

∥∥∥
2

≤ (f(wµ), Aλwµ
t )
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for any T < ∞. Equivalently

∥∥∥A1/2
λ wµ

t (T )
∥∥∥

2

+
∥∥∥A1/2A

1/2
λ wµ(T )

∥∥∥
2

≤
∥∥∥A1/2

λ w1

∥∥∥
2

+
∥∥∥A1/2A

1/2
λ w0

∥∥∥
2

+ 2

∫ T

0

(A
1/2
λ f(wµ), A

1/2
λ wµ

t )

(a-60)

Passing to the limit
Note that the solution wµ to the approximate equation depends on µ, but not
on λ. Since A is an m-accretive operator, then ‖Aλu‖ ≤ ‖Au‖ for u ∈ D(A)
(e.g. see Barbu, 1993, Proposition 3.2, p. 101). Using linear interpolation one

can show that as λ → 0+, A
1/2
λ u → A1/2u for u ∈ D(A1/2). We get

∥∥∥A1/2wµ
t (T )

∥∥∥
2

+‖Awµ(T )‖2 ≤
∥∥∥A1/2w1

∥∥∥
2

+‖Aw0‖2
+2

∫ T

0

(
A1/2f(wµ), A1/2wµ

t

)

(a-61)

By the Trotter-Kato theorem for nonlinear equations (e.g. Barbu, 1993, p. 231)

(wµ, wµ
t ) → (w, wt) strongly in L∞(0, T ; H) as µ ց 0 (a-62)

where H = D(A1/2)×L2(Ω). However, before we pass to the limit in µ we will
need additional a priori bounds on the source term. Without loss of generality
assume |f ′(s)| ≤ |s|2 (an additional constant summand can be handled by the
same argument). We will also need the following interpolation result: ‖u‖2

L∞ ≤
‖Au‖ ‖A1/2u‖ (see Brenner and Scott, 1994, p. 39).

Suppose u ∈ D(A) and v ∈ D(A1/2), then sequentially derive:

|(f(u), Aλv)| ≤ ‖A1/2f(u)‖ · ‖A1/2v‖ ≤ ε0‖∇f(u)‖2 + CΩ,ε0‖A1/2v‖2

= ε0

∫

Ω

|f ′(u)|2 · |∇u|2 + CΩ,ε0‖A1/2v‖2

≤ ε0‖u‖4
L∞‖∇u‖2 + CΩ,ε0‖A1/2v‖2

≤ ε0‖Au‖2‖A1/2u‖2‖∇u‖2 + CΩ,ε0‖A1/2v‖2.

(a-63)

Now set u = wµ and v = wµ
t . Observe that ‖A1/2w‖ and ‖A1/2wt‖ are locally

bounded in time, which follows from (a-56) and the definition of the evolution
generator (a-57) (note that we cannot yet make any claims about ‖Aw‖); using
this a priori bound and convergence (a-62), we conclude that ‖A1/2wµ‖ and
‖A1/2wµ

t ‖ can be dominated by some constant CT = C(T, E(0), ‖A1/2w1‖) on
the interval [0, T ]. Thus, from (a-63) with a sufficiently small ε0 (dependent on
CT ) we have

|(f(wµ), Aλwµ
t )| ≤ ε‖Awµ‖2 + CT,ε. (a-64)
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From (a-61) and (a-64) conclude that

∥∥∥A1/2wµ
t (T )

∥∥∥
2

+‖Awµ(T )‖2 ≤
∥∥∥A1/2w1

∥∥∥
2

+‖Aw0‖2
+ε sup

t∈[0,T ]

‖Awµ(t)‖2+CT,ε.

The RHS of this estimate is monotone in T , hence we can take supremum over
t ∈ [0, T ] on the left and for a sufficiently small ε absorb the term
ε supt∈[0,T ] ‖Awµ(t)‖2 into the LHS:

(1− ε) sup
t∈[0,T ]

(∥∥∥A1/2wµ
t (t)

∥∥∥
2

+ ‖Awµ(t)‖2

)
≤
∥∥∥A1/2w1

∥∥∥
2

+ ‖Aw0‖2
+CT,ε.

The RHS is independent of µ, so with the help of this a priori bound and (a-62)
we can let µ → 0+, which implies the statement of Proposition a-3.
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