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Abstract: In this paper, we first establish both primal (involv-
ing directional derivatives and tangent cones) and dual character-
izations (involving subdifferential and normal cones) for the local
(global) error bounds of constrained set-valued systems; as an appli-
cation, we then derive both primal and dual characterizations for the
local (global) error bounds of the constrained convex inequality sys-
tems in a general Banach space and also some sufficient conditions.
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1. Introduction

Let X and Y be normed spaces, let C ⊂ X be a closed convex set and let
S : X ⇉ Y be a convex set-valued mapping.

We consider a set-valued constrained system of the type

M(y) = C ∩ S−1(y). (1)

We say that M has a local error bound at (ȳ, x̄) ∈ grM if there exist δ, γ > 0
such that

d(x, M(ȳ)) ≤ γ max{d(x, C), d(ȳ, S(x))} for all x ∈ B(x̄, δ) (2)

(the set-valued mapping S−1 is considered instead of S in Li and Singer, 1998;
Song, 2006); if the inequality (2) is satisfied for all x ∈ X , i.e., there exists γ > 0
such that

d(x, M(ȳ)) ≤ γ max{d(x, C), d(ȳ, S(x))} for all x ∈ X, (3)

we say that M has a global error bound at ȳ.

1This work was partially supported by the National Natural Sciences Grant (No.
10671050) and the Excellent Young Teachers Program of MOE, P.R.C
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Clearly, when S(x) = [f(x),∞), where f : X → R∪{+∞} is a proper convex
function, ȳ = 0 and

M = M(ȳ) = {x ∈ C | f(x) ≤ 0}, (4)

the above definitions reduce to the following: there exist γ, δ > 0 such that

d(x, M) ≤ γ max{f(x), d(x, C)} for all x ∈ B(x̄, δ), (5)

and

d(x, M) ≤ γ max{f(x), d(x, C)} for all x ∈ X. (6)

In the last decade, the study of error bounds of convex systems has received
a growing interest in mathematical programming literature. There are both
theoretical and practical reasons for this, since error bounds are closely related
to the Lipschitz stability of feasible/optimal solution set and the sensitivity
analysis of convex programming and complementarity, and also the convergence
analysis of some descent methods.

When C is the whole space of R
n or a general Banach space X , the existence

of global (local) error bounds for (4) has been widely discussed in literature (see
Hoffman, 1952; Ioffe, 1975; Robinson, 1976; Burke and Tseng, 1996; Deng, 1998;
Lewis and Pang, 1998; Klatte and Li, 1999; Ng and Zheng, 2001; Ng and Yang,
2002; Zǎlinescu, 2002; Zheng and Ng, 2003; Wu and Ye, 2003).

When C is a proper subset of R
n, Lewis and Pang (1998) established a

primal characterization involving directional derivatives and tangent cones, and
derived several sufficient conditions for the existence of a global error bound for
system (4). Zǎlinescu (2002) gave an infinite-dimensional version of Lewis and
Pang’s result in a reflexive Banach space. Recently, Zheng and Ng (2003), Burke
and Deng (2002) and Song (2006) considered the existence of local (global) error
bounds for system (4) in a general Banach space.

For system (1), Robinson (1976), Li and Singer (1998) and Zheng (2003)
proposed some (regular point type) sufficient conditions for the existence of a
local (global) error bound, and Ng and Zheng (2004) proposed several charac-
terizations for a global error bound in terms of the contingent derivative of the
set-valued mapping in the case where C = X . Recently, in Song (2006) we have
presented a dual sufficient condition for the existence of a local error bound for
system (1) in terms of the normal cones and the coderivative of the set-valued
mapping.

As observed by Lewis and Pang in (1998), the inequality system (4) has a
global error bound if and only if M is the set of weak sharp minima of the
function φ(x) := f+(x) + d(x, C), (where f+(x) = max{f(x), 0}), i.e., there
exists some τ > 0 such that

φ(x) ≥ φ(x̄) + τd(x, M), ∀x ∈ X, ∀x̄ ∈ M.
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The notion of weak sharp minima was introduced by Ferris (1998). Since
then the weak sharp minima have been extensively studied both in finite di-
mensional and infinite dimensional spaces along with their connection to error
bounds (see Burke and Ferris, 1993; Studniarski and Ward, 1999; Burke and
Deng, 2002, 2005; Zǎlinescu, 2002).

Another concept, which is closely related to error bounds and weak sharp
minima, is calmness. A set-valued mapping M : Y ⇉ X is said to be calm
at (ȳ, x̄) (see Henrion and Outrata, 2001), if there exist neighborhoods V ,U
of ȳ, x̄, respectively, and some γ > 0 such that d(x, M(ȳ)) ≤ γd(y, ȳ) ∀x ∈
M(y) ∩ U , ∀y ∈ V , or equivalently, M(y) ∩ U ⊂ M(ȳ) + γd(y, ȳ)BX , ∀y ∈ V .

It has been proved in Song (2006) (see also Dontchev and Rockafellar, 2004,
under some additional assumption) that M(y) = C ∩ S−1(y) is calm at (ȳ, x̄) if
and only if there exist δ, γ > 0 such that

d(x, M(ȳ)) ≤ γd(ȳ, S(x)) for all x ∈ C ∩ B(x̄, δ).

This shows that the calmness of M at (ȳ, x̄) amounts to the existence of a local
error bound of M at the same point whenever C = X . A similar observation for
the inequality system (4) was given in Henrion and Outrata (2005). The criteria
of calmness and its application in optimization problems have been discussed
in Henrion and Jourani (2002), Henrion, Jourani and Outrata (2002), Henrion
and Outrata (2001, 2005), Song (2006).

In this paper, we first establish both primal (involving directional derivatives
and tangent cones) and dual characterizations (involving subdifferentials and
normal cones) for the local (global) error bounds of system (1); as an application,
we then derive both primal and dual characterizations for the local (global)
error bounds of system (4) in a general Banach space as well as some sufficient
conditions. The obtained results improve or generalize the corresponding results
of Lewis and Pang (1998), Ng and Zheng (2004), Zǎlinescu (2002), to a general
case.

After completion of the present paper we have learned that Zheng and Ng
(2007) investigated subregularity of a constrained set-valued mapping which is
defined in a similar way as (2). Some characterizations for the local (global) error
bounds of system (1) obtained in this paper have been already proved in Zheng
and Ng (2007). Since the proofs given in this paper in terms of Lemma 1 and
2 are much simpler than those given in Zheng and Ng (2007), for completeness,
we still keep them in this paper.

2. Notations and basic results

Let X be a normed space with topological dual space X∗. Denote by BX and
BX∗ the closed unit balls of X and X∗, respectively. We write B(x, δ) for
x + δBX , where x ∈ X and δ > 0.

Let C be a nonempty subset of X . Denote by C̄(or clC), intC, bdC, and
coreC, respectively, the closure, the interior, the boundary of C, and the al-
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gebraic interior, and denote by coneC the cone generated by C. The distance
function to C is defined by dC(x) = d(x, C) : = inf{‖x − y‖ | y ∈ C}.

For a nonempty convex set C in X and x ∈ C, we recall that the tangent
cone to the set C at x is TC(x) = cone(C − x) and the normal cone to C at x
is NC(x) = TC(x)0 = {x∗ ∈ X∗ | 〈x∗, y − x〉 ≤ 0 for all y ∈ C}.

Let f : X → R ∪ {+∞} be a proper convex function. By epif , f∗, ∂f(x̄),
and ∂∞f(x̄) we denote the epigraph, conjugate function, the usual, and the
singular subdifferentials of f , respectively, in the sense of convex analysis. It is
well known that

∂f(x̄) = {x∗ ∈ X∗ | (x∗,−1) ∈ Nepif (x̄, f(x̄))},

∂∞f(x̄) = {x∗ ∈ X∗ | (x∗, 0) ∈ Nepif (x̄, f(x̄))}.

Let f : X → R∪{+∞} be a proper convex function taking finite value at x.
The directional derivative of f at x in the direction h is defined by

f
′

(x, h) = inf
t>0

f(x + th) − f(x)

t
.

It is well known (see Theorem 1 in Burke, Ferris and Qian, 1992) that
∂dC(x) = BX∗ ∩ NC(x) ∀x ∈ C.

Let IC(·) and σC(·) be the indicator and the support functions of C, respec-
tively, i.e.,

IC(x) =

{

0 if x ∈ C,

+∞ if x 6∈ C

and σC(x∗) = (IC)∗(x∗) = supx∈C〈x
∗, x〉. It is obvious that NC(x) = ∂IC(x).

As in Ng and Zheng (2004), for x ∈ bdC and σ ∈ (0, 1], we let

N 1
C(x, σ) = {h ∈ X | ‖h‖ = 1, ∃x∗ ∈ NC(x) with ‖x∗‖ = 1 such that 〈x∗, h〉 ≥ σ}.

Let F : X ⇉ Y be a set-valued mapping. We say that F is convex (closed)
if its graph, grF = {(x, y) ∈ X × Y | y ∈ F (x)}, is convex (closed).

Let F be a convex set-valued mapping from X to Y and let (x̄, ȳ) ∈ grF. A
set-valued mapping DF (x̄, ȳ) : X ⇉ Y whose graph is the tangent cone to the
graph of F at (x̄, ȳ), i.e.,

gr(DF (x̄, ȳ)) = Tgr(F )((x̄, ȳ)),

is called the contingent derivative of F at (x̄, ȳ).
The coderivative D∗F (x̄, ȳ) : Y ∗

⇉ X∗ is defined by

D∗F (x̄, ȳ)(v∗) : = {u∗ ∈ X∗ | (u∗,−v∗) ∈ NgrF ((x̄, ȳ))}.

Observe that u∗ ∈ D∗F (x̄, ȳ)(v∗) if and only if 〈u∗, u〉 ≤ 〈v∗, v〉 for all
v ∈ DF (x̄, ȳ)(u).
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Another kind of derivative is D̂F (x̄, ȳ), which is defined by

D̂F (x̄, ȳ)(u) : = {v ∈ Y | lim
t→0

d(v,
F (x̄ + tu) − ȳ

t
) = 0}.

Clearly, D̂F (x̄, ȳ)(u) ⊂ DF (x̄, ȳ)(u).
In the following we assume that X is a Banach space. The following result

was demonstrated in Song (2006), which can be proved by Lemma 1.1 and
Proposition 1.3 in Ng and Yang (2002).

Lemma 1 Let C be a closed convex subset of X and x̄ ∈ C. Then, for every

δ > 0, 0 < σ < 1 and every x ∈ B(x̄, δ/3) \ C, there exist z ∈ bdC ∩ B(x̄, δ)
and x∗ ∈ NC(z) with ‖x∗‖ = 1 such that

σd(x, C) ≤ σ‖x − z‖ ≤ 〈x∗, x − z〉 ≤ d(x − z, TC(z)).

The following subdifferential formula of marginal functions will be useful
in the sequel. Similar results in more general settings can be found in Truong
(2005), Mordukhovich, Nam and Yen (2007). Since our result cannot be derived
directly from the corresponding results in Truong (2005), Mordukhovich, Nam
and Yen (2007), we include a simple proof here.

Lemma 2 Let F : X ⇉ Y be a convex set-valued mapping and let (x̄, ȳ) ∈ grF.
Then the function

v(x) : = inf
y∈F (x)

‖y − ȳ‖

is a convex function and ∂v(x̄) = D∗F (x̄, ȳ)(BY ∗).

Proof. It is easy to verify that v is a convex function. Let x∗ ∈ ∂v(x̄). Then
〈x∗, x − x̄〉 ≤ ‖y − ȳ‖ for all (x, y) ∈ grF.

Define f : X × Y → R by f(x, y) = ‖y − ȳ‖ − 〈x∗, x − x̄〉. Then f attains
its minimum on the set grF at (x̄, ȳ). Hence (0, 0) ∈ ∂f(x̄, ȳ) + NgrF (x̄, ȳ).
It follows that there exists y∗ ∈ BY ∗ such that (x∗,−y∗) ∈ NgrF (x̄, ȳ), i.e.
x∗ ∈ D∗F (x̄, ȳ)(BY ∗). Hence ∂v(x̄) ⊂ D∗F (x̄, ȳ)(BY ∗). The converse inclusion
can be proved similarly.

3. Main results

We first present some primal and dual characterizations for the existence of local
(global) error bounds for the system (1).

Theorem 1 Consider the set-valued mapping M : Y ⇉ X defined as M(y) =
C ∩S−1(y), where S : X ⇉ Y is a convex set-valued mapping and C is a closed

convex set of X. Let (ȳ, x̄) ∈ grM be such that S−1(ȳ) is closed. Then the

following statements are equivalent:
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(i) M has a local error bound at (ȳ, x̄);
(ii) there exist γ, δ > 0 such that

BX∗ ∩ NM(ȳ)(u) ⊂ γ[BX∗ ∩ NC(u) + D∗S(u, ȳ)(BY ∗)] (7)

for all u ∈ B(x̄, δ) ∩ bdM(ȳ);
(iii) there exist δ, γ > 0 such that

d(h, TM(ȳ)(u)) ≤ γ max{d(h, TC(u)), d(0, DS(u, ȳ)(h))} (8)

for all u ∈ B(x̄, δ) ∩ bdM(ȳ), h ∈ X;

(iii)
′

there exist δ, γ > 0 such that

d(h, TM(ȳ)(u)) ≤ γ max{d(h, TC(u)), d(0, D̂S(u, ȳ)(h))} (9)

for all u ∈ B(x̄, δ) ∩ bdM(ȳ), h ∈ X;

(iv) there exist σ ∈ (0, 1) and δ, η > 0 such that

η ≤ max{d(h, TC(u)), d(0, DS(u, ȳ)(h))} (10)

for all u ∈ B(x̄, δ) ∩ bdM(ȳ), h ∈ N 1
M(ȳ)(u, σ);

(iv)
′

there exist σ ∈ (0, 1) and η > 0 such that

η ≤ max{d(h, TC(u)), d(0, D̂S(u, ȳ)(h)) (11)

for all u ∈ B(x̄, δ) ∩ bdM(ȳ) and h ∈ N 1
M(ȳ)(u, σ).

Proof. (i) ⇒ (ii). Suppose that M has a local error bound at (ȳ, x̄). Then there
exist positive scalars γ and δ1 such that

d(x, M(ȳ)) ≤ γ(d(x, C) + d(ȳ, S(x)) for all x ∈ B(x̄, δ1).

Hence, d(x, M(ȳ)) ≤ γ[d(x, C) + d(ȳ, S(x)) + IB(x̄,δ1)(x)] for all x ∈ X. As
both functions on the two sides of the above inequality are 0 at each u ∈
bdM(ȳ) ∩ intB(x̄, δ1), by Lemma 2 and a well known subdifferential formula
(see Theorem 2.8.7 in Zǎlinescu, 2002), we have that

NM(ȳ)(u) ∩ BX∗ = ∂d(·, M(ȳ))(u) ⊂ γ∂[d(·, C) + d(ȳ, S(·)) + IB(x̄,δ1)(·)](u)

= γ[∂d(·, C)(u) + ∂d(ȳ, S(·))(u) + ∂IB(x̄,δ1)(u)]

= γ[BX∗ ∩ NC(u) + D∗S(u, ȳ)(BY ∗)].

By taking δ > 0 such that B(x̄, δ) ⊂ intB(x̄, δ1), we obtain the desired result.

(ii) ⇒ (iii). Let h ∈ X and u ∈ B(x̄, δ)∩bdM(ȳ). For every x∗ ∈ NM(ȳ)(u)∩
BX∗ , according to (7) there exist x∗

1 ∈ BX∗ ∩ NC(u), y∗ ∈ BY ∗ and x∗
2 ∈

D∗S(u, ȳ)(y∗) such that x∗ = γ(x∗
1 + x∗

2). Since

〈x∗
1, h〉 =

1

t
〈x∗

1, u + th − u〉 ≤
1

t
(d(u + th, C) − d(u, C)) for all t ≥ 0,

we have 〈x∗
1, h〉 ≤ d

′

(·, C)(u, h) = d(h, TC(u)).
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On the other hand, 〈x∗
2, h〉 ≤ 〈y∗, y〉 ≤ ‖y‖ for every y ∈ DS(u, ȳ)(h).

It follows that 〈x∗, h〉 ≤ γ[d(h, TC(u)) + d(0, DS(u, ȳ)(h))].
Since d(h, TM(ȳ)(u)) = sup{〈x∗, h〉 | x∗ ∈ NM(ȳ)(u) ∩ BX∗}, we have (8).

(iii) ⇒ (iv). For every σ ∈ (0, 1), fixed u ∈ B(x̄, δ) ∩ bdM(ȳ) and h ∈
N 1

M(ȳ)(u, σ), there exists x∗ ∈ NM(ȳ)(u) with ‖x∗‖ = 1 such that 〈x∗, h〉 ≥ σ.
Hence

σ ≤ 〈x∗, h〉 ≤ d(h, TM(ȳ)(u)),

and so σ ≤ γ[d(h, TC(u)) + d(0, DS(u, ȳ)(h)). Set η = σ
γ
, and we obtain (10).

(iii)
′

⇒ (iv)
′

. It can be proved similarly.

(iii) ⇒ (iii)
′

and (iv) ⇒ (iv)
′

. Both implications follow from D̂S(u, ȳ)(h) ⊂
DS(u, ȳ)(h).

(iv)
′

⇒ (i). Let x ∈ B(x̄, δ
3 ) \ M(ȳ) and σ ∈ (0, 1). By Lemma 1, there exist

u ∈ bdM(ȳ) ∩ B(x̄, δ) and x∗ ∈ NM(ȳ)(u) with ‖x∗‖ = 1 such that

σ‖x − u‖ ≤ 〈x∗, x − u〉.

This implies that x−u
‖x−u‖ ∈ N 1

M(ȳ)(u, σ). It follows from (iv)
′

that

η‖x − u‖ ≤ max{d(x − u, TC(u)), d(0, D̂S(u, ȳ)(x − u))}.

Since C and grS are convex, we have

d(x − u, TC(u)) ≤ d(x, C), S(x) − ȳ ⊂ D̂S(u, ȳ)(x − u).

Hence, η‖x − u‖ ≤ max{d(x, C), d(ȳ, S(x))}, and consequently

ηd(x, M(ȳ) ≤ max{d(x, C), d(ȳ, S(x))}.

Let γ = 1
η
, and we get that

d(x, M(ȳ) ≤ γ max{d(x, C), d(ȳ, S(x))}.

Remark 1 In Song (2006), we have proved that (ii) implies (i). The equivalence
among (i)-(iii) was proved recently by Zheng and Ng (2007)(see Theorems 3.1
and 3.3 in Zheng and Ng, 2007) under the assumption that S : X ⇉ Y is a
closed set-valued mapping instead of the closedness of S−1(y). The proof given
here is much simpler than those given in Zheng and Ng (2007).

Set S(x) = x − D for some closed convex subset D of X . In that case
M(0) = C ∩ D, and Theorem 1 reduces to the following result (see Song and
Zang, 2006).

Corollary 1 Let C, D ⊂ X be closed convex sets, let M = C ∩ D, and let

x̄ ∈ M . Then the following statements are equivalent:
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(i) there exist δ, γ > 0 such that

d(x, M) ≤ γ max{d(x, C), d(x, D)} for all x ∈ B(x̄, δ);

(ii) there exist δ, γ > 0 such that

NM (x)∩BX∗ ⊂ γ(NC(x)∩BX∗ +ND(x)∩BX∗) for all x ∈ B(x̄, δ)∩M ;

(iii) there exist δ, γ > 0 such that

d(h, TM (x)) ≤ γ max{d(h, TC(x)), d(h, TD(x))} for all x ∈ B(x̄, δ)∩M, h ∈ X.

In the following theorem, we shall present some characterizations of global
error bounds for a set-valued mapping.

Theorem 2 Consider the set-valued mapping M : Y ⇉ X defined as M(y) =
C ∩S−1(y), where S : X ⇉ Y is a convex set-valued mapping and C is a closed

convex set of X. Let ȳ ∈ Y be such that M(ȳ) is nonempty and S−1(ȳ) is closed.

Then the following statements are equivalent:

(i) M has a global error bound at ȳ;
(ii) there exists γ > 0 such that

BX∗ ∩ NM(ȳ)(u) ⊂ γ[BX∗ ∩ NC(u) + D∗S(u, ȳ)(BY ∗)] (12)

for all u ∈ bdM(ȳ);
(iii) there exists γ > 0 such that

d(h, TM(ȳ)(u)) ≤ γ max{d(h, TC(u)), d(0, DS(u, ȳ)(h))} (13)

for all u ∈ bdM(ȳ), h ∈ X;

(iii)
′

there exists γ > 0 such that

d(h, TM(ȳ)(u)) ≤ γ max{d(h, TC(u)), d(0, D̂S(u, ȳ)(h))} (14)

for all u ∈ bdM(ȳ), h ∈ X;

(iv) there exist σ ∈ (0, 1) and η > 0 such that

η ≤ max{d(h, TC(u)), d(0, DS(u, ȳ)(h))} (15)

for all u ∈ bdM(ȳ) and h ∈ N 1
M(ȳ)(u, σ);

(iv)
′

there exist σ ∈ (0, 1) and η > 0 such that

η ≤ max{d(h, TC(u)), d(0, D̂S(u, ȳ)(h))} (16)

for all u ∈ bdM(ȳ) and h ∈ N 1
M(ȳ)(u, σ).

Moreover, if M(ȳ) can be reproduced as M(ȳ) = A + rec(M(ȳ)), where A is a

convex subset of M(ȳ) and rec(M(ȳ)) = {d ∈ X | x + td ∈ M(ȳ), ∀ x ∈
M(ȳ), ∀ t > 0} is the recession cone of M(ȳ), then the above equivalent con-

ditions are also equivalent to each of the following conditions:
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(ii)* there exists γ > 0 such that

BX∗ ∩NA(u)∩(rec(M(ȳ)))0 ⊂ γ[BX∗ ∩NC(u)+D∗S(u, ȳ)(BY ∗)] (17)

for all u ∈ A ∩ bdM(ȳ);
(iii)* there exists γ > 0 such that

d(h, TM(ȳ)(u)) ≤ γ max{d(h, TC(u)), d(0, DS(u, ȳ)(h))} (18)

for all u ∈ A ∩ bdM(ȳ), h ∈ X;

(iii)*
′

there exists γ > 0 such that

d(h, TM(ȳ)(u)) ≤ γ max{d(h, TC(u)), d(0, D̂S(u, ȳ)(h))} (19)

for all u ∈ A ∩ bdM(ȳ), h ∈ X.

Proof. (i) =⇒ (ii) =⇒ (iii) =⇒ (iv). These implications follow from the proof of
Theorem 1.

(iii) ⇒ (iii)
′

and (iv) ⇒ (iv)
′

. Both implications follow from D̂S(u, ȳ)(h) ⊂
DS(u, ȳ)(h).

(iii)
′

⇒ (iv)
′

. It can be proved similarly to the implication (iii) ⇒ (iv) in
Theorem 1.

(iv)
′

⇒ (i). Let x ∈ X \ M(ȳ) and σ ∈ (0, 1). Take δ > 3d(x, M(ȳ) and x̄ ∈
M(ȳ) satisfying ‖x− x̄‖ ≤ δ/3. By Lemma 1, there exists u ∈ bdM(ȳ)∩B(x̄, δ)
and x∗ ∈ NM(ȳ)(u) with ‖x∗‖ = 1 such that

σ‖x − u‖ ≤ 〈x∗, x − u〉.

This implies that x−u
‖x−u‖ ∈ N 1

M(ȳ)(u, σ). It follows from (iv)
′

that

η‖x − u‖ ≤ max{d(x − u, TC(u)), d(0, D̂S(u, ȳ)(x − u))}.

Since C and grS are convex, we have

d(x − u, TC(u)) ≤ d(x, C), S(x) − ȳ ⊂ D̂S(u, ȳ)(x − u).

Hence

η‖x − u‖ ≤ max{d(x, C), d(ȳ, S(x))},

and consequently,

ηd(x, M(ȳ) ≤ max{d(x, C), d(ȳ, S(x))}.

Let γ = 1
η
, and we get that

d(x, M(ȳ) ≤ γ max{d(x, C), d(ȳ, S(x))}.
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(ii) =⇒ (ii)∗. Suppose that M(ȳ) = A + rec(M(ȳ)). We claim that

NM(ȳ)(u) = NA(u) ∩ (rec(M(ȳ)))0 for all u ∈ A ∩ bdM(ȳ).

Indeed, if x∗ ∈ NM(ȳ)(u), then

〈x∗, a + c − u〉 ≤ 0 for all a ∈ A, c ∈ rec(M(ȳ)).

It follows by taking c = 0 or a = u that x∗ ∈ NA(u) ∩ (rec(M(ȳ)))0. It is easy
to see that the converse is also true. Hence, (ii)* is a special case of (ii).

(ii)∗ =⇒ (iii)∗ and (iii)∗ =⇒ (iii)∗
′

. They follow from the previous part.

(iii)∗
′

=⇒ (i). Let x ∈ X \ M(ȳ) and σ ∈ (0, 1). By Lemma 1, there exist
u ∈ bdM(ȳ) and x∗ ∈ NM(ȳ)(u) with ‖x∗‖ = 1 such that

σ‖x − u‖ ≤ 〈x∗, x − u〉.

Since M(ȳ) = A + rec(M(ȳ)), there exist a ∈ A and c ∈ rec(M(ȳ)) such that
u = a + c. It follows that

〈x∗, z − a − c〉 ≤ 0 for all z ∈ M(ȳ).

By taking z = a and z = a + 2c, respectively, we can deduce that 〈x∗, c〉 = 0,
and hence

〈x∗, z − a〉 ≤ 0 for all z ∈ M(ȳ).

This implies that x∗ ∈ NM(ȳ)(a), a ∈ A ∩ bdM(ȳ), and

σ‖x − u‖ ≤ 〈x∗, x − a〉.

Note that TM(ȳ)(a) ⊂ {z ∈ X | 〈x∗, z〉 ≤ 0} =: D. Hence, we can deduce that

σ‖x − u‖ ≤ 〈x∗, x − a〉 = d(x − a, D) ≤ d(x − a, TM(ȳ)(a)).

It follows from (iii)*
′

that

σ‖x − u‖ ≤ γ max{d(x − a, TC(a)), d(0, D̂S(u, ȳ)(x − a))}.

Since C and grS are convex, we have

d(x − a, TC(a)) ≤ d(x, C), S(x) − ȳ ⊂ D̂S(a, ȳ)(x − a).

Hence

σ‖x − u‖ ≤ γ max{d(x, C), d(ȳ, S(x))},

and consequently,

σd(x, M(ȳ) ≤ γ max{d(x, C), d(ȳ, S(x))}.

Let σ → 1, and we get that

d(x, M(ȳ) ≤ γ max{d(x, C), d(ȳ, S(x))}.
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Remark 2 When C = X, Ng and Zheng (2004) proved the equivalence between
(i) and (iv), and (i) and (iv)

′

in the case when Y is reflexive. Very recently, Zheng
and Ng (2007) proved that (i), (ii) and (ii)* are equivalent by using different
methods.

As observed, M has a global error bound at ȳ if and only if M(ȳ) is a weak
sharp minima set for the function φ(x) = d(x, C) + d(ȳ, S(x)). The later is
equivalent to the statement that there exists some τ > 0 such that

τBX∗ ∩ NM(ȳ)(u) ⊂ ∂φ(u), ∀u ∈ M(ȳ).

By applying the subdifferential formula (see Theorem 2.8.7 in Zǎlinescu, 2002)
and Lemma 2, we have that

∂φ(u) = BX∗ ∩ NC(u) + D∗S(u, ȳ)(BY ∗) ∀u ∈ bdM(ȳ).

Hence we obtain the equivalence between (i) and (ii) in Theorem 2.

4. Applications to the convex inequalities

We now give some characterizations of the existence of local (global) error
bounds for (4), i.e.,

M = M(0) = {x ∈ C | f(x) ≤ 0}, (20)

where f : X → R ∪ {+∞} is a proper convex function. Assume that M is
nonempty and closed. Define S(x) = [f(x),∞) for x ∈ X. Then S is a convex
set-valued mapping with closed images, d(0, S(x)) = [f(x)]+ = max{f(x), 0}
for each x ∈ X , and grS = epif. From the definition of the coderivative of the
set-valued mapping, we have that for every x ∈ domf

D∗S(x, f(x))(r) =











r∂f(x) if r > 0,

∂∞f(x) if r = 0,

∅ if r < 0.

Hence

D∗S(x, f(x))([−1, 1]) =
⋃

λ∈[0,1]

∂(λf)(x) = [0, 1]∂f(x) ∪ ∂∞f(x). (21)

By the definition of contingent derivative and Proposition 2.60 in Bonnans
and Shapiro (2000),

grDS(x, f(x))(·) = clTepif (x, f(x)) = cl[epif
′

(x, ·)].

Hence

DS(x, f(x))(h) = [lscf
′

(x, h), +∞) ⊂ [f
′

(x, h), +∞),
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where epi(lscf
′

(x, ·)) = cl(epif
′

(x, ·)), and hence

d(0, DS(x, f(x))(h)) = [lscf
′

(x, h)]+. (22)

By Proposition 2.126 in Bonnans and Shapiro (2000), lscf
′

(x, h) = f
′

(x, h) if f
is continuous at x.

It has been proved in Ng and Zheng (2004) that for each x ∈ domf ,

D̂S(x, f(x))(h) = f
′

(x, h) + R+.

Hence

d(0, D̂S(x, f(x))(h)) = [f
′

(x, h)]+. (23)

Theorem 3 Let f : X → R ∪ {+∞} be a proper convex function, let C ⊂ X be

a closed convex set, and let M = {x ∈ C | f(x) ≤ 0} be closed. Let x̄ ∈ C be

such that f(x̄) = 0. Suppose that one of the following conditions holds:

(a) bdM ∩ B(x̄, δ̂) ⊂ f−1(0) for some δ̂ > 0;
(b) {x ∈ C | f(x) < 0} ⊂ int{x | f(x) ≤ 0};

(c) there exist γ, δ̂ > 0 such that for every u ∈ B(x̄, δ̂) ∩ bdM
[NM (u) ∩ BX∗ ⊂ γ[NC(u) ∩ BX∗ + N{x | f(x)≤0}(u)].

Then the following statements are equivalent:

(i) there exist δ, γ > 0 such that

d(x, M) ≤ γ max{f(x), d(x, C)} for all x ∈ B(x̄, δ);
(ii) there exist δ, γ > 0 such that

[NM (u) ∩ BX∗ ⊂ γ[NC(u) ∩ BX∗ + ([0, 1]∂f(u) ∪ ∂∞f(u))] for all u ∈
B(x̄, δ) ∩ f−1(0) ∩ C;

(iii) there exist δ, γ > 0 such that

d(h, TM (u)) ≤ γ max{f
′

(u, h), d(h, TC(u))}
for all u ∈ B(x̄, δ) ∩ f−1(0) ∩ C, h ∈ X ;

(iv) there exist σ ∈ (0, 1) and δ, η > 0 such that

η ≤ max{f
′

(u, h), d(h, TC(u))} for all u ∈ B(x̄, δ)∩f−1(0)∩C, h ∈ N1
M (u, σ).

Proof. (i) ⇒ (ii), (ii) ⇒ (iii) and (iii) ⇒ (iv). These implications are clear from
Theorem 1 and formulas (21) and (23).

(iv) ⇒ (i). Let δ1 = δ/3. For σ ∈ (0, 1) and x ∈ B(x̄, δ1) \ M, by Lemma 1,
there exist u ∈ bdM ∩ B(x̄, δ) and x∗ ∈ NM (u) with ‖x∗‖ = 1 such that

σ‖x − u‖ ≤ 〈x∗, x − u〉 ≤ d(x − u, TM(u)).

This implies that x−u
‖x−u‖ ∈ N 1

M(ȳ)(u, σ).

If f(u) = 0, then, by (iv),

η‖x − u‖ ≤ max{f
′

(u, x − u), d(x − u, TC(u))}.
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Since C and f are convex, we have

ηd(x, M) ≤ η‖x − u‖ ≤ max{f(x), d(x, C)}.

Clearly, if (a) is satisfied, then (i) is true by letting δ1 = min{δ̂, δ}/3 and
γ = 1

η
.

Suppose (b) is satisfied and f(u) < 0. Then, by the assumption, u ∈
int{x | f(x) ≤ 0}. It follows that TC(u) = TM (u). Consequently,

σ‖x − u‖ ≤ d(x − u, TC(u)) ≤ max{f(x), d(x, C)}.

Hence, we have

σd(x, M) ≤ max{f(x), d(x, C)}.

Letting γ = max{ 1
η
, 1

σ
}, we get (i).

Suppose (c) is satisfied. Let δ1 = min{δ̂, δ} and let u ∈ B(x̄, δ1) ∩ bdM be
such that f(u) < 0. Then, it is easy to verify that N{x | f(x)≤0}(u) = Ndomf (u) =
∂∞f(u) (see Proposition 3 in Burke and Deng, 2005). It follows from (c) and
(ii) ⇒ (iv) in Theorem 1 that

η ≤ max{f
′

(u, h), d(h, TC(u))} for all h ∈ N1
M (u, σ).

This, together with (iv), implies (i) due to Theorem 1 and formula (23).

Remark 3 When C = X , Condition (ii) becomes

NM (x) ∩ BX∗ ⊂

{

[0, γ]∂f(x) + ∂∞f(x) if ∂f(x) 6= ∅,

∂∞f(x) if ∂f(x) = ∅

for all x ∈ B(x̄, δ)∩f−1(0)∩C. In this case, the equivalence between (i) and (ii)
was proved in Ng and Zheng (2001) under the assumption that bdM ⊂ f−1(0).

The following result, concerning global error bounds, follows from Theorem 2
and formula (23), which generalizes the corresponding results from Lewis and
Pang (1998) and Zǎlinescu (2002) to a general Banach space.

Theorem 4 Let f : X → R ∪ {+∞} be a proper convex function, let C ⊂ X be

a closed convex set, and let M = {x ∈ C | f(x) ≤ 0} be closed. Let x̄ ∈ C be

such that f(x̄) = 0. Suppose that one of the following conditions holds:

(a) bdM ⊂ f−1(0);
(b) {x ∈ C | f(x) < 0} ⊂ int{x | f(x) ≤ 0};
(c) there exists γ > 0 such that for every u ∈ bdM

NM (u) ∩ BX∗ ⊂ γ[NC(u) ∩ BX∗ + N{x | f(x)≤0}(u)].
Then the following statements are equivalent:
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(i) there exists some γ > 0 such that

d(x, M) ≤ γ max{f(x), d(x, C)} for all x ∈ X ;
(ii) there exists γ > 0 such that

NM (x) ∩ BX∗ ⊂ γ[NC(x) ∩ BX∗ + ([0, 1]∂f(x) ∪ ∂∞f(x))] for all x ∈
f−1(0) ∩ C;

(iii) there exists γ > 0 such that

d(h, TM (x)) ≤ γ max{f
′

(x, h), d(h, TC(x))} for all x ∈ f−1(0)∩C, h ∈ X ;
(iv) there exist σ ∈ (0, 1) and η > 0 such that

η ≤ max{f
′

(x, h), d(h, TC(x))} for all x ∈ f−1(0) ∩ C, h ∈ N1
M (u, σ).

Burke and Deng (2005, Theorem 9) show that each of the conditions (ii) and
(iv) implies (i) under the condition of either (a) or (b).

In the next result we present two sufficient conditions for the local error
bounds of the constrained system (20).

Theorem 5 Let f : X → R ∪ {+∞} be a proper convex function, let C ⊂ X be

a closed convex set, and let M = {x ∈ C | f(x) ≤ 0} be a closed subset of X.

Let x̄ ∈ C be such that f(x̄) = 0. Consider the following statements:

(i) there exist δ, γ > 0 such that

d(x, M) ≤ γ max{f(x), d(x, C)} for all x ∈ B(x̄, δ);
(ii) there exist δ, γ > 0 such that for every x ∈ B(x̄, δ) ∩ C ∩ f−1(0),

NM (x) = NC(x) +
⋃

λ≥0 ∂(λf)(x), and for every x∗
1 ∈ NC(x), x∗

2 ∈ ∂f(x)
and x∗

3 ∈ ∂∞f(x), ‖x∗
1‖ + 1 ≤ γ‖x∗

1 + x∗
2‖ and ‖x∗

1‖ ≤ γ‖x∗
1 + x∗

3‖;
(iii) there exists δ > 0, such that the set ∂f(B(x̄, δ) ∩ C ∩ f−1(0)) is bounded

and

0 6∈ cl
⋃

x∈B(x̄,δ)∩C∩f−1(0)

(∂f(x) + NC(x)).

Then the implications (iii) ⇒ (ii) ⇒ (i) hold if one of the following conditions

holds:

(a) bdM ∩ B(x̄, δ̂) ⊂ f−1(0) for some δ̂ > 0;
(b) {x ∈ C | f(x) < 0} ⊂ int{x | f(x) ≤ 0};

(c) there exist γ, δ̂ > 0 such that for every u ∈ B(x̄, δ̂) ∩ bdM
NM (u) ∩ BX∗ ⊂ γ[NC(u) ∩ BX∗ + N{x | f(x)≤0}(u)].

Proof. (ii) ⇒ (i). Fix x ∈ B(x̄, δ) ∩ C ∩ f−1(0), for every x∗ ∈ BX∗ ∩ NM (x)
(x∗ 6= 0), then there exist x∗

1 ∈ NC(x) and x∗
2 ∈ ∂(λf)(x) for some λ ≥ 0 such

that x∗ = x∗
1 + x∗

2.
(1) If λ = 0, then x∗

2 ∈ ∂∞f(x). If x∗
1 = 0 or x∗

2 = 0, then it is obvious
that x∗ ∈ NC(x)∩BX∗ + ∂∞f(x). Otherwise, since ‖x∗

1‖ ≤ γ‖x∗‖ ≤ γ, we have

x∗ = γ(
x∗

1

γ
+

x∗

2

γ
) ∈ γ[NC(x) ∩ BX∗ + ∂∞f(x)].

(2) If λ > 0, then x∗
2/λ ∈ ∂f(x). Let µ = ‖x∗

1‖ + λ(> 0). It follows that

x∗

µ
=

x∗
1

µ
+

λ

µ

x∗
2

λ
∈ BX∗ ∩ NC(x) + [0, 1]∂f(x).
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By the assumption, γ ≥ γ‖x∗‖ ≥ µ. Hence

x∗ ∈ γ[BX∗ ∩ NC(x) + [0, 1]∂f(x)].

We conclude that

NM (x) ∩ BX∗ ⊂ γ[NC(x) ∩ BX∗ + ([0, 1]∂f(x) ∪ ∂∞f(x))]

for all x ∈ B(x̄, δ) ∩ C ∩ f−1(0). By Theorem 3, we obtain (i).
(iii) ⇒ (ii). The proof is same as the proof of Proposition 3.10.15 in Zǎlinescu

(2002). By hypothesis, there exist α, η > 0 such that ‖x∗
1 + x∗

2‖ ≥ α and
‖x∗

2‖ ≤ η for all x ∈ B(x̄, δ) ∩ C ∩ f−1(0), x∗
1 ∈ NC(x) and x∗

2 ∈ ∂f(x). Take
γ = (1+η+α)/α. Consider x, x∗

1, x
∗
2 as before. If ‖x∗

1‖ ≤ γα−1, then, obviously,
‖x∗

1‖ + 1 ≤ γ‖x∗
1 + x∗

2‖. If ‖x∗
1‖ > γα − 1, then γ‖x∗

1 + x∗
2‖ ≥ γ(‖x∗

1‖ − η) ≥
‖x∗

1‖ + 1 + (γ − 1)(γα − 1) − γη − 1 = ‖x∗
1‖ + 1.

Remark 4 It can be proved that

NM (x) = NC(x) +
⋃

λ≥0

∂(λf)(x) for all x ∈ M

provided f is lower semicontinuous and one of the following conditions holds:
(i) C ∩ f−1(0) ⊂ int(dom)f and

‖x∗
1‖ + 1 ≤ γ‖x∗

1 + x∗
2‖ for all x∗

1 ∈ NC(x), x∗
2 ∈ ∂f(x);

(ii) (
⋃

λ≥0 epi(λf)∗ + epiσC) is w∗-closed.

Indeed, for the case where (i) is satisfied, see proof of Proposition 3.10.15 of
Zǎlinescu (2002).

For the case where (ii) is satisfied, let x ∈ M and x∗ ∈ NM (x). Then
〈x∗, x〉 = σM (x∗) and thus (x∗, 〈x∗, x〉) ∈ epiσM . It is well known that epiσM =
cl[epiσC +

⋃

λ≥0 epi(λf)∗]. By the assumption, we have that epiσM = epiσC +
⋃

λ≥0(λf)∗. Hence there exist (x∗
1, α1) ∈ epiσC , λ ≥ 0 and (x∗

2, α2) ∈ epi(λf)∗

such that x∗ = x∗
1 + x∗

2 and 〈x∗, x〉 = α1 + α2. This, together with 〈x∗
1, x〉 ≤

σC(x∗
1) ≤ α1 and 〈x∗

2, x〉 ≤ 〈x∗
2, x〉 − λf(x) ≤ (λf)∗(x∗

2) ≤ α2, implies that
〈x∗

1, x〉 = α1 and 〈x∗
2, x〉 = α2. It follows that σC(x∗

1) = 〈x∗
1, x〉 and (λf)∗(x∗

2) +
λf(x) = 〈x∗

2, x〉. This implies that x∗
1 ∈ NC(x) and x∗

2 ∈ ∂(λf)(x).
Some conditions, which ensure the closedness of the cone (

⋃

λ≥0 epi(λf)∗ +
epiσC) can be found in Jeyakumar et al. (2005). For instance, if 0 ∈ int(C −
domf) and there exists some x0 ∈ C such that f(x0) < 0, then (

⋃

λ≥0 epi(λf)∗+
epiσC) is w∗-closed.

Similarly, we can derive the following two sufficient conditions for the global
error bounds of the constrained system (20).
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Theorem 6 Let f : X → R ∪ {+∞} be a proper convex function, let C ⊂ X be

a closed convex set, and let M = {x ∈ C | f(x) ≤ 0} be closed. Let x̄ ∈ C be

such that f(x̄) = 0. Consider the following statements:

(i) there exists some γ > 0 such that

d(x, M) ≤ γ max{f(x), d(x, C)} for all x ∈ X ;

(ii) there exists some γ > 0 such that for every x ∈ C ∩ f−1(0),

NM (x) = NC(x) +
⋃

λ≥0

∂(λf)(x),

and for every x∗
1 ∈ NC(x), x∗

2 ∈ ∂f(x) and x∗
3 ∈ ∂∞f(x),

‖x∗
1‖ + 1 ≤ γ‖x∗

1 + x∗
2‖ and ‖x∗

1‖ ≤ γ‖x∗
1 + x∗

3‖;

(iii) the set ∂f(C ∩ f−1(0)) is bounded and

0 6∈ cl(
⋃

x∈C∩f−1(0)

(∂f(x) + NC(x)).

Then the implications (iii) ⇒ (ii) ⇒ (i) hold if one of the following conditions

holds:

(a) bdM ⊂ f−1(0);
(b) {x ∈ C | f(x) < 0} ⊂ int{x | f(x) ≤ 0};
(c) there exists γ > 0 such that for every u ∈ bdM

NM (u) ∩ BX∗ ⊂ γ[NC(u) ∩ BX∗ + N{x | f(x)≤0}(u)].

Theorem 6 generalizes the corresponding results from Lewis and Pang (1998),
and Zǎlinescu (2002) to a general Banach space.

Consider now the system of inequalities

M = {x ∈ C | fi(x) ≤ 0, for i = 1, . . . , m}, (24)

where f1, . . . , fm : X → R̄ are lower semicontinuous proper convex functions.
Let f : = max{fi | 1 ≤ i ≤ m}. Then system (24) is equivalent to system

(20). Let I(x) = {i ∈ {1, 2 . . . , m} | f(x) = fi(x)}. Assume that [f = 0] := {x ∈
X | f(x) = 0} ⊂ int(domfi), i = 1, . . . , m. Then it is well known that

∂f(x) = co(∪i∈I(x)∂fi(x)) for all x ∈ [f = 0],

and

f
′

(x, h) = max
i∈I(x)

f
′

i (x, h) for all h ∈ X.

The characterizations for error bounds for system (24) readily follow from the
previous results by simply computing the subdifferential and the directional
derivatives of f .
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