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1. Introduction

In the reflexive Banach setting the Attouch theorem gives the equivalence of
Mosco convergence of convex lower semicontinuous functions to the Kuratowski-
Painlevè graph convergence of its subdifferentials, see Attouch (1984) for exam-
ple. Unfortunately, this result is no longer true in nonreflexive Banach spaces,
see Proposition 4.1 of Attouch and Beer (1993) for a general couterexample or
Example 1.1 of Zagrodny (2005) where it is shown that even if the limit of Mosco
converging sequence is the norm of l1, then its subgradients can not be suitably
approximated. There are results extending the Attouch theorem to arbitrary
Banach space, but in order to obtain this, additional assumptions are needed,
see Attouch and Beer (1993), Beer and Théra (1994), Combari and Thibault
(1998) for more details. It seems that the main obstacle in extending the theo-
rem to a larger class of spaces is the strong topology, which is involved in the
graph convergence of subdifferentials. Recently, it has been shown that for each
subgradient x∗ of f , the Mosco convergence of {fn}∞n=1 to f with the additional
assumption that the sequence of functions is uniformly bounded from above on
some open set, ensures the existence of a sequence of subgradients x∗

n ∈ ∂fn(xn),
which is weakly∗ convergent to x∗, see Zagrodny (2005a,b). Of course, the uni-
form boundedness assumption is a restrictive one. Herein, it is shown that it
can be relaxed to (we consider the case f(0) = 0, 0 ∈ ∂f(0))

∃{ǫn}∞n=1 ⊂ [0,∞), ǫn ց 0 : ∃M ≥ 0 : ∀n ∈ N, ∀x ∈ X,

fn(x) + MdQ(x) + ǫn ≥ 0 (1)
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and the result still holds true if Q is convex weakly compact and generates the
space, where dQ stands for the distance from Q. This result is applied to provide
an extension of the Kronecker lemma, see Moricz (1982) for example.

2. Preliminaries

In the sequel E will be a real Banach space which is weakly compactly generated
(WCG). We recall that a Banach space is WCG if there exists a weakly compact
subset Q of E that spans a dense linear space in E, see Phelps (1984) for more
details. We may assume that 0 ∈ Q and Q is symmetric, i.e. Q = −Q, then,
equivalently, E is WCG if E = cl

⋃∞
n=1 nQ, where ”cl” stands for the topological

closure. By E∗ we denote the dual space to E.

For any convex function f : E −→ R∪ {∞} finite at x and ǫ ≥ 0, by ∂ǫf(x)
we denote its ǫ-subdifferential i.e.

∂ǫf(x) := {x∗ ∈ E∗ |< x∗, h >≤ ǫ + f(x + h) − f(x) for every h ∈ E}.

When ǫ = 0 then ǫ-subdifferential is called subdifferential and it is denoted by
∂f(x), see Attouch (1984), Phelps (1984) for properties.

Let us remind that for any sequence {qi}∞i=1 ⊂ Q there is a subsequence
{qik

}∞k=1 ⊂ {qi}∞i=1 ⊂ Q which is weakly convergent to an element of Q. This is
a consequence of the Eberlein-Smulian theorem, see Theorem 5.3.1 of Rolewicz
(1984).

Below we recall a powerful existence result, the Brondsted-Rockafellar the-
orem, see Theorem 3.18 of Phelps (1984), for example.

Theorem 1 Suppose that f is a convex proper lower semicontinuos function
on the Banach space E. Then, given any point x0 ∈ dom(f), ǫ > 0 and any
x∗

0 ∈ ∂ǫf(x0) there exists xǫ in dom(f) and x∗
ǫ in E∗ such that

x∗
ǫ ∈ ∂f(xǫ), ‖xǫ − x0‖ ≤

√
ǫ and ‖x∗

ǫ − x∗
0‖ ≤

√
ǫ.

In particular, the domain of ∂f is dense in dom(f).

Finally let us recall the notion of Mosco convergence. Attouch and Beer
(1993) give a very convenient condition characterizing the notion. Following
them we say that a function f is the Mosco limit of a sequence of proper lower
semicontinuous functions {fn}∞n=1, we write f = Mosco − limn−→∞ fn, if the
two following conditions are satisfied:

S1: whenever {xn}∞n=1 is a sequence weakly convergent to x, then f(x) ≤
lim infn−→∞ fn(xn);

S2: for each x ∈ E there exists a sequence {xn}∞n=1 converging in norm to
x, for which f(x) = limn−→∞ fn(xn).
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3. Results

In this section we show that if for some yn −→ 0 with fn(yn) −→ 0 and (1)
holds true, then there are sequences {xn}∞n=1 ⊂ E , {x∗

n}∞n=1 ⊂ E∗ such that

xn −→ 0, fn(xn) −→ 0, x∗
n

weak∗

−→ 0 with x∗
n ∈ ∂fn(xn). Moreover, for some

sequence {kn}∞n=1 ⊂ (0,∞), kn −→ ∞ we get

sup
q∈knQ

|< x∗
n, q >|−→ 0. (2)

Since E = cl
⋃∞

n=1 knQ, so we can say that (2) gives “almost” strong convergence
of {x∗

n}∞n=1 to 0. If, additionally, the sequence of functionals is bounded, then

(2) implies that x∗
n

weak∗

−→ 0. Of course, (2) alone does not ensure the weak∗

convergence to 0, see Example 2, below.

Theorem 2 Let E be a real WCG Banach space (i.e. for some symmetric
convex weakly compact subset Q ⊂ E, E = cl

⋃∞
n=1 nQ), {ǫn}∞n=1 ⊂ (0,∞),

ǫn −→ 0 and M > 0 be given. Let f, f1, f2, . . . E −→ R ∪ {∞} be lower semi-
continuous functions such that:

i: for some {yn}∞n=1 ⊂ E we have

lim
n−→∞

yn = 0 and lim
n−→∞

fn(yn) = 0;

ii: ∀n ∈ N, ∀x ∈ E, fn(x) + MdQ(x) + ǫn ≥ 0.

Then there are {xn}∞n=1 ⊂ E, {x∗
n}∞n=1 ⊂ E∗ such that:

a: limn−→∞ xn = 0, limn−→∞ fn(xn) = 0;
b: ∀n ∈ N, x∗

n ∈ ∂fn(xn);

c: x∗
n

weak∗

−→ 0
d: ∃{rn}∞n=1 ⊂ (0,∞), rn −→ 0: ∃{kn}∞n=1 ⊂ (0,∞), kn −→ ∞: ∀q ∈ Q,

∀n ∈ N, |< x∗
n, knq >|≤ rn.

Proof. Assume that fn(0) = 0. By (ii) we have ∀n ∈ N, ∀x ∈ E, fn(x) +
MdQ(x) + ǫn ≥ 0; thus ∀n ∈ N, 0 ∈ ∂ǫn

(

fn(·) + MdQ(·)
)

(0).
By the Brondsted-Rockafellar theorem there are xn ∈ dom(fn), y∗

n ∈ E∗

such that

‖xn‖ ≤ √
ǫn, ‖y∗

n‖ ≤ √
ǫn,

y∗
n ∈ ∂

(

fn(·) + MdQ(·)
)

(xn) = ∂
(

fn

)

(xn) + ∂
(

MdQ

)

(xn),

which implies that fn(xn) + MdQ(xn)− < y∗
n, xn >≤ fn(0) = 0.

Again by (ii) and the following inequalities: fn(xn) + MdQ(xn) ≤ fn(0)
+ < y∗

n, xn >≤ ǫn, we get ∀n ∈ N, 0 ≤ fn(xn) + MdQ(xn) + ǫn ≤ 2ǫn, hence
fn(xn) −→ 0, which gives (a). There are x∗

n ∈ ∂fn(xn) and z∗n ∈ M∂dQ(xn)
such that ‖x∗

n + z∗n‖ ≤ √
ǫn, thus ‖x∗

n‖ ≤ 2M for n large enough and
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∀n ∈ N, ∀x ∈ E, < z∗n, x − xn >≤ M

(

dQ(x) − dQ(xn)

)

.

Let us choose {kn}∞n=1 ⊂ (0,∞) such that kn −→ ∞ and

kn

(

|< z∗n, xn >| +MdQ(xn) +
√

ǫndiam(Q)

)

−→ 0,

where diam(Q) := sup{‖q1 − q2‖ | q1, q2 ∈ Q}. For every n ∈ N put

rn := kn

(

|< z∗n, xn >| +MdQ(xn) +
√

ǫndiam(Q)
)

.

For every q ∈ Q = −Q we get

< z∗n, knq >= kn < z∗n, q >≤ kn(< z∗n, xn > −MdQ(xn))

≤ kn

(

|< z∗n, xn >| +MdQ(xn)
)

,

thus |< z∗n, knq >|≤ kn

(

|< z∗n, xn >| +MdQ(xn)
)

, which implies

|< x∗
n, knq >|≤ kn

(

|< z∗n, xn >| +MdQ(xn) +
√

ǫndiam(Q)
)

,

so (d) is fulfilled. In order to get (c), let us observe that for every x ∈ E there
are qn ∈ Q such that knqn −→ x and

|< x∗
n, x >|≤|< x∗

n, x − knqn >| + |< x∗
n, knqn >|≤ 2M‖x − knqn‖ + rn,

so < x∗
n, x >−→ 0. In order to finish the proof let us notice that if fn(yn) −→ 0

then by (ii) we get

∀n ∈ N, ∀x ∈ E, 0 ≤ fn(x) − fn(yn) + MdQ(x) + ǫn+ | fn(yn) | .

Putting gn(x) := fn(yn + x) − fn(yn), ǫ̃n := ǫn + MdQ(yn)+ | fn(yn) |, we get

∀n ∈ N, ∀x ∈ E, 0 ≤ gn(x) + MdQ(x) + ǫ̃n,

so we can apply the first part of the proof to gn. By the equality ∂gn(xn) =
∂fn(yn + xn) we get the statements.

Remark 1 Let us observe that (a)-(d) imply (i),(ii) with M := supn∈N ‖x∗
n‖

and ǫn := 2
(

n−1+ | fn(xn) | + supq∈Q |< x∗
n, q >| +M‖xn‖

)

.

Indeed, by (a)-(d) we get ǫn −→ 0 (keeping in mind that the Banach-
Steinhaus theorem implies that the sequence {‖x∗

n‖}∞n=1 is bounded). For every
q ∈ Q and y ∈ E we have

fn(y + xn) − fn(xn) ≥< x∗
n, y − q > + < x∗

n, q >

≥ −M‖y + xn − q‖ − M‖xn‖ − sup
q∈Q

|< x∗
n, q >|,

thus ∀n ∈ N, ∀x ∈ E, 0 ≤ fn(x) + MdQ(x) + ǫn.

Let us mention two important consequences of the theorem. First, it yields
a new proof of the necessity part of the Attouch theorem. It also encompasses
a result on weak∗ convergence of subdifferentials.
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Theorem 3 (The necessity part of the Attouch theorem) Let f, f1, f2, . . . :
E −→ R ∪ {+∞} be convex lower semicontinuous on a reflexive Banach space
E and f = Mosco − limn−→∞ fn. For any x̄∗ ∈ ∂f(x̄) there are sequences
{xn}∞n=1 ⊂ E, {x∗

n}∞n=1 ⊂ E∗ such that
a: limn−→∞ xn = x̄, limn−→∞ fn(xn) = f(x̄);
b: ∀n ∈ N, x∗

n ∈ ∂fn(xn);
c: x∗

n −→ x̄∗.

Proof. Let (S1) and (S2) be satisfied, limn−→∞ yn = 0, limn−→∞ fn(yn + x̄) =
fn(x̄), x̄∗ ∈ ∂f(x̄) and gn : E −→ R ∪ {+∞} be defined as follows:

gn(x) :=

{

fn(x + yn + x̄) − fn(yn + x̄)− < x̄∗, x >, if ‖x‖ ≤ 1

+∞, otherwise .

For any M > 0 we have

∀n ∈ N, ∀x ∈ E, 0 ≤ gn(x) + MdQ(x) + ǫn, (3)

where Q := {x ∈ E | ‖x‖ ≤ 1} and

ǫn := 2 | min
q∈Q

(

fn(q + yn + x̄) − fn(yn + x̄)− < x̄∗, q >
)

| .

It is enough to show that ǫn −→ 0. We have

min
q∈Q

(

fn(q + yn + x̄) − fn(yn + x̄)− < x̄∗, q >

)

≤ 0.

If for some qnk
∈ Q and δ > 0

fnk
(qnk

+ ynk
+ x̄) − fnk

(ynk
+ x̄)− < x̄∗, qnk

>≤ −δ < 0,

then, assuming that qnk

weak−→ q̄ (we are able to do it by the Eberlein-Smulian
theorem, taking a subsequence if needed), by (S1) we get

0 ≤ f(q̄ + x̄) − f(x̄)− < x̄∗, q̄ >≤ lim inf
k−→∞

(

fnk
(qnk

+ ynk
+ x̄)

− fnk
(ynk

+ x̄)− < x̄∗, qnk
>

)

≤ −δ < 0,

a contradiction. Hence, for functions gn the assumptions (i) and (ii) of Theo-
rem 2 are satisfied. Thus, there are sequences {xn}∞n=1 ⊂ E, {x∗

n}∞n=1 ⊂ E∗

such that
• limn−→∞ xn = x̄, limn−→∞ fn(xn) − f(x̄)− < x̄∗, xn − x̄ >= 0;
• ∀n ∈ N, x∗

n ∈ ∂fn(xn);
• x∗

n −→ x̄∗ (keep in mind that ‖x∗
n − x̄∗‖ ≤ rnk−1

n by (d) of Theorem 2).

Below we show that results concerning weak∗ convergence of subdiferentials,
see Zagrodny (2005a,b), can be inferred from Theorem 2 as well. Namely, we
show that if the assumptions of Theorem 2.4 of Zagrodny (2005b) are satisfied,
then the assumptions of Theorem 2 are also satisfied.
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Theorem 4 Let E be a WCG Banach space, (x̄, x̄∗) ∈ E × E∗ be fixed and f :
E −→ R∪{+∞} be a lower semicontinuous convex function such that f(x̄) ∈ R,
x̄∗ ∈ ∂f(x̄). Assume that fn : E −→ R∪{+∞} are lower semicontinuous convex
functions such that:

i: f = Mosco − limn−→∞ fn;
ii: there is an open nonempty subset U of E and a constant c ∈ R such that

for every u ∈ U and n ∈ N we have fn(u) ≤ c.

Then there are sequences {xn}∞n=1 ⊂ E, {x∗
n}∞n=1 ⊂ E∗ and {kn} ⊂ N with

kn −→ ∞ such that:
a: limn−→∞ xn = x̄, limn−→∞ fn(xn) = f(x̄);
b: ∀n ∈ N, x∗

n ∈ ∂fn(xn);

c: x∗
n

weak∗

−→ x̄∗

d: lim supn−→∞ supq∈Q < x∗
n − x̄∗, kn

′q >= 0 for any sequence {k′
n}∞n=1 ⊂

(0,∞) such that k′
n −→ ∞ and

k′

n

kn

−→ 0.

Proof. Let us assume that x̄ = 0, x̄∗ = 0, f(0) = 0. Considering max{fn,−1} ,
if needed, we may assume that ∀x ∈ E, ∀n ∈ N, fn(x) ≥ −1 and

∀x ∈ B(a, r), fn(x) ≤ c

for some a ∈ E, r > 0. We may assume that fn(0) = 0 (if not, then consider
f̃n(x) := fn(x + yn) − fn(yn), where yn −→ 0, fn(yn) −→ 0). Let us put

ǫn := 2 | min
q∈2Q

fn(q) | .

Similar reasoning as in the above proof of the Attouch theorem gives ǫn −→ 0.
We have also

∀x ∈ E, ∀n ∈ N,
(

‖x‖2 + fn(x)
)

+ MdQ(x) + ǫn ≥ 0

for some M ≥ 0. In fact, if not, then for some {xnk
}∞k=1 ⊂ E and Mnk

−→ ∞
we get

(

‖xnk
‖2 + fnk

(xnk
)
)

+ Mnk
dQ(xnk

) + ǫnk
< 0. (4)

Since the functions are uniformly bounded from below, so dQ(xnk
) −→ 0, hence

xnk

weak−→ x̃ for some x̃ ∈ E, so by (S2) and the lower semicontinuity of ‖ · ‖ we
get

0 ≤ ‖x̃‖2 + f(x̃) ≤ 0,

thus x̃ = 0 and Mnk
dQ(xnk

) −→ 0. Let us choose a sequence {sk}∞k=1 ⊂ (0,∞)
such that

sk −→ ∞, skdQ(xnk
) −→ 0 and skMnk

dQ(xnk
) −→ ∞.

We are able to choose qk ∈ Q such that skqk −→ a and q̃k ∈ Q for which
dQ(xnk

) = ‖xnk
− q̃k‖. We have sk(xnk

− q̃k) −→ 0, so by (ii) we obtain
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fnk
(skqk − sk(1 − s−1

k )(xnk
− q̃k)) ≤ c for k large enough,

thus, keeping in mind (4),

(1 − s−1
k )

(

‖xnk
‖2 + fnk

(xnk
) + ǫnk

+ Mnk
dQ(xnk

)

)

+ s−1
k fnk

(skqk − sk(1 − s−1
k )(xnk

− q̃k)) ≤ cs−1
k .

By convexity we get

fnk

(

(1 − s−1
k )q̃k + qk

)

+ (1 − s−1
k )ǫnk

+ (1 − s−1
k )Mnk

dQ(xnk
) ≤ cs−1

k .

By the definition of ǫn the sum of the first two terms is nonnegative, thus

skMnk
dQ(xnk

) ≤ c(1 − s−1
k )−1 for k large enough,

which is impossible, since the left hand side of the above inequality tends to
infinity. Hence the assumptions of Theorem 2 are satisfied and we get the
statement in this case. In general it is enough to repeat the above reasoning for
the functions

gn(x) := fn(x + yn) − fn(yn)− < x̄∗, x > for all x ∈ E

where yn −→ x̄, fn(yn) −→ f(x̄).

The next two examples shed some light on assumptions of Theorem 2. The
first one shows that we can not put the norm instead of the distance in (ii).

Example 1 Let us put E := c0, ei := (0, . . . , 0, 1, 0, . . . ) for i = 1, 2, . . ., where
1 is in ith-position. Let us define functions fn as fn(x) := xn, where x =
(x1, x2, . . . ) ∈ E and the set Q as Q := cl conv{+

−e1,
+
−e2, . . .}. The set is

weakly compact and Q = −Q, cl
⋃∞

n=1 nQ = E.
We have ∂fn(x) = {en} for every x ∈ E and n ∈ N. Moreover

∀x ∈ E, ∀n ∈ N, fn(x) + ‖x‖ ≥ 0.

Let us observe that fn(en) = 1 for every n ∈ N, thus (c) of Theorem 2 does not
hold.

In the next example we show that (a),(b),(d) of Theorem 2 do not yield (c).
In order to have this implication ( (a, b, d) =⇒ (c) ) some additional assumptions
are needed, giving the boundedness of the sequence.

Example 2 Let us define g : R −→ R as

g(t) :=

{

−
√
−t, if t ≤ 0

+∞ otherwise.

Let us put
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fn(x) := max
1≤i≤n

{−i−1 + g(xi)} for n ∈ N, x = (x1, x2, . . .) ∈ c0.

Of course, fn(x) ≤ fn+1(x), so there is f which is the Mosco limit of the sequence
of functions, i.e. f = Mosco − limn−→∞ fn, moreover f(0) = 0, f(x) ≥ 0 for
x ∈ c0, so 0 ∈ ∂f(0). Using Theorem 2.2 of Zagrodny (2005b) we infer the
existence of {xn}∞n=1 ⊂ c0, {x∗

n}∞n=1 ⊂ l1 such that xn −→ 0, fn(xn) −→ 0,
x∗

n ∈ ∂fn(xn) for every n ∈ N and for some kn −→ ∞
sup
q∈Q

|< x∗
n, knq >|−→ 0.

Of course we have

x∗
n =

gn
∑

i=dn

λn
i

(

2
√

−xn
i

)−1

for some dn ≤ gn, dn −→ ∞, λn
i ≥ 0 with

∑gn

i=dn
λn

i = 1, xn = (xn
1 , xn

2 , . . .) ∈
c0. Put yn := (

√

| xn
1 |,

√

| xn
2 |, . . .) and observe that < x∗

n, yn >= 1
2 , so the

sequence {‖x∗
n‖}∞n=1 is unbounded and can not weak∗ converge to 0.

4. Kronecker Lemma-weak∗ subdifferential convergence ap-
proach

The Kronecker lemma ensures that if a series
∑∞

i=1 xi of real numbers is con-
vergent and {bi}∞i=1 is a nondecreasing sequence of positive numbers tending to
∞ then

1

bn

∞
∑

i=1

bixi −→ 0, (5)

see Moricz (1982) for example. In this section we are going to show that this
result pertains to much more general considerations than it appears to. Namely,
in what follows a real WCG Banach space is provided such that weak∗ conver-
gence of some functionals to zero corresponds to the convergence in (5). Thus
Theorem 2 gives some possibilities of extending such kind of results to much
more general cases. However, this is not the subject of the present paper, only
the possibility is indicated here.

Example 3 Let us put

E :={x=(x1, x2, . . .) | ∀i∈N, xi∈R and lim
i−→∞

yi =0, where yi := sup
m≥i

|
m

∑

k=i

xk |}.

It is not difficult to show that (E, ‖ · ‖) is a real WCG Banach space with
‖x‖ := supn≤m | ∑m

k=n xk | and Q := {x ∈ E | ∀i ∈ N, | xi |≤ 2−1}.
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In the sequel, E and Q stand for the space and the set given in the above
example.

The corollary below is a slight modification of the Kronecker and Knopp
results, see theorems A,B,C,C’ of Moricz (1982).

Corollary 1 Let ain, bin, n ∈ N, i = 1, . . . , n be reals such that
i: ∃M ≥ 0, ∀n ∈ N,

∑n

i=1 | bin − bi−1n |≤ M ;

ii: ∃{kn}∞n=1 ⊂ N : kn −→ ∞ and
∑kn

i=1 | ain |−→ 0.

Then, for every n ∈ N there are λin ∈ [0, 1] for i = 1, . . . , n such that

∀x ∈ E, lim
n−→∞

n
∑

i=1

(

λinain + (1 − λin)bin

)

xi = 0.

Proof. If kn ≥ n then put λ1n = 1, . . . , λnn = 1, and the statement is a simple
consequence of (ii). Assume that kn < n. For these n′s let us consider convex
functions fn : E −→ R ∪ {∞} defined as follows

fn(x) :=

{

∑n

i=1 max{ainxi, binxi}, if ‖x‖ ≤ 1

+∞ otherwise.

We have

fn(x)≥
kn
∑

i=1

ainxi+
n

∑

i=kn+1

binxi ≥−
kn
∑

i=1

| ain | ‖x‖+
n

∑

i=kn+1

bin(xi−qi)+
n

∑

i=kn+1

binqi,

where q ∈ Q and dQ(x) = ‖x − q‖. Putting b0n = 0 we get

n
∑

i=kn+1

bin(xi − qi) =

n
∑

i=kn+1

i
∑

j=1

(bjn − bj−1n)(xi − qi)

=

n
∑

j=1

( n
∑

i=max {kn+1,j}

(xi − qi)

)

(bjn − bj−1n) ≥ −‖x − q‖
n

∑

j=1

| bjn − bj−1n |

≥ −MdQ(x)

and
n

∑

i=kn+1

binqi =
n

∑

j=1

n
∑

i=max {kn+1,j}

qi(bjn − bj−1n) ≥ −
n

∑

i=kn+1

2−iM ≥ −M2−kn .

Thus

fn(x) ≥ −
( kn

∑

i−1

| ain | +M2−kn

)

− MdQ(x),

so, by putting ǫn := M2−kn +
∑kn

i=1 | ain | we get that the assumptions of
Theorem 2 are satisfied which gives the assertion.
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Remark 2 Let us observe that if b1 ≤ b2 ≤ . . . −→ ∞, then by putting
ain = bin = bi

bn

we have (i) and (ii) satisfied with M = 1 and kn chosen properly,
so we get the Kronecker lemma as a corollary.

Example 4 Let us consider the (h, g)-transform of a sequence x = (x1, x2, . . .),
i.e. for some d ≥ 0 functions g, h : [d,∞) −→ (d,∞) are nondecreasing with
g(n) −→ ∞, ain = bin = 1

g(n)h(i) , a0n = b0n = 1
g(n)d , and fn(x) :=

∑n

i=1 ainxi.

In Jajte (2003) the (h, g)-transform is used in formulating the strong law of
large numbers. There are also examples of (h, g)-transformations. Following
the author, we recall them, i.e., [h(y) = 1, g(y) = y], [h(y) = y, g(y) = log y],

[h(y) = 1, g(y) = y
1

α , 0 < α < 2, α 6= 1].
If x ∈ E then by the above corollary we get fn(x) −→ 0. Indeed, let

us observe that by the definition of ain we are able to choose kn such that
kn −→ ∞ and

∑kn

i=1 ain −→ 0. We have also

n
∑

i=1

| ain − ai−1n |= 1

g(n)

(

1

d
− 1

h(n)

)

−→ 0,

so (i) and (ii) of the corollary are satisfied, which gives fn(x) −→ 0.
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