
Control and Cybernetics

vol. 36 (2007) No. 4

Single stage algorithms for pole placement using static

output feedback

by

K. Kuźmiński and M. Krawiecki

Institute of Automatic Control, Technical University of Lódź
Stefanowskiego 18/22, 90-924 Lódź, Poland

email: Krzysztof.Kuzminski@p.lodz.pl

Abstract: Paper presents effective formulae, enabling transfer
matrix pole assignment. This is accomplished by the use of gener-
alized matrix inverses and the Kronecker product. All the desired
pole distributions are covered – namely simple and multiple, real and
complex. On this basis one-stage algorithms were developed, avoid-
ing commonly used reduced orthogonality condition. Computational
example of the presented algorithms is given.

Keywords: time-invariant linear systems, static output feed-
back, pole placement, Kronecker product, generalized inverse.

1. Introduction

The problem of pole placement for a multivariable linear time-invariant system
using static output feedback (as well as dynamic feedback) is a long-standing
important question in modern control theory (Rosenthal and Willems, 1998).
During the last thirty years, hundreds of papers on this subject have appeared,
some of which are reviewed in Syrmos et al. (1997) and listed in bibliogra-
phy (in particular, Fletcher and Magni, 1987; Fletcher, 1987; Magni, 1987).
The problem in question is connected to the more general eigenstructure as-
signment problem (Fahmy and O’Reilly, 1982, 1983, 1988; Roppenecker and
O’Reilly, 1989; Fletcher et al., 1985; Askarpour and Owens, 1997, 1998, 1999;
Clarke et al., 2003; Clarke and Griffin, 2004). Most of the algorithms developed
till now employ the so-called reduced orthogonality condition (Kimura, 1977).
This requires taking into consideration right and left eigenvectors of the closed-
loop system or corresponding right and left parameter vectors (Roppenecker
and O’Reilly, 1989; Askarpour and Owens, 1997; Clarke et al., 2003). Such
an approach enables solution of the eigenstructure assignment problem using
the above mentioned orthogonality condition and theorems proved in the cited
papers. This leads, however, to a two-stage computational algorithm. Further-
more, specifying simultaneously right and left eigenvectors (parameters) can be

940 K. KUŹMIŃSKI, M. KRAWIECKI

considered an excessive requirement in the case of the pole placement prob-
lem. In connection with the above in the following sections of this article two
one-stage algorithms for solving pole placement problem were developed. Their
specific feature is abandonment of the orthogonality condition. This is achieved
by specifying for the n-th order system: in first algorithm n right parameter
vectors (fi), and in second algorithm n left parameter vectors (hi). This im-
plies the consequential use of generalized matrix inverses. At the same time in
order to facilitate the choice of parameter vectors from allowed subspaces us-
ing solvability conditions of corresponding matrix equations, formulae involving
Kronecker product are used (Van Loan, 2000).

2. Statement of the problem

Consider the linear time-invariant control system, described by equations:

ẋ(t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t) (2)

where x ∈ R
n, u ∈ R

m, y ∈ R
p and A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n.
System (1)-(2) is assumed to be fully controllable and observable. Moreover,

it is assumed that the following condition holds:

m + p > n (3)

and matrices B and C have full rank.
The system described by (1) and (2) has the following transfer matrix:

Go(s) = C(s1n − A)
−1

B (4)

and characteristic polynomial:

Mo(s) = det(s1n − A). (5)

To assign a desired set of poles Λ = {s1, s2, . . . , sn}, static output feedback is
introduced, resulting in the control law

u = Ky, where K ∈ R
m×p. (6)

Consequently, the closed-loop system is described by the equation:

ẋ(t) = (A + BKC) x(t) (7)

and the closed-loop characteristic polynomial is:

M(s) = det(s1n − A − BKC). (8)

Single stage algorithms for output pole placement 941

To calculate matrix K, ensuring that the characteristic equation holds:

M(s) = 0 (9)

for s = si, i = 1, 2, . . . , n, a properly generalized method from Fahmy and
O’Reilly (1982, 1983, 1988) is used.

In the works mentioned above, and also in Roppenecker and O’Reilly (1989)
and Askarpour and Owens (1997) it is proved that equation (9) holds for s = si,
i = 1, 2, . . . , n, if only for those values of s there holds:

det[1m − KGo(s)] = 0 (10)

or

det[1p − Go(s)K] = 0 (11)

assuming that the desired set Λ does not contain any of roots of equation

Mo(s) = 0. (12)

3. Main results

The following considerations are split into two cases, namely

(i) when using (10), and

(ii) when using (11).

First, it is assumed that the set Λ contains only simple real or complex poles
si; the case of multiple poles is treated separately. In the case of complex roots
it is assumed that their set is self-conjugate i.e. si+1 = s̄i.

3.1. Case (i)

Considering equation (10), one can claim that it holds if and only if columns of
the matrix [1m − KGo(si)] are linearly dependent. This implies that for every
si one can find non-null m-dimensional vector fi, that the following equations
hold:

[1m − KGo(si)]fi = 0m×1, i = 1, 2, . . . , n (13)

that is

KGo(si)fi = fi (14)

which can be jointly written as:

KW = F (15)

942 K. KUŹMIŃSKI, M. KRAWIECKI

where

W = [Go(s1)f1,Go(s2)f2, . . . ,Go(sn)fn] (16)

F = [f1, f2, . . . , fn] (17)

are matrices of dimension p× n and m× n respectively, and vectors fi must be
chosen in such a way as to assure the full rank of matrix W i.e.

rank W = p. (18)

According to the Kronecker-Capelli theorem, equation (15) has a solution if and
only if

rank

[

W
F

]

= rank W. (19)

When conditions (18) and (19) hold, the solution of equation (15) is

K = FW† (20)

where W† is the right generalized inverse – for example Moore-Penrose pseudo-
inverse – of the matrix W (Zielke, 1984):

W† = WT
(

WWT
)−1

. (21)

In view of the above, the main problem is to find vectors fi, i = 1, 2, . . . , n

comprising matrix F (equation (17)), and matrix W (equation (16)), such that
the condition (19) is satisfied. One can achieve that by arbitrarily choosing (e.g.
randomly) full-rank matrix Q of dimensions n× (n−p), for which the following
condition must be satisfied

[

W
F

]

Q = 0(p+m)×(n−p). (22)

Thereafter, the vector notation is introduced by using operator vec (·), which
maps a matrix to the vector consisting of its columns stacked one above the
other e.g.

vec (F) =











f1
f2
...
fn











. (23)

Using the Kronecker product, and taking into account that

NXM = Y ⇔ vec (Y) = (MT ⊗ N)vec (X) (24)

Single stage algorithms for output pole placement 943

one can express (22) in the form of two equivalent equations (Van Loan, 2000):

(

QT ⊗ 1p

)

vec (W) = 0p(n−p)×1 (25)
(

QT ⊗ 1m

)

vec (F) = 0m(n−p)×1 (26)

At the same time, from (16) one can obtain:

vec (W) =











Go(s1) 0 . . . 0
0 Go(s2) . . . 0
...

...
. . .

...
0 0 . . . Go(sn)











vec (F) =

= (Go(s1) ⊕ Go(s2) ⊕ . . . ⊕ Go(sn)) vec (F). (27)

Consequently, equations (25), (26) and (27) take the form:

L vec (F) = 0(p+m)(n−p)×1 (28)

where L is a matrix of dimension (p + m)(n − p) × mn, defined by equation:

L =

[(

QT ⊗ 1p

)

(Go(s1) ⊕ Go(s2) ⊕ . . . ⊕ Go(sn))
QT ⊗ 1m

]

. (29)

Equation (28) enables the choice of vec (F), and, consequently, matrix F, using
standard procedures for finding the null-space of the matrix (linear operator).

The problem gets more complicated when some roots si ∈ Λ are required
to be complex. This implies that the corresponding matrices Go(si) become
complex. As mentioned above, it is assumed that the desired complex roots
occur in conjugate pairs, i.e. si+1 = s̄i. The roots can be ordered in such way
that of the n desired roots si, first r are real, and remaining n − r complex.
Furthermore it is assumed that roots forming conjugate pairs are adjacent. To
avoid complex calculus let us introduce the matrix:

T =
1

2

[

1 + j 1 − j

−1 + j −1 − j

]

(30)

which transforms complex matrix

[

a − jb 0
0 a + jb

]

to a similar real matrix:

T

[

a − jb 0
0 a + jb

]

T−1 =

[

a −b

b a

]

(31)

944 K. KUŹMIŃSKI, M. KRAWIECKI

and, additionally, the following holds:

T

[

a − jb

a + jb

]

=

[

a + b

b − a

]

. (32)

The similarity transformation can be generalized by introducing the matrix U
of dimension n × n defined by:

U =

[

1r 0
0 1 (n−r)

2

⊗ T

]

. (33)

As can be easily checked, T and U are unitary (i.e. TT∗ = T∗T = 12 and
UU∗ = U∗U = 1n). By introducing the abbreviated notation:

Go(si) = Gi for 1 6 i 6 r

Go(si) = ReGo(si) + jImGo(si) = ℜGi + jℑGi dla r < i 6 n
(34)

from (31), taking into account that si+1 = s̄i, one can write:

(T ⊗ 1p)

[

Go(si) 0p×m

0p×m Go(si+1)

]

(T∗ ⊗ 1m) =

[

ℜGi ℑGi

ℑGi+1 ℜGi+1

]

. (35)

Using matrix U, in the aforementioned context, (28) can be reformulated as:

[

“

Q
T

⊗ 1p

” “

U
∗

⊗ 1p

”

„

G1⊕ . . . ⊕Gr ⊕

»

ℜGr+1 ℑGr+1
ℑGr+2 ℜGr+2

–

⊕ . . . ⊕

»

ℜGn−1 ℑGn−1
ℑGn ℜGn

–«

(U ⊗ 1m)
“

Q
T

⊗ 1m

” “

U
∗

⊗ 1m

”

(U ⊗ 1m)

]

×

× vec (F) = 0(p+m)(n−p)×1 (36)

which, after simple calculations, becomes:

[

“

Q
T

U
∗

⊗ 1p

”

„

G1⊕ . . . ⊕Gr ⊕

»

ℜGr+1 ℑGr+1
ℑGr+2 ℜGr+2

–

⊕ . . . ⊕

»

ℜGn−1 ℑGn−1
ℑGn ℜGn

–«

“

Q
T

U
∗

⊗ 1m

”

]

×

× (U ⊗ 1m) vec (F) = 0(p+m)(n−p)×1. (37)

Using the following definitions:

QTU∗ = Q̃T ⇒ Q̃ = ŪQ (38)

(U ⊗ 1m) vec (F) = vec (F̃) ⇔ F̃ = FUT (39)

and

L̃ =

[

“

Q̃T ⊗ 1p

”

„

G1 ⊕ . . . ⊕ Gr ⊕

»

ℜGr+1 ℑGr+1
ℑGr+2 ℜGr+2

–

⊕ . . . ⊕

»

ℜGn−1 ℑGn−1
ℑGn ℜGn

–«

“

Q̃T ⊗ 1m

”

]

(40)

we get

L̃ vec (F̃) = 0(p+m)(n−p)×1. (41)

Single stage algorithms for output pole placement 945

Analogously to (27), it is assumed that

vec (W̃) =
(

G1 ⊕ . . . ⊕ Gr ⊕
[

ℜGr+1 ℑGr+1

ℑGr+2 ℜGr+2

]

⊕ . . . ⊕
[

ℜGn−1 ℑGn−1

ℑGn ℜGn

])

vec (F̃)

(42)

and, as can be easily checked

W̃ = WUT. (43)

Eventually, we obtain

K = F̃W̃† (44)

where

W̃† = W̃∗
(

W̃W̃∗
)−1

=
(

WUT
)∗

(

(

WUT
) (

WUT
)∗

)−1

=

= UTW∗ (WW∗)
−1

= UTW†. (45)

From the properties of matrix U it follows that in any choice of matrix F in
which adjacent columns numbered r+1 to n are conjugate, the resulting matrix
F̃ is real. On account of the definition of matrix W, when A, B, C, K are real,
matrix W̃ is also real. Conversely, if matrix Q is chosen in such a way that its
rows numbered r + 1 to n are complex conjugate (remaining real), or – which
is equivalent – matrix Q̃ is an arbitrarily chosen real matrix, then obtained
from (41) matrix F̃ and corresponding matrix W̃ in view of equations (39) and
(43) specify matrices F and W satisfying (13)-(17) with real matrix K specified
by (44).

Remark 1

In the special case, when p = n, solving of equation (15) is much simpler,
because matrix W becomes square. Consequently, in order to find matrix K
using this equation, one should choose vectors fi, i = 1, 2, . . . , n, to satisfy the
condition

det W 6= 0. (46)

In this situation

K = FW−1. (47)

In the case of m = 1 and valid assumption (3), one can solve the stated problem
for p = n if the following conditions hold. In that case equation (15) can be
rewritten as

K[Go(s1),Go(s2), . . . ,Go(sn)] = [1, 1, . . . , 1]. (48)

946 K. KUŹMIŃSKI, M. KRAWIECKI

Then, one can compute K if and only if

det[Go(s1),Go(s2), . . . ,Go(sn)] 6= 0. (49)

This confirms the well-known fact, proved in Fahmy and O’Reilly (1982), that
K is independent of the choice of fi and is uniquely determined if (49) holds.

When the desired characteristic polynomial roots are not simple, it is as-
sumed that q roots si, comprising self-conjugate set (i.e. si+1 = s̄i), have
algebraic multiplicities νi, that is

q
∑

i=1

νi = n (50)

and the characteristic polynomial is:

M(s) =

q
∏

i=1

(s − si)
νi . (51)

In the case under consideration, the numbers si, i = 1, 2, . . . , q must be the
roots of equation (10) of multiplicities νi, i = 1, 2, . . . , q, which requires:

dk

dsk
det (1m − KGo(s))

∣

∣

∣

∣

∣

s=si

= 0, i = 1, 2, . . . , q k = 0, 1, 2, . . . , νi−1. (52)

As proven in Fahmy and O’Reilly, 1983 (equations (10), (11)) this implies

the existence of generally non-null vectors f
(0)
i , f

(1)
i , . . . , f

(νi−1)
i i = 1, 2, . . . , q of

dimensions m × 1, such that:

KG(si)f
(0)
i = f

(0)
i

−
1

k!
K

dk

dsk
G(si)f

(0)
i −

1

(k − 1)!
K

dk−1

dsk−1
G(si)f

(1)
i − . . . − K

d

ds
G(si)f

(νi−2)
i +

+ (1m − KG(si)) f
(νi−1)
i = 0m×1,

i = 1, 2, . . . , q k = 1, 2, . . . , νi − 1 (53)

where, for simplicity, the following notation is used:

dk

dsk
G(si) =

dk

dsk
Go(s)

∣

∣

∣

∣

∣

s=si

. (54)

From (4), one can obtain:

dk

dsk
G(si) = (−1)k(k!)C(si1n − A)

−(k+1)
B, k = 0, 1, 2, . . . , νi − 1 (55)

Single stage algorithms for output pole placement 947

and then, using notation

G
(k)
i = (−1)kC(si1n − A)

−(k+1)
B,

i = 1, 2, . . . , q, k = 0, 1, 2, . . . , νi − 1 (56)

and substituting (55) in (53) and taking into account (56), it follows that:

KG
(0)
i f

(0)
i = f

(0)
i

KG
(k)
i f

(0)
i + KG

(k−1)
i f

(1)
i + . . . + KG

(0)
i f

(k)
i = f

(k)
i ,

i = 1, 2, . . . , q k = 1, 2, . . . , νi − 1. (57)

Thus, in the case under consideration, the matrices F and W in equation (15),
are built-up from blocks corresponding to respective roots, namely:

F = [F1,F2, . . . ,Fq] (58)

W = [W1,W2, . . . ,Wq]. (59)

Respective blocks Fi,Wi, i = 1, 2, . . . , q have dimensions m × νi i p × νi, and

are built of vectors f
(k)
i and w

(k)
i , k = 0, 1, . . . , νi − 1:

Fi = [f
(0)
i , f

(1)
i , . . . , f

(νi−1)
i], i = 1, 2, . . . , q (60)

Wi = [w
(0)
i ,w

(1)
i , . . . ,w

(νi−1)
i], i = 1, 2, . . . , q (61)

where, as follows from (57):

w
(k)
i = G

(k)
i f

(0)
i +G

(k−1)
i f

(1)
i +. . .+G

(1)
i f

(k−1)
i +G

(0)
i f

(k)
i , i = 1, 2, . . . , q. (62)

Matrix K can thus be computed from (20) and (21) using the formulae derived

above. But to find f
(k)
i i = 1, 2, . . . , q, k = 0, 1, . . . , νi−1, one must translate

to a suitable form the equations (27), (28) and (29). For each root the following
equation must hold:

vec (Wi) =















G
(0)
i 0p×m · · · 0p×m

G
(1)
i G

(0)
i 0p×m

...
...

...
. . . 0p×m

G
(νi−1)
i G

(νi−2)
i · · · G

(0)
i















vec (Fi), i = 1, 2, . . . , q.

(63)

By denoting Pi the following matrix of dimensions pνi × mνi:

Pi =















G
(0)
i 0p×m · · · 0p×m

G
(1)
i G

(0)
i 0p×m

...
...

...
. . . 0p×m

G
(νi−1)
i G

(νi−2)
i · · · G

(0)
i















, i = 1, 2, . . . , q (64)

948 K. KUŹMIŃSKI, M. KRAWIECKI

one obtains

vec (Wi) = Pivec (Fi). (65)

Thus, because

vec (F) =











vec (F1)
vec (F2)

...
vec (Fq)











vec (W) =











vec (W1)
vec (W2)

...
vec (Wq)











(66)

there follows

vec (W) =

















P1

P2 0
. . .

0
. . .

Pq

















vec (F) (67)

that is,

vec (W) = (P1 ⊕ P2 ⊕ . . . ⊕ Pq) vec (F). (68)

In view of the above, f
(k)
i i = 1, 2, . . . , q, k = 0, 1, . . . , νi − 1, can be obtained

from (28), where

L =

[(

QT ⊗ 1p

)

(P1 ⊕ P2 ⊕ . . . ⊕ Pq)
QT ⊗ 1m

]

. (69)

In the case of assignment of multiple complex roots, it is convenient to order

vectors f
(k)
i and w

(k)
i according to the following scheme. For roots si and si+1 =

s̄i one defines matrices

Fi,i+1 = [f
(0)
i , f

(0)
i+1, f

(1)
i , f

(1)
i+1, . . . , f

(νi−1)
i , f

(νi−1)
i+1] (70)

and

Wi,i+1 = [w
(0)
i ,w

(0)
i+1,w

(1)
i ,w

(1)
i+1, . . . ,w

(νi−1)
i ,w

(νi−1)
i+1]. (71)

This enables writing

vec (Wi,i+1) =





























G
(0)
i

0p×m 0p×m 0p×m · · · 0p×m 0p×m

0p×m G
(0)
i+1 0p×m 0p×m · · · 0p×m 0p×m

G
(1)
i

0p×m G
(0)
i

0p×m

.

.

.
.
.
.

0p×m G
(1)
i+1 0p×m G

(0)
i+1

. . .
.
.
.

.

.

.

.

.

.
.
.
.

. . .
. . .

.

.

.
.
.
.

.

.

.

G
(νi−1)

i
0p×m G

(νi−2)

i
0p×m · · · G

(0)
i

0p×m

0p×m G
(νi−1)

i+1 0p×m G
(νi−2)

i+1 · · · 0p×m G
(0)
i+1





























vec (Fi,i+1). (72)

Single stage algorithms for output pole placement 949

Using the approach presented in the section devoted to the assignment of simple
complex roots, one can avoid the complex calculus, required in the case of

complex G
(k)
i and G

(k)
i+1. The transformation matrix U, analogous to that

defined by (33), should be introduced. Assuming that first r roots are real, and
the remaining complex roots are ordered in such a way that conjugate pairs are
adjacent, and denoting:

µ =

r
∑

i=1

νi (73)

it should be assumed that

U =

[

1µ 0
0 1 (n−µ)

2

⊗ T

]

. (74)

From equations (39), (43) and (68) it follows that

vec (W̃) = (P1 ⊕ P2 ⊕ . . . ⊕ Pr ⊕ Pr+1,r+2 ⊕ . . . ⊕ Pq−1,q)vec (F̃) (75)

where, according to (72)

Pi,i+1 =



























ℜG
(0)
i ℑG

(0)
i 0p×m 0p×m · · · 0p×m 0p×m

ℑG
(0)
i+1 ℜG

(0)
i+1 0p×m 0p×m · · · 0p×m 0p×m

ℜG
(1)
i ℑG

(1)
i ℜG

(0)
i ℑG

(0)
i

.

.

.

.

.

.

ℑG
(1)
i+1 ℜG

(1)
i+1 ℑG

(0)
i+1 ℜG

(0)
i+1

. . .
.
.
.

.

.

.

.

.

.

.

.

.
. . .

. . .
.
.
.

.

.

.

ℜG
(νi−1)
i ℑG

(νi−1)
i ℜG

(νi−2)
i ℑG

(νi−2)
i · · · ℜG

(0)
i ℑG

(0)
i

ℑG
(νi−1)
i+1 ℜG

(νi−1)
i+1 ℑG

(νi−2)
i+1 ℜG

(νi−2)
i+1 · · · ℑG

(0)
i+1 ℜG

(0)
i+1



























,

i = r + 1, r + 3, . . . , q − 1. (76)

Taking into account (41), one obtains:

L̃ =

[
(

Q̃T ⊗ 1p

)

(P1 ⊕ P2 ⊕ . . . ⊕ Pr ⊕ Pr+1,r+2 ⊕ . . . ⊕ Pq−1,q)

Q̃T ⊗ 1m

]

(77)

where Q̃ and F̃ are given by (38) and (39) with U as in equation (74).

3.2. Case (ii)

In this case equation (11) should be employed, which holds if and only if rows of
the matrix [1p − Go(si)K] are linearly dependent. Thus, to each si corresponds
a non-null p-dimensional vector hi, such that:

hi
T [1p − Go(si)K] = 01×p dla i = 1, 2, . . . , n (78)

950 K. KUŹMIŃSKI, M. KRAWIECKI

that is

hi
TGo(si)K = hi

T for i = 1, 2, . . . , n. (79)

This can be rewritten in the matrix form as

VK = H (80)

where

V =









h1
TGo(s1)

h2
TGo(s2)

. . .

hn
TGo(sn)









H =











h1
T

h2
T

...

hn
T











(81)

are matrices of dimension n×m and n× p correspondingly. Vectors hi must be
chosen in such a way that the following rank condition holds

rank V = m. (82)

According to the Kronecker-Capelli theorem, equation (80) has a solution if and
only if

rank [V H] = rank V. (83)

Assuming that conditions (82) and (83) are valid, the solution of the equation
(80) can be expressed as:

K = V†H (84)

where V† is any left generalized inverse – for example Moore-Penrose pseudo-
inverse – of matrix V:

V† =
(

VTV
)−1

VT. (85)

In view of the above, analogously to Section 3.1, the main problem consists in
finding vectors hi, i = 1, 2, . . . , n, composing matrix H and matrix V (equation
(81)), such that equation (83) holds. One can achieve that by choosing arbi-
trarily full-rank matrix R of dimensions (n − m) × n, for which the following
equality is valid:

R[V H] = 0(n−m)×(m+p) (86)

which can be also written in the form:
[

VT

HT

]

RT = 0(m+p)×(n−m). (87)

Single stage algorithms for output pole placement 951

Equation (87) is equivalent to the pair of equations:

(R ⊗ 1m) vec (VT) = 0(n−m)m×1 (88)

(R ⊗ 1p) vec (HT) = 0(n−m)p×1. (89)

Taking into account that:

vec (VT) =









Go(s1)
T
h1

Go(s2)
T
h2

. . .

Go(sn)
T
hn









=

=











GT
o (s1) 0 . . . 0

0 GT
o (s2) . . . 0

...
...

. . .
...

0 0 . . . GT
o (sn)











vec (HT) =

=
(

GT
o (s1) ⊕ GT

o (s2) ⊕ . . . ⊕ GT
o (sn)

)

vec (HT), (90)

equations (89) and (90) can be rewritten as

Dvec (HT) = 0(n−m)(m+p)×1 (91)

where

D =

[

(R ⊗ 1m)
(

GT
o (s1) ⊕ GT

o (s2) ⊕ . . . ⊕ GT
o (sn)

)

R ⊗ 1p

]

. (92)

Analogously as in Section 3.1, equation (91) enables the choice of vec (HT), and
consequently of matrix H, using standard procedures for null-space computa-
tion.

In cases, where some of the demanded characteristic polynomial roots are
complex, the same transformation matrix U, as the one introduced in Section
3.1 (equation (33)) can be employed. In the case under consideration, the
equivalent of equation (37), ipso facto equation (91), takes the form:

[

(RU ⊗ 1m)

„

G1
T

⊕ . . . ⊕ Gr
T

⊕

»

ℜGr+1
T

ℑGr+2
T

ℑGr+1
T

ℜGr+2
T

–

⊕ . . . ⊕

»

ℜGn−1
T

ℑGn
T

ℑGn−1
T

ℜGn
T

–«

RU ⊗ 1p

]

×

× (U ⊗ 1p) vec
(

HT
)

= 0(m+p)(n−m)×1 (93)

where the earlier introduced, abbreviated notation for complex matrices Go(si)
(equation (34)) is used. Denoting in the following:

R̃ = RU (94)

(U ⊗ 1m) vec (HT) = vec (H̃T) ⇔ H̃ = UH (95)

952 K. KUŹMIŃSKI, M. KRAWIECKI

and

D̃ =

[

“

R̃ ⊗ 1m

”

„

G1
T ⊕ . . . ⊕ Gr

T ⊕

»

ℜGr+1
T ℑGr+2

T

ℑGr+1
T ℜGr+2

T

–

⊕ . . . ⊕

»

ℜGn−1
T ℑGn

T

ℑGn−1
T ℜGn

T

–«

R̃ ⊗ 1p

]

(96)

one obtains

D̃ vec
(

H̃T
)

= 0(m+p)(n−m)×1. (97)

At the same time

vec (ṼT) = (98)

=
(

G1
T⊕ . . . ⊕Gk

T⊕
[

ℜGk+1
T

ℑGk+2
T

ℑGk+1
T

ℜGk+2
T

]

⊕ . . .⊕
[

ℜGn−1
T

ℑGn
T

ℑGn−1
T

ℜGn
T

])

vec (H̃T)

and

Ṽ = UV. (99)

Thus, on the basis of equations (84) and (85) it holds that

K = Ṽ†H̃ (100)

where

Ṽ† =
(

ṼTṼ
)−1

ṼT. (101)

Remark 2.

In the special case, where m = n, matrix V becomes square. Consequently, the
resolution of equation (80) is much simpler. Then, one must choose vectors hi,

i = 1, 2, . . . , n, for which the following condition is valid:

det V 6= 0, (102)

which enables the computation of matrix K from equation

K = V−1H. (103)

In turn, when p = 1, which, due to assumption (3) implies m = n, vectors
hi, i = 1, 2, . . . , n, become scalars, and equation (80) takes the form











Go(s1)
Go(s2)

...
Go(sn)











K =











1
1
...
1











. (104)

Single stage algorithms for output pole placement 953

In this case K can be computed, when:

det
[

Go
T(s1) Go

T(s2) . . . Go
T(sn)

]

6= 0. (105)

In cases, where the required roots si are not simple, namely have multiplic-
ities νi, i = 1, 2, . . . , q, the following conditions must hold:

dk

dsk
[1p − Go(s)K]

∣

∣

∣

∣

∣

s=si

= 0 dla i = 1, 2, . . . , q, k = 0, 1, . . . , νi−1. (106)

Using the formulae from Fahmy and O’Reilly (1983) and the notation introduced
in Section 3.1, one obtains from equation (106):

(h
(0)
i)

T
G

(0)
i K = (h

(0)
i)

T

. . .
[

(h
(0)
i)

T
G

(k)
i +(h

(1)
i)

T
G

(k−1)
i +. . .+(h

(k−1)
i)

T
G(1)

o +(h
(k)
i)

T
G(0)

o

]

K = (h
(k)
i)

T

i = 1, 2, . . . , q k = 0, 1, . . . , νi − 1. (107)

Thus, matrices H and V can be expressed as

H =











H1

H2

...
Hq











V =











V1

V2

...
Vq











(108)

where subsequent blocks Hi and Vi of dimension νi × p i νi × p are built of

vectors h
(k)
i and v

(k)
i , i = 1, 2, . . . , q, k = 0, 1, . . . , νi − 1, i.e.

Hi =















(h
(0)
i)

T

(h
(1)
i)

T

...

(h
(νi−1)
i)

T















Vi =















(v
(0)
i)

T

(v
(1)
i)

T

...

(v
(νi−1)
i)

T















(109)

and, as follows from equation (107)

v
(k)
i = (h

(0)
i)

T
G

(k)
i + (h

(1)
i)

T
G

(k−1)
i + . . . + (h

(k−1)
i)

T
G

(1)
i + (h

(k)
i)

T
G

(0)
i

for i = 1, 2, . . . , q, k = 0, 1, . . . , νi − 1. (110)

Using equations (108)–(110) one can compute matrix K from formulae (84) and

(85). This requires the prior choice of h
(k)
i for i = 1, 2, . . . , q; k = 0, 1, . . . , νi−1.

954 K. KUŹMIŃSKI, M. KRAWIECKI

For this purpose equation (91) must be transformed, according to (88) and (89),
holding in this case. From equation (108) it follows that

vec (HT) =











vec (H1
T)

vec (H2
T)

...

vec (Hq
T)











vec (VT) =











vec (V1
T)

vec (V2
T)

...

vec (Vq
T)











(111)

and, from equation (109), that

vec (Hi
T) =













h
(0)
i

h
(1)
i
...

h
(νi−1)
i













. (112)

At the same time, the following holds:

vec (Vi
T) =





















(G
(0)
i)

T
0 0 · · · 0

(G
(1)
i)

T
(G

(0)
i)

T
0 · · · 0

(G
(2)
i)

T
(G

(1)
i)

T
(G

(0)
i)

T
· · · 0

...
...

. . .
...

(G
(νi−1)
i)

T
(G

(νi−2)
i)

T
(G

(νi−3)
i)

T
· · · (G

(0)
i)

T





















vec (Hi
T)

(113)

which, using notation:

Ei =





















(G
(0)
i)

T
0 0 . . . 0

(G
(1)
i)

T
(G

(0)
i)

T
0 . . . 0

(G
(2)
i)

T
(G

(1)
i)

T
(G

(0)
i)

T
. . . 0

...
...

. . .
...

(G
(νi−1)
i)

T
(G

(νi−2)
i)

T
(G

(νi−3)
i)

T
. . . (G

(0)
i)

T





















(114)

can be written as

vec (Vi
T) = Eivec (Hi

T) (115)

Single stage algorithms for output pole placement 955

and thereby

vec (VT) =

















E1

E2 0
. . .

0
. . .

Eq

















vec (HT) =

= (E1 ⊕ E2 ⊕ . . . ⊕ Eq) vec (HT). (116)

Thus, in the case under consideration, with valid (91), it follows that:

D =

[

(R ⊗ 1m) (E1 ⊕ E2 ⊕ . . . ⊕ Eq)
(R ⊗ 1p)

]

(117)

which enables the computation of H and V.

In turn, when some of the required roots are multiple and complex, similarly

to Section 3.1 it is convenient to order vectors (h
(k)
i)

T
and v

(k)
i according to the

following scheme. For roots si and si+1 = s̄i matrices:

Hi,i+1 =































(h
(0)
i)

T

(h
(0)
i+1)

T

(h
(1)
i)

T

(h
(1)
i+1)

T

...

(h
(νi−1)
i)

T

(h
(νi−1)
i+1)

T































Vi,i+1 =































(v
(0)
i)

T

(v
(0)
i+1)

T

(v
(1)
i)

T

(v
(1)
i+1)

T

...

(v
(νi−1)
i)

T

(v
(νi−1)
i+1)

T































(118)

are introduced, which implies

vec (Hi
T) =



























h
(0)
i

h
(0)
i+1

h
(1)
i

h
(1)
i+1
...

h
(νi−1)
i

h
(νi−1)
i+1



























. (119)

956 K. KUŹMIŃSKI, M. KRAWIECKI

Jointly this enables us to write

vec (Vi,i+1
T) =

=



































“

G
(0)
i

”T

0m×p 0m×p 0m×p · · · 0m×p 0m×p

0m×p

“

G
(0)
i+1

”T

0m×p 0m×p · · · 0m×p 0m×p

“

G
(1)
i

”T

0m×p

“

G
(0)
i

”T

0m×p · · · 0m×p 0m×p

0m×p

“

G
(1)
i+1

”T

0m×p

“

G
(0)
i+1

”T

· · · 0m×p 0m×p

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
“

G
(νi−1)
i

”T

0m×p

“

G
(νi−2)
i

”T

0m×p · · ·

“

G
(0)
i

”T

0m×p

0m×p

“

G
(νi−1)
i+1

”T

0m×p

“

G
(νi−2)
i+1

”T

· · · 0m×p

“

G
(0)
i+1

”T



































×

× vec (Hi,i+1
T). (120)

Assuming (73) and using transformation (74) and equations (91), (95), (113)
one obtains

vec (ṼT) = (E1 ⊕ E2 ⊕ . . . ⊕ Er ⊕ Er+1,r+2 ⊕ . . . ⊕ Eq−1,q) vec (H̃T) (121)

where, according to equation (120):

Ei,i+1 =

=

























ℜ
“

G
(0)
i

”T
ℑ

“

G
(0)
i+1

”T
0m×p 0m×p · · · 0m×p 0m×p

ℑ
“

G
(0)
i

”T
ℜ

“

G
(0)
i+1

”T
0m×p 0m×p · · · 0m×p 0m×p

ℜ
“

G
(1)
i

”T
ℑ

“

G
(1)
i+1

”T
ℜ

“

G
(0)
i

”T
ℑ

“

G
(0)
i+1

”T
· · · 0m×p 0m×p

ℑ
“

G
(0)
i

”T
ℜ

“

G
(1)
i+1

”T
ℑ

“

G
(0)
i

”T
ℜ

“

G
(0)
i+1

”T
· · · 0m×p 0m×p

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

ℜ
“

G
(νi−1)

i

”T
ℑ

“

G
(νi−1)

i+1

”T
ℜ

“

G
(νi−2)

i

”T
ℑ

“

G
(νi−2)

i+1

”T
· · · ℜ

“

G
(0)
i

”T
ℑ

“

G
(0)
i+1

”T

ℑ
“

G
(νi−1)

i

”T
ℜ

“

G
(νi−1)

i+1

”T
ℑ

“

G
(νi−2)

i

”T
ℜ

“

G
(νi−2)

i+1

”T
· · · ℑ

“

G
(0)
i

”T
ℜ

“

G
(0)
i+1

”T

























.

(122)

Thus in the case under consideration, conditions enabling the proper choice of
matrix H̃ reduce to equation (97), where

D̃ =





(

R̃ ⊗ 1m

)

(E1 ⊕ E2 ⊕ . . . ⊕ Er ⊕ Er+1,r+2 ⊕ . . . ⊕ Eq−1,q)
(

R̃ ⊗ 1p

)



 (123)

with R̃ and H̃ given by (94) and (95).

4. Algorithm of computation

On the basis of the above considerations and the derived formulae, one can
propose the following algorithm in order to computationally solve the stated
problem:

Single stage algorithms for output pole placement 957

[1] Input data: n, m, p, A, B, C, q, r

[2] Input required set of characteristic equation roots, ordered as in Section 3:

(i) Λ = {s1, s2, . . . , sn}

(ii) Λ = {s1, s2, . . . , sq} and νi for i = 1, 2, . . . , q

and specify the number of real roots r; set:

• Z = 1 for simple real roots;

• Z = 2 for simple real and complex roots;

• Z = 3 for multiple real roots;

• Z = 4 for multiple real and complex roots;

[3] Check:

(i) condition (3)

(ii) whether B and C have full rank

(iii) whether the system is fully controllable and observable

If any of the above conditions fail, then quit, else go to the next step

[4] Calculate matrices Go(si) for i = 1, 2, . . . , n using equation (4)

[5] If Z = 1, then go to next step, else jump to step [20]

[6] If m = 1, then go to next step, else jump to step [9]

[7] Check condition (49); if false then quit

[8] Compute K from (48) and quit

[9] If p = n, then go to next step, else jump to step [13]

[10] Choose random m–dimensional vectors fi for i = 1, 2, . . . , n

[11] Compute matrix W from equation (16)

[12] Check condition (46); If true, then compute matrix K from equation (47)
and quit, else jump to step [10]

[13] Choose randomly matrix Q of dimensions n× (n−p) and compute matrix
L from equation (29)

[14] Find null-space of matrix L (in Matlab function null(·))

[15] Compute vec (F), using any vector from basis computed in [14]

[16] Transform vec (F) into F (in Matlab function reshape(·)) and correspond-
ing vectors fi

[17] Compute matrix W from equation (16)

[18] Check condition (19); if true, then go to next step, else jump (return) to
step [13]

958 K. KUŹMIŃSKI, M. KRAWIECKI

[19] Compute matrix W† from (21), and then matrix K from (20); quit

[20] If Z = 2, then go to next step, else jump to [29]

[21] For i = r + 1, r + 2, . . . , n compute ℜGi and ℑGi from (34)

[22] Choose randomly Q̃ of dimensions n × (n − p)

[23] Compute matrix L̃ from equation (40)

[24] Compute null-space of matrix L̃ (null(·))

[25] Compute vec (F̃), choosing any of the vectors from basis computed in step
[24], and then transform into F̃

[26] Compute vec (W̃) from equation (42) and then transform into W̃

[27] Check condition (19), substituting F → F̃ and W → W̃. If true, go to
next step, else jump to step [22]

[28] Compute W̃† from equation (45) and then K from (44). Quit

[29] For i = 1, 2, . . . , q, k = 0, 1, . . . , νi−1 compute matrices G
(k)
i from equation

(56)

[30] If Z = 3, go to next step, else jump to step [40]

[31] For i = 1, 2, . . . , q assembly matrices Pi according to (64)

[32] Choose randomly matrix Q of dimensions n × (n − p)

[33] Compute matrix L from equation (69)

[34] Find null-space of matrix L (null(·))

[35] Compute vec (F), choosing any of the vectors from basis computed in step
[34], and then transform into matrix F

[36] For i = 1, 2, . . . , q; k = 0, 1, . . . , νi−1 compute vectors w
(k)
i using equation

(62)

[37] For i = 1, 2, . . . , q assembly matrices Wi using equation (61); assembly
matrix W using (59)

[38] Check condition (19). If true, then go to next step, else jump to step [32]

[39] Compute matrix W† using equation (21); compute matrix K using equa-
tion (20). Quit

[40] For i = r + 1, r + 2, . . . , q, k = 0, 1, . . . , νi − 1 compute ℜG
(k)
i = ReG

(k)
i ,

ℑG
(k)
i = ImG

(k)
i

[41] For i = 1, 2, . . . , r compute matrices Pi from equation (64) and for i =
r + 1, r + 3, . . . , q − 1 compute matrices Pi,i+1 from equation (76)

[42] Choose randomly matrix Q̃ of dimensions n × (n − p)

Single stage algorithms for output pole placement 959

[43] Compute matrix L̃ using equation (77)

[44] Compute null-space of matrix L̃ (null(·))

[45] Determine vec (F̃), choosing any of the vectors from computed null-space
basis and then transform into matrix F̃

[46] Compute vec (W̃) using equation (75), and then transform into matrix
W̃

[47] Check condition (19), substituting F → F̃ and W → W̃. If true, then go
to next step, else jump to step [42]

[48] Compute matrix W̃† using equation (45) and matrix K using equation
(44). Quit

Another variant of the algorithm is as follows:

[1] Input data: n, m, p, A, B, C, q, r

[2] Input required set of characteristic equation roots, ordered as in Section 3:

(i) Λ = {s1, s2, . . . , sn}

(ii) Λ = {s1, s2, . . . , sq} i νi for i = 1, 2, . . . , q

and specify the number of real roots r; set:

• Z = 1 for simple real roots;

• Z = 2 for simple real and complex roots;

• Z = 3 for multiple real roots;

• Z = 4 for multiple real and complex roots;

[3] Check:

(i) condition (3)

(ii) whether B and C have full rank

(iii) whether system is fully controllable and observable

If any of the above conditions fail then quit, else go to next step

[4] Calculate matrices Go(si) for i = 1, 2, . . . , n using equation (4)

[5] If Z = 1, then go to next step, else go to step [20]

[6] If p = 1, then go to next step, else jump to step [9]

[7] Check condition (105). If true, then go to next step, else quit

[8] Compute matrix K using equation (104) and quit

[9] If m = n, then go to next step, else jump to step [13]

[10] For i = 1, 2, . . . , n choose randomly a p-dimensional vector hi

[11] Assembly matrix H and compute matrix V using equation (81)

960 K. KUŹMIŃSKI, M. KRAWIECKI

[12] Check condition (102). If true, then compute matrix K using equation
(103) and quit, else jump to step [10]

[13] Choose randomly matrix R of dimensions (n − m) × n

[14] Compute matrix D using equation (92)

[15] Compute null-space of the matrix D (null(·))

[16] Determine vec (HT), choosing any of the vectors from basis computed in
step [15].

[17] Calculate matrix HT (reshape(·)) and transform it into vectors hi
T i =

1, 2, . . . , n; then calculate matrices H i V using (81)

[18] Check condition (83). If true, then go to next step, else go to step [13]

[19] Calculate matrix V† using (85), then matrix K using equation (84). Quit

[20] Check condition Z = 2. If true, then go to next step, else go to step [30]

[21] For i = r + 1, r + 2, . . . , n determine ℜGi and ℑGi using equation (34)

[22] Choose randomly matrix R̃ of dimensions (n − m) × n

[23] Calculate matrix D̃, using equation (96)

[24] Determine basis of null-space of matrix D̃ calculated in [23] (null(·))

[25] Determine vector vec (H̃T), choosing any of vectors from basis, calculated
in [24]; then transform it into matrix H̃T (reshape(·))

[26] Calculate vec (ṼT), using equation (98) and transform into matrix ṼT.

[27] Check condition (83), substituting V → Ṽ and H → H̃. If true, then go
to next step, else jump to step [22]

[28] Calculate matrix Ṽ† using (101), and then K, using (100). Quit

[29] For i = 1, 2, . . . , q, k = 0, 1, . . . , νi − 1 calculate matrices G
(k)
i , using

equation (56)

[30] Check condition Z = 3. If true, then go to next step, else jump to step
[40]

[31] For i = 1, 2, . . . , q calculate Ei, using equation (114)

[32] Choose randomly matrix R of dimensions (n − m) × n

[33] Calculate matrix D, using equation (117)

[34] Find basis of null-space of matrix D calculated in step [33] (null (·))

[35] Determine vector vec (HT), choosing any of vectors from basis calculated
in step [34]

[36] Transform vec (HT) into matrix HT (reshape(·)).

Single stage algorithms for output pole placement 961

[37] Calculate vector vec (VT), using equation (116) and then transform it into
matrix VT

[38] Check condition (83). If true, then go to next step, else jump to step [32]

[39] Calculate matrix V†, using equation (85), and then matrix K, using (84).
Quit

[40] For i = 1, 2, . . . , r calculate matrices Ei, using equation (114) and then
for i = r + 1, r + 3, . . . , q − 1, matrices Ei,i+1, using equation (122)

[41] Choose randomly matrix R̃ of dimensions (n − m) × n

[42] Calculate matrix D̃, using equation (123)

[43] Compute basis of null-space of the matrix D̃ calculated in step [42]

[44] Determine vector vec (H̃T), choosing any of vectors from basis calculated
in step [43], and then transform it into matrix H̃T

[45] Compute vec (ṼT), using equation (121) and then transform it into matrix
ṼT

[46] Check condition (83), substituting V → Ṽ and H → H̃. If true, then go
to next step, else jump to step [41]

[47] Compute matrix Ṽ†, using equation (101), and then matrix K, using
equation (100). Quit.

5. Computational example

The following example illustrates the derived formulae and the proposed algo-
rithm. Linear time-invariant system is characterized by matrices:

A =









5 −6 68 4
0 −13 −19 −21

−25 −61 −16 1
−2 −30 12 13









B =









−10 −21
15 3
48 23
36 −1









C =





68 17 5 −12
−11 31 −43 −69
−28 −16 −23 46



 .

Its roots of characteristic polynomial are:

Λo = {31.7311,−2.08944 + 29.1279j,−2.08944− 29.1279j,−38.5523}.

Required values of close-loop roots are:

Λ = {−2 + 1j,−2 − 1j,−2 + 1j,−2 − 1j}.

For this system all posed assumptions are valid, i.e. condition (3) holds, matrices
B and C have full rank, and the system is fully controllable and observable.

962 K. KUŹMIŃSKI, M. KRAWIECKI

According to the proposed algorithm the following matrix Q was (randomly)
chosen

Q =
[

59 6 −12 −43
]T

and then matrix

L̃ =











−4336.72 3508.72 −306.133 277.317 1111.79 −847.015 3121.41 −2555.44

3677.2 −983.372 513.572 −61.5167 −513.123 264.406 −2695.66 716.128

−304.706 −1808.4 −122.105 −208.081 −92.0386 326.533 237.603 1325.98

59 0 6 0 −12 0 −43 0

0 59 0 6 0 −12 0 −43











was computed. Its null-space has basis

null L̃ =





















−0.0309995 0.500434 −0.131405

0.218891 −0.214713 0.240127

0.130391 −0.422021 −0.722815

−0.826464 −0.17031 −0.0211482

−0.0772983 0.304622 0.388822

0.492791 0.0353569 0.0700755

−0.00276844 0.542745 −0.389666

0.0474948 −0.328237 0.30697





















.

Taking into consideration the subsequent columns of null L̃ three variants
of matrix F̃ and corresponding matrix W̃ were computed, which eventually
brought to three feedback matrices K1,K2,K3 assigning characteristic roots to
required positions. Partial and final results of those computations are given
below:

F̃1 =

[

−0.0309995 0.130391 −0.0772983 −0.00276844

0.218891 −0.826464 0.492791 0.0474948

]

W̃1 =

[

15.8136 −58.2195 34.8337 3.85307

−5.65982 21.794 −12.993 −1.09882

−6.49622 24.6665 −14.7286 −1.36128

]

K1 =

[

−0.00558095 −0.00822899 −0.011188

−0.0193672 0.101137 −0.101566

]

⇒

⇒ Λ = {−2 + 1.00033j,−2− 1.00033j,−2 + 0.999671j,−2− 0.999671j}

F̃2 =

[

0.500434 −0.422021 0.304622 0.542745

−0.214713 −0.17031 0.0353569 −0.328237

]

W̃2 =

[

−49.572 21.1556 −18.557 −59.8867

34.555 −23.6016 19.5306 38.669

4.13779 7.45322 −3.40226 7.66688

]

Single stage algorithms for output pole placement 963

K2 =

[

0.00972818 −0.00290036 0.0198253

0.00858005 0.0135605 0.0414376

]

⇒

⇒ Λ = {−2.00001 + 1j,−2.00001− 1j,−1.99999 + 0.999997j,

−1.99999− 0.999997j}

F̃3 =

[

−0.131405 −0.722815 0.388822 −0.389666

0.240127 −0.0211482 0.0700755 0.30697

]

W̃3 =

[

23.0971 51.1517 −25.6237 45.9797

−12.9863 −45.4946 22.4482 −30.4311

−6.15837 4.85962 −3.74814 −6.72578

]

K3 =

[

0.00985002 −0.00256779 0.0210199

0.00818552 0.0132078 0.0418405

]

⇒

⇒ Λ = {−2 + 1j,−2 − 1j,−2 + 0.999997j,−2− 0.999997j}.

6. Conclusion

In this paper effective formulae have been developed, enabling arbitrary pole
placement by static output feedback matrix K for the system described by
equations (1) and (2). All – real and complex, simple and multiple – poles distri-
butions are covered. To accomplish this, generalized inverses and the Kronecker
product were used. This enabled the development of equations for matrices F
or H (called by other authors parameter matrices), that ensure existence of the
feedback matrix K which is the solution of the problem. Computations can be
carried out using standard procedures for matrix null-space calculation.

On the basis of the developed formulae, two new algorithms were proposed.
Their specific feature is a one-stage structure, in opposition to the two-stage na-
ture of most known algorithms. It should be noted here that the first algorithm
should be used when p > m, and the second when m > p. This ensures smaller
dimensions of matrices L or L̃ in comparison to D or D̃ in the first case and
vice-versa in second. Moreover, in one cycle of computations one can obtain sev-
eral feedback matrices K, according to the number of column of matrices null L
or null D, which implies (m + p − n)p variants in the first and (m + p − n)m
variants in the second case. Therefore it is possible to use some quality criterion
e.g.

‖K‖ =
√

trace (KKT) (124)

to choose the best variant. Of course it is also possible to search for the best
solutions, considering all linear combinations of columns of matrices null L or
null D.

Simultaneously it should be noted that in general, mp−n degrees of freedom
occur in the problem under consideration. This is reflected in the free choice of
elements of matrices Q or R by application of the proposed methods.

964 K. KUŹMIŃSKI, M. KRAWIECKI

The proposed method has the disadvantage that the set of desired poles
Λ cannot contain roots of equation (12). This requirement can be eliminated
by certain modifications of the formulae used in the presented method. For
this purpose closed-loop eigenvectors must be taken into consideration, which –
according to Fahmy and O’Reilly (1983) – are given by the formulae:

vi = (si1n − A)
−1

Bfi (right) (125)

gi
T = hi

TC (si1n − A)
−1

(left). (126)

In this particular case of limited practical importance, the methods introduced
in Clarke et al., (2003), Clarke and Griffin (2004) and Askarpour and Owens
(1997, 1998) can be applied.

The other potential disadvantage of the proposed method is the increase of
problem dimensionality due to use of the Kronecker product. But the Kronecker
product is becoming a commonly used tool in various areas, e.g. digital signal
processing, image processing, semidefinite programming, quantum computing
(Van Loan, 2000). One can expect that, due to increasing computational power
of today’s computers, this inconvenience will decline in importance.

References

Askarpour, S. and Owens, T.J. (1997) Integrated approach to eigenstruc-
ture assignment by output feedback control. IEE Proceedings – Control

Theory Applications 144(5), 435–438.
Askarpour, S. and Owens, T.J. (1998) Integrated approach to eigenstruc-

ture assignment by output feedback: The case of multiple eigenvalues.
IEE Proceedings – Control Theory Applications 145(3), 265–268.

Askarpour, S. and Owens, T. J. (1999) Eigenstructure assignment by out-
put feedback: The case of common open- and closed-loop characteristic
vectors. IEE Proceedings – Control Theory Applications 146(10), 37–40.

Clarke, T. and Griffin, S.J. (2004) An addendum to output feedback ei-
genstucture assignment: retro-assignment. International Journal of Con-

trol 77(1), 78–85.
Clarke, T., Griffin, S.J. and Ensor, J. (2003) Output feedback eigenstruc-

ture assignment using a new reduced orthogonality condition. Interna-

tional Journal of Control 76(4), 390–402.
Fahmy, M.M. and O’Reilly, J. (1982) On Eigenstructure Assignment in Lin-

ear Multivariable Systems. IEEE Transactions on Automatic Control

AC-27(3), 690–693.
Fahmy, M.M. and O’Reilly, J. (1983) Eigenstructure Assignment in Linear

Multivariable Systems — A Parametric Solution. IEEE Transactions on

Automatic Control AC-28(10), 990–994.
Fahmy, M.M. and O’Reilly, J. (1988) Parametric eigenstructure assignment

by output-feedback control: the case of multiple eigenvalues. International

Single stage algorithms for output pole placement 965

Journal of Control 48(4), 1519–1535.
Fletcher, L.R. (1987) Exact pole assignment by output feedback. Part 2.

International Journal of Control 45(6), 2009–2019.
Fletcher, L.R. and Magni, J.F. (1987) Exact pole assignment by output

feedback. Part 1. International Journal of Control 45(6), 1995–2007.
Fletcher, L.R., Kautsky, J., Kolka, G.K.G. and Nichols, N.K.
(1985) Some necessary and sufficient conditions for eigenstructure assignment.

International Journal of Control 42(6), 1457–1468.
Kimura, H. (1977) A Further Result on the Problem of Pole Assignment

by Output Feedback. IEEE Transactions on Automatic Control AC-22,
458–463.

Magni, J.-F. (1987) Exact pole assignment by output feedback. Part 3. In-

ternational Journal of Control 45(6), 2021–2033.
Roppenecker, G. and O’Reilly (1989) Parametric Output Feedback Con-

troller Design. Automatica 25(2), 259–265.
Rosenthal, J. and Willems, J. C. (1998) Open problems in the area of

pole placement. In: V. D. Blondel, E. D. Sontag, M. Vidyasager, and
J. C. Willems, eds., Open Problems in Mathematical Systems and Control

Theory, Chapter 37. Springer Verlag, 181–191.
Syrmos, V.L., Abdallah, C.T., Dorato, P. and Grigoriadis, K.
(1997) Static Output Feedback — A Survey. Automatica. 33(2), 125–137.
Van Loan, Ch. F. (2000) The ubiquitous Kronecker product. Journal of

Computational and Applied Mathematics 123, 85–100.
Zielke, G. (1984) A survey of generalized matrix inverses. Volume 13 of Ba-

nach Center Publications. Computational Mathematics, Polish Scientific
Publishers, 499–526.

