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1. Introduction

Since the appearance of the theory of right invertible operators, the initial,
boundary and mixed boundary value problems for the linear systems described
by right invertible operators and generalized invertible operators were studied
by many mathematicians (see Nguyen Van Mau, 1992: Przeworska-Rolewicz,
1988). Nguyen Dinh Quyet (1977, 1981) has considered the controllability of
linear systems described by right invertible operators in the case when the re-
solving operator is invertible (see also Nguyen Dinh Quyet and Hoang Van Thi,
2002). These results were generalized by A. Pogorzelec (1983) for the case of
one-sized invertible resolving operators (see also Przeworska-Rolewicz, 1988),
and by Nguyen Van Mau (1990, 1992) for the system described by generalized
invertible operators. The above mentioned controllability refers to F1-exact con-
trollability from one state to another. However, in infinite dimensional spaces,
exact controllability is not always realized. To overcome these restrictions, we
define the so-called F1-approximate controllability, in the sense of: “A system
is approximately controllable if any state can be transfered to neighbourhood
of other state by an admissible control”. In this article, we consider the ap-
proximate controllability for the system (LS)0 of the form (3)-(4) in infinite
dimensional Banach space, with dim(kerD) = +∞. The necessary and suffi-
cient conditions for the linear system (LS)0 to be approximately reachable, and
exactly controllable are also found.
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2. Preliminaries

Let X be a linear space over a field F of scalars (F = R orC). Denote by L(X)
the set of all linear operators with domains and ranges belonging to X . We
write

L0(X) = {A ∈ L(X) : domA = X} .

An operator D ∈ L(X) is said to be right invertible if there exists an operator
R ∈ L0(X) such that RX ⊂ domD and DR = I on domR (where I is the
identity operator), in this case R is called a right inverse of D. The set of
all right invertible operators in L(X) will be denoted by R(X). For a given
D ∈ R(X), we will denote by RD the set of all right inverses of D, i.e.

RD = {R ∈ L0(X) : DR = I} .

An operator F ∈ L0(X) is said to be an initial operator for D corresponding
to R ∈ RD if F 2 = F, FX = kerD and FR = 0 on domR. The set of all initial
operators for D will be denoted by FD.

Proposition 1 (Przeworska-Rolewicz, 1988) If D ∈ R(X) then for ev-
ery R ∈ RD, we have

domD = RX ⊕ kerD . (1)

Theorem 1 (Przeworska-Rolewicz, 1988)) Suppose that D ∈ R(X). A
necessary and sufficient condition for an operator F ∈ L(X) to be an initial
operator for D corresponding to R ∈ RD is that

F = I − RD on domD . (2)

Moreover, the initial operator has some other properties, which we will use
in the next section, such as Fz = z, for every z ∈ kerD, DF = 0 on X ,
kerF = RX and kerD∩kerF = {0}. The theory of right invertible operators and
their applications can be consulted in Nguyen Van Mau (1992) and Przeworska-
Rolewicz, (1988).

Let X, Y be Banach spaces, denote by L(X, Y ) the Banach space of all
continuous linear operators from X into Y , and by L(X) the space L(X, X).
Denote by X∗ the dual topological space of X and by 〈x∗, x〉 the value of x∗ at
x ∈ X . The closure of a set M is denoted by M .

Theorem 2 (Zabczyk, 1992) Let X, Y, Z be infinite dimensional Hilbert spaces.
Suppose that F ∈ L(X, Z) and G ∈ L(Y, Z). Then two following conditions are
equivalent:

(i) ImF ⊂ ImG,

(ii) There exists a c > 0 such that ‖G∗f‖ > c‖F ∗f‖ for all f ∈ Z∗.
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Theorem 3 (Rudin, 1973, The separation theorem) Suppose that M, N

are convex sets in Banach space X and M ∩ N = ∅.

(i) If intM 6= ∅ then there exists a functional x∗ ∈ X∗, x∗ 6= 0 such that

〈x∗, x〉 6 〈x∗, y〉, for every x ∈ M, y ∈ N .

(ii) If M is a compact set, N is a closed set then there exists x∗ ∈ X∗, x∗ 6= 0
such that

〈x∗, x〉 < 〈x∗, y〉, for every x ∈ M, y ∈ N .

3. The approximate controllability

Let X and U be infinite dimensional Banach spaces over the same field F of
scalars (F = R or C). Suppose that D ∈ R(X), with dim(kerD) = +∞, F ∈ FD

is an initial operator for D corresponding to R ∈ RD ∩ L(X), A ∈ L0(X), and
B ∈ L0(U, X).

Now we will consider the linear system (LS)0 of the form:

Dx = Ax + Bu , u ∈ U , BU ⊂ (D − A)domD, (3)

Fx = x0, x0 ∈ kerD . (4)

The spaces X and U are called the space of states and the space of controls,
respectively. Hence, elements x ∈ X and u ∈ U are called states and controls,
respectively. The element x0 ∈ kerD is said to be an initial state. A pair
(x0, u) ∈ (kerD) × U is called an input. If (3)-(4) has a solution x = Φ(x0, u),
then this solution is called output corresponding to input (x0, u).

Note that, since the inclusion BU ⊂ (D−A)domD is satisfied, if the resolving
operator I − RA is invertible, then for every fixed pair (x0, u) ∈ (kerD) × U ,
the initial value problem (3)-(4) is well-posed and has a unique solution, which
is given by (see Nguyen Van Mau, 1992; Przeworska-Rolewicz, 1988):

Φ(x0, u) = EA(RBu + x0) , where EA = (I − RA)−1 . (5)

Write

RangU,x0
Φ =

⋃

u∈U

Φ(x0, u) , x0 ∈ kerD . (6)

Clearly, RangU,x0
Φ is the set of all solutions of (3)-(4) for arbitrarily fixed

initial state x0 ∈ kerD. This is the reachable set from the initial state x0 by
means of controls u ∈ U .

Definition 1 Let a linear system (LS)0 of the form (3)-(4) be given.

(i) A state x ∈ X is called approximately reachable from the initial state
x0 ∈ kerD if for every ε > 0 there exists a control u ∈ U such that
‖x − Φ(x0, u)‖ < ε.
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(ii) The linear system (LS)0 is said to be approximately reachable from the
initial state x0 ∈ kerD if

RangU,x0
Φ = X .

Theorem 4 The linear system (LS)0 is approximately reachable from zero if
and only if

B∗R∗E∗

Ah = 0 implies h = 0 . (7)

Proof. By definition, the system (LS)0 is approximately reachable from zero if

EARBU = X . (8)

According to Theorem 3, the condition (8) is equivalent to

〈h, x〉 = 0 (h ∈ X∗), ∀x ∈ EARBU ⇒ h = 0 . (9)

Since EARBU is a subspace of X , (9) is also equivalent to

〈h, x〉 = 0 , ∀x ∈ EARBU ⇒ h = 0 ,

or equivalently

〈h, EARBu〉 = 0 , ∀u ∈ U ⇒ h = 0 .

That is

〈B∗R∗E∗

Ah, u〉 = 0 , ∀u ∈ U ⇒ h = 0 .

This implies that

B∗R∗E∗

Ah = 0 ⇒ h = 0 .

Conversely, if the condition is (7) satisfied, then (9) is also satisfied. Therefore
we obtain (8).

Definition 2 (Przeworska–Rolewicz, 1988) Let be given a linear system
(LS)0 and F1 ∈ FD be arbitrary initial operator for D.

(i) A state x1 ∈ kerD is said to be F1-reachable from the initial state x0 ∈ kerD
if there exists a control u ∈ U such that x1 = F1Φ(x0, u). The state x1 is
called a final state.

(ii) The system (LS)0 is said to be F1-controllable if for every initial state
x0 ∈ kerD,

F1(RangU,x0
Φ) = kerD .
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(iii) The system (LS)0 is said to be F1-controllable to zero if

0 ∈ F1(RangU,x0
Φ) ,

for every initial state x0 ∈ kerD.

Definition 3 Let a linear system (LS)0 of the form (3)-(4) be given. Suppose
that F1 ∈ FD is an arbitrary initial operator for D.

(i) The system (LS)0 is said to be F1-approximately reachable from the initial
state x0 ∈ kerD if

F1(RangU,x0
Φ) = kerD .

(ii) The system (LS)0 is said to be F1-approximately controllable if for every
initial state x0 ∈ kerD, we have

F1(RangU,x0
Φ) = kerD.

(iii) The system (LS)0 is said to be F1-approximately controllable to x1 ∈ kerD
if

x1 ∈ F1(RangU,x0
Φ) ,

for every initial state x0 ∈ kerD.

Lemma 1 Let there be given a linear system (LS)0 of the form (3)-(4) and an
arbitrary initial operator F1 ∈ FD ∩ L(X). Suppose that the system (LS)0 is
F1-approximately controllable to zero and

F1EA(kerD) = kerD . (10)

Then every final state x1 ∈ kerD is F1-approximately reachable from zero.

Proof. By the assumption, 0 ∈ F1(RangU,x0
Φ), for all x0 ∈ kerD. Therefore,

for every x0 ∈ kerD and ε > 0, there exists a control u0 ∈ U such that

‖F1EA(RBu0 + x0)‖ < ε . (11)

The condition (10) implies that with any x1 ∈ kerD, there exists x2 ∈ kerD
such that

F1EAx2 = −x1 .

This equality and (11) together imply that for every x1 ∈ kerD and ε > 0, there
exists a control u1 ∈ U such that

‖F1EARBu1 − x1‖ < ε .

This proves that every final state x1 is F1-approximately reachable from zero.
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Theorem 5 Suppose that all assumptions of Lemma 1 are satisfied. Then the
system (LS)0 is F1-approximately controllable.

Proof. According to our assumption, for every x0 ∈ kerD and ε > 0, there exists
a control u0 ∈ U such that

‖F1EA(RBu0 + x0)‖ <
ε

2
. (12)

By Lemma 1, for every x1 ∈ kerD there exists u1 ∈ U such that

‖F1EARBu1 − x1‖ <
ε

2
. (13)

From (12) and (13), it follows that for every x0, x1 ∈ kerD and ε > 0, there
exists a control u = u0 + u1 ∈ U such that

‖F1EA(RBu + x0) − x1‖ = ‖F1EA[RB(u0 + u1) + x0] − x1‖

6 ‖F1EA(RBu0 + x0)‖ + ‖F1EARBu1 − x1‖

<
ε

2
+

ε

2
= ε .

The arbitrariness of x0, x1∈kerD and ε > 0 implies F1(RangU,x0
Φ) = kerD.

Theorem 6 Let be given a linear system (LS)0 and an arbitrary initial operator
F1 ∈ FD∩L(X). Then the system (LS)0 is F1-approximately controllable if and
only if it is F1-approximately controllable to every element y′ ∈ F1EARX.

Proof. The necessary condition is easy to obtain. In order to prove the sufficient
condition, we first prove the equality

F1EA(RX ⊕ kerD) = kerD . (14)

Indeed, since (I − RA)(domD) ⊂ domD = RX ⊕ kerD (by Proposition 1.1
and property of the right invertible operator), there exists a set E ⊂ X and
Z ⊂ kerD such that

RE ⊕ Z = (I − RA)(domD) .

This implies EA(RE ⊕ Z) = EA(I − RA)(domD) = domD. Thus, we have

kerD = F1(domD) = F1EA(RE ⊕ Z)

⊂ F1EA(RX ⊕ kerD)

⊂ kerD .

Therefore, formula (14) holds.
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Suppose that the system (LS)0 is F1-approximately controllable to every
element y′ = F1EARy, y ∈ X , i.e. for every y ∈ X and arbitrary ε > 0 there
exists a control u0 ∈ U such that

‖F1EA(RBu0 + x0) − F1EARy‖ <
ε

2
.

That is

‖F1EA(RBu0 + x0 + x2) − F1EA(Ry + x2)‖ <
ε

2
, (15)

where x2 ∈ kerD is arbitrary.
By the formula (14), for every x1 ∈ kerD, there exists y1 ∈ X and x′

2 ∈ kerD
such that

x1 = F1EA(Ry1 + x′

2) .

This equality and (15) together imply

‖F1EA(RBu′

0 + x0 + x′

2) − x1‖ <
ε

2
. (16)

On the other hand, 0 ∈ F1EARX and our assumptions allow that (LS)0 be
F1-approximately controllable to zero, i.e.

0 ∈ F1(RangU,x0
Φ) , for arbitrary x0 ∈ kerD .

Thus, for the element x′

2 ∈ kerD there exists u1 ∈ U such that

‖F1EA(RBu1 − x′

2)‖ <
ε

2
. (17)

From (16) and (17), it is concluded that for every x0, x1 ∈ kerD and ε > 0
there exist u = u′

0 + u1 ∈ U such that

‖F1EA(RBu + x0) − x1‖ = ‖F1EA[RB(u′

0 + u1) + x0] − x1‖

= ‖F1EA(RBu′

0 + x0 + x′

2) − x1 + F1EA(RBu1 − x′

2)‖

6 ‖F1EA(RBu′

0 + x0 + x′

2) − x1‖ + ‖F1EA(RBu1 − x′

2)‖

<
ε

2
+

ε

2
= ε .

By the arbitrariness of x0, x1 ∈ kerD and ε > 0, we obtain F1(RangU,x0
Φ) =

kerD.

Theorem 7 Let a linear system (LS)0 and an arbitrary initial operator F1 ∈
FD∩L(X) be given. Then the system (LS)0 is F1-approximately reachable from
zero if and only if

B∗R∗E∗

AF ∗

1 h = 0 implies h = 0 . (18)
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Proof. Suppose that the system (LS)0 is F1-approximately reachable from zero,
we have

F1(RangU,0Φ) = kerD .

This means that

F1EARBU = kerD . (19)

According to Theorem 3, the equality (19) is equivalent for h ∈ (kerD)∗ to

〈h, x〉 = 0 , ∀x ∈ F1EARBU ⇒ h = 0 . (20)

Since F1EARBU is a subspace of kerD, the condition (20) is also equivalent to

〈h, x〉 = 0 , ∀x ∈ F1EARBU ⇒ h = 0 ,

or equivalently

〈h, F1EARBu〉 = 0 , ∀u ∈ U ⇒ h = 0 .

It is satisfied if and only if

〈B∗R∗E∗

AF ∗

1 h, u〉 = 0 , ∀u ∈ U ⇒ h = 0 . (21)

Hence, by the condition (21), there follows B∗R∗E∗

AF ∗

1 h = 0 which implies
h = 0.
Conversely, if (18) is satisfied, then (21) holds. This implies (19). Therefore we
obtain

F1(RangU,0Φ) = kerD .

Theorem 8 Suppose that X, U are Hilbert spaces. A necessary and sufficient
condition for the system (LS)0 to be F1-controllable is that there exists a real
number α > 0 such that

‖B∗R∗E∗

AF ∗

1 f‖ ≥ α‖f‖ , for all f ∈ (kerD)∗ . (22)

Proof. Necessity. Suppose that the system (LS)0 is F1- controllable, we have

F1(RangU,x0
Φ) = kerD , for every x0 ∈ kerD .

It implies that F1EARBU = kerD. By Theorem 2, there exists a real number
α > 0 such that

‖(F1EARB)∗f‖ ≥ α‖f‖ , for all f ∈ (kerD)∗ ,

i.e. the condition (22) holds.
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Sufficiency. Suppose that the condition (22) is satisfied. By Theorem 2, we
obtain

F1EARBU ⊇ kerD.

Moreover, F1EARBU ⊆ kerD, since F1 is an initial operator for D. Conse-
quently, we have F1EARBU = kerD. It implies that

F1(RangU,x0
Φ) = kerD , for every x0 ∈ kerD .

Theorem 9 Suppose that X, U are Hilbert spaces. The linear system (LS)0 is
F1-controllable to zero if and only if there exists a β > 0 such that

‖B∗R∗E∗

AF ∗

1 f‖ ≥ β‖E∗

AF ∗

1 f‖ , for every f ∈ (kerD)∗ . (23)

Proof. Suppose that the system (LS)0 is F1- controllable to zero. This means
that

0 ∈ F1(RangU,x0
Φ) , for all x0 ∈ kerD .

Therefore, for arbitrary x0 ∈ kerD, there exists u ∈ U such that

F1EA(RBu + x0) = 0 .

It implies that for every x′

0 ∈ kerD, there exists u′ ∈ U such that F1EAx′

0 =
F1EARBu′. Thus, we obtain F1EA(kerD) ⊆ F1EARBU . By Theorem 2 there
exists a β > 0 such that

‖(F1EARB)∗f‖ ≥ β‖(F1EA)∗f‖ , for all f ∈ (kerD)∗ .

Conversely, assume that (23) is satisfied. According to Theorem 2, we conclude
that

F1EA(kerD) ⊆ F1EARBU .

Hence, for every x0 ∈ kerD, there exists u ∈ U such that

F1EA(RBu + x0) = 0 ,

i.e. the system (LS)0 is F1-controllable to zero.

Example 1 Consider the control system

∂x(t, s)

∂t
= λx(t, s) + u(t) , (24)

with an initial condition

x(0, s) = f(s) . (25)
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Let X = C(Ω) be the space of all continuous functions over Ω, where Ω =

[0, T ] × [0, T ]. Write D =
∂

∂t
, R =

t
∫

0

. It is possible to check that domD =

{x ∈ X : x(t, s0) ∈ C1[0, T ] for every fixed s0 ∈ [0, T ]}, kerD = {x ∈ X :
x(t, s) = ϕ(s), ϕ ∈ C[0, T ]}. Thus, we have dim(kerD)=+∞, and dom R = X .
In addition,

(DRx)(t, s) =
∂

∂t





t
∫

0

x(τ, s)dτ



 = (Ix)(t, s) , for all x ∈ X.

Hence, the operator D is right invertible and R is a right inverse of D. An initial
operator for D corresponding to R is defined by (Fx)(t, s) = (I −RD)x(t, s) =
x(0, s).

Moreover, for every ti ∈ [0, T ], i = 1, 2, 3, ... let Ri =
t
∫

ti

, then Ri are right

inverses of D, and Fix(t, s) = x(ti, s) are initial operators for D corresponding
to Ri, respectively (see Przeworska-Rolewicz, 1988).
Therefore the problem (24)-(25) can be written in the form:

Dx = Ax + Bu , u ∈ U (26)

Fx = x0 , x0 ∈ kerD , (27)

where A = λI, B = I are stationary operators, since AD = DA, AR =
RA, BD = DB and BR = RB. The set U = C[0, T ] is the space of all continu-
ous functions over [0, T ]. If we write

(Cx)(t, s) =

t
∫

0

eλ(t−τ)x(τ, s)dτ ,

then

(I + λC)(I − λR)x(t, s) = (I − λR)(I + λC)x(t, s) = Ix(t, s) .

This means that the resolving operator I − λR is invertible and its inverse is
given by

(EAx)(t, s) = (I−λR)−1x(t, s) = (I+λC)x(t, s) = x(t, s)+λ

t
∫

0

eλ(t−τ)x(τ, s)dτ .

Hence, by formula (5), for every u(t) ∈ C(R), the solution of (26)-(27) (which
is also the solution of (24)-(25)) is given by

x(t, s) = EA(RBu + x0)(t, s) = eλt





t
∫

0

e−λτu(τ)dτ + f(s)



 .
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In addition, it is easy to check that F1EAx0 = eλ(t1)x0 = S(t1)x0, for every
x0 ∈ kerD, where S(t) is a semigroup of continuous linear operators generated
by A.

Since B ∈ L0(U, X) is a stationary operator and kerR = {0}, the condition
(18) is equivalent to B∗E∗

AF ∗

1 h = 0 which implies h = 0 i.e. B∗(F1EA)∗h = 0
implies h = 0. This means that

B∗S∗(t1)h = 0 ⇒ h = 0 . (28)

Note that the condition (28) is necessary and sufficient for the linear system
in an infinite dimensional space to be approximately reachable (see Zabczyk,
1992). For the system (24)-(25), the condition (28) is satisfied. Hence, by
Theorem 7, the system (26)-(27) is F1-approximately reachable from zero.

This example shows that in the case D is a differential operator, the concept
and results of F1-approximately controllable are completely coincident with the
approximate controllability of the linear control system in infinite dimensional
space.
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