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Abstract: Efficient conditioning and error estimates are pre-
sented for the numerical solution of matrix Riccati equations in
the continuous-time and discrete-time LQG design. The estimates
implemented involve the solution of triangular Lyapunov equations
along with usage of the LAPACK norm estimator.
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1. Introduction

The Linear-Quadratic Gaussian (LQG) design is the most efficient and widely
used design approach in the field of linear stochastic control systems. It consists
of computing a LQ state regulator and a Kalman filter for the controlled system,
by solving a pair of dual matrix Riccati equations, Kwakernaak, Sivan (1972).
The numerical solution of these equations, however, is still an open problem,
which sometimes leads to serious difficulties in LQG design applications. First
of all, the considered Riccati equations may be ill conditioned, i.e. small per-
turbations in their coefficients may lead to large variations in the solutions,
Petkov, Christov, Konstantinov (1991). As it is well known, the conditioning
of an equation depends neither on the method used for solving it, nor on the
properties of the computer architecture. Therefore, it is necessary to have a
quantitative characterization of the equation conditioning in order to estimate
the accuracy of solution.

The second difficulty in the numerical solution of Riccati equations is con-
nected with the stability of the numerical method used and the reliability of its
implementation. It is well known (see Petkov, Christov, Konstantinov, 1991)
that the methods for solving Riccati equations are generally unstable. This
requires to have an estimate of the forward error in the computed solution.
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In this paper we present efficient algorithms for computing condition and
error estimates pertaining to the numerical solution of the matrix Riccati equa-
tions in continuous-time and discrete-time LQG design. The algorithms are
based on matrix norm estimator implemented in LAPACK (Anderson et al.,
1995) and allow to obtain low cost condition and forward error estimates which
are usually sufficiently accurate.

The following notation is used in the paper: R – the field of real numbers;
Rm×n – the space of m × n matrices A = [aij ] over R; AT – the transpose
of A; σmax(A) and σmin(A) – the maximum and minimum singular values of
A; ‖A‖1 – the 1-norm of the matrix A; ‖A‖2 = σmax(A) – the spectral norm
of A; ‖A‖F = (

∑
|aij |

2)1/2) – the Frobenius norm of A; In – the unit n × n
matrix; A ⊗ B – the Kronecker product of matrices A and B; vec(A) – the
vector, obtained by stacking the columns of A in one vector; ε – the roundoff
unit of the machine arithmetic.

2. LQG control problems

Consider the continuous-time linear stochastic system

ẋ(t) = Ax(t) + Bu(t) + v(t), t ≥ 0

y(t) = Cx(t) + w(t)
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rr are the system state, input and
output vectors, respectively, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n are known
constant matrices, and v(t), w(t) are independent zero-mean Gaussian white-
noise processes with variance matrices E{v(t)vT(s)} = V δ(t − s), V ≥ 0, and
E{w(t)wT(s)} = Wδ(t − s), W > 0. It is supposed that the pairs (A, B),
(A, V 1/2) are stabilizable and the pair (A, C) is detectable.

The (continuous-time) LQG control problem consists in finding a control u
that minimizes the quadratic performance index

J(u) = lim
T→∞

E

{
1

T

∫ T

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt

}
(2)

having partial knowledge of the system state x(t) via the output vector y(t).
It is assumed that Q ≥ 0, R > 0 and the pair (A, Q1/2) is detectable.

As it is well known this problem splits into two parts: an optimal estimation
of the system state and a linear quadratic control problem (see Kwakernaak,
Sivan, 1972, and Fleming, Rishel, 1975). The optimal control u∗ is given by

u∗(t) = −R−1BT Xx̂(t) (3)

where x̂(t) is the optimal estimate of x(t) obtained using the Kalman-Bucy filter

˙̂x(t) = Ax̂(t) + Y CT W−1[y(t) − Cx̂(t)], t ≥ 0. (4)
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Here X and Y are the unique non-negative definite solutions of the dual matrix
Riccati equations

AT X + XA + Q − XBR−1BT X = 0 (5)

and

AY + YAT + V − Y CT W−1CY = 0. (6)

In the discrete-time analog of the LQG control problem (1), (2), one studies
the linear stochastic system

xi+1 = Axi + Bui + vi, i ≥ 0

yi = Cxi + wi

(7)

with the performance index

J(u) = lim
N→∞

E

{
1

N

N∑

i=0

(
xT

i Qxi + uT
i Rui

)
}

(8)

where {vi} and {wi} are independent zero-mean Gaussian white-noise sequences
with variance matrices V ≥ 0 and W > 0, respectively. In this case the optimal
control is

u∗
i = −(R + BT XB)−1BT XAx̂i (9)

where the optimal estimate x̂i is given by the Kalman filter

x̂i+1 = Ax̂i + Bui + AY CT (W + CY CT )−1(yi − Cx̂i) (10)

and X and Y are the unique non-negative definite solutions of the discrete dual
matrix Riccati equations

AT XA − X + Q − AT XB(R + BT XB)−1BT XA = 0 (11)

AYAT − Y + V − AY CT (W + CY CT )−1CYAT = 0. (12)

In what follows we shall consider the conditioning and error estimation for
the matrix Riccati equation (5) and the discrete matrix Riccati equation (11).
The corresponding results for the Riccati equations (6) and (12) can be obtained
using the duality of (5) and (6), and of (11) and (12), respectively. In the sequel
we shall write equations (5) and (11) as

AT X + XA + Q − XSX = 0 (13)

and

X = Q + AT X(In + SX)−1A, (14)

where S = BR−1BT .
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3. Conditioning of Riccati equations

Suppose that the matrices A, Q, S in (13), (14) are subject to perturbations ∆A,
∆Q, ∆S, respectively, so that instead of the initial data we have the matrices

Ã = A + ∆A, Q̃ = Q + ∆Q, S̃ = S + ∆S.

The perturbation analysis of (13), (14) is aimed at studying the variation
∆X in the solution X̃ = X + ∆X due to the perturbations ∆A, ∆Q, ∆S. If
small perturbations in the data lead to small variations in the solution, the cor-
responding equation is said to be well-conditioned, and if these perturbations
lead to large variations in the solution, this equation is ill-conditioned. In the
perturbation analysis of the Riccati equations it is supposed that the perturba-
tions preserve the symmetric structure of the equation, i.e. the perturbations
∆Q and ∆S are symmetric. If ‖∆A‖, ‖∆Q‖ and ‖∆S‖ are sufficiently small,
then the perturbed solution X̃ = X + ∆X is well defined.

Consider first the Riccati equation (13). The condition number of this equa-
tion is defined as (Byers, 1985)

KR = lim
δ→0

sup

{
‖∆X‖

δ‖X‖
: ‖∆A‖ ≤ δ‖A‖, ‖∆Q‖ ≤ δ‖Q‖, ‖∆S‖ ≤ δ‖S‖

}
.

For sufficiently small δ we have (within first order terms)

‖∆X‖

‖X‖
≤ KRδ.

Denote by X̄ the solution of the Riccati equation computed by a numerical
method in finite arithmetic with relative precision ε. If the method is backward
stable, the relative error in the solution can be estimated by

‖X̄ − X‖

‖X‖
≤ p(n)KRε

where p(n) is some low-order polynomial of n. This shows the importance of
the condition numbers in the numerical solution of Riccati equations.

The computation of the exact value of KR requires the construction and
manipulation of n2×n2 matrices which is not practical for large n. That is why
it is useful to derive approximations of KR that can be obtained inexpensively.

In first order approximation ∆X can be represented as

∆X = −Ω−1(∆Q) − Θ(∆A) + Π(∆S) (15)

where

Ω(Z) = AT
c Z + ZAc, Θ(Z) = Ω−1(ZT X + XZ), Π(Z) = Ω−1(XZX)
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are linear operators in the space of n × n matrices, which determine the sen-
sitivity of X with respect to the perturbations in Q, A, S, respectively, and
Ac = A − SX . Based on (15) it is possible to use the approximate condition
number

KB :=
‖Ω−1‖‖Q‖+ ‖Θ‖‖A‖ + ‖Π‖‖S‖

‖X‖
(16)

where ‖Ω−1‖, ‖Θ‖, ‖Π‖ are the corresponding induced operator norms. Note
that

‖Ω−1‖F =
1

sepF (AT
c ,−Ac)

where

sepF (AT
c ,−Ac) := min

Z 6=0

‖AT
c Z + ZAc‖F

‖Z‖F
.

The condition number of the discrete Riccati equation (14) is defined in an
analogous way. In this case the operators Ω, Θ and Π are determined from

Ω(Z) = AT
c ZAc − Z, Θ(Z) = Ω−1(ZT XAc + AT

c XZ)

Π(Z) = Ω−1(AT
c XZXAc),

(17)

where Ac = (In + SX)−1A.

4. Conditioning estimation

The quantities ‖Ω−1‖1, ‖Θ‖1, ‖Π‖1 arising in the sensitivity analysis of Riccati
equations can be efficiently estimated by using the norm estimator, proposed in
Higham (1988), which estimates the norm ‖T ‖1 of a linear operator T , given the
ability to compute Tv and T T w quickly for arbitrary v and w. This estimator is
implemented in the LAPACK subroutine xLACON (Anderson et al., 1995), which
is called via a reverse communication interface, providing the products Tv and
T T w.

Consider first the Riccati equation (13). With respect to the computation
of

‖Ω−1‖F = ‖P−1‖2 =
1

sepF (AT
c ,−Ac)

the use of xLACON means solving the linear equations

Py = v, PT z = v

where

P = In ⊗ AT
c + AT

c ⊗ In, PT = In ⊗ Ac + Ac ⊗ In,
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v being determined by xLACON. This is equivalent to the solution of the Lyapunov
equations

AT
c Y + Y Ac = V

AcZ + ZAT
c = V,

(18)

where vec(V ) = v, vec(Y ) = y, vec(Z) = z.
The solution of these Lyapunov equations can be obtained in a numerically

stable way using the Bartels-Stewart algorithm (Bartels, Stewart, 1972; Petkov,
Christov, Konstantinov, 1991). Note that in (18) the matrix V is symmetric,
which allows for a reduction in complexity by operating on vectors v of length
n(n + 1)/2 instead of n2.

An estimate of ‖Θ‖1 can be obtained in a similar way by solving the Lya-
punov equations

AT
c Y + Y Ac = V T X + XV

AcZ + ZAT
c = V T X + XV.

(19)

To estimate ‖Π‖1 via xLACON, it is necessary to solve the equations

AT
c Y + Y Ac = XV X

AcZ + ZAT
c = XV X,

(20)

where the matrix V is again symmetric and we can again work with shorter
vectors.

To avoid overflows, instead of estimating the condition number (16) an esti-
mate of the reciprocal condition number

1

K̃B

=
s̃ep1(Ā

T
c ,−Āc)‖X̄‖1

‖Q‖1 + s̃ep1(Ā
T
c ,−Āc)(‖Θ̃‖1‖A‖1 + ‖Π̃‖1‖S‖1)

is determined. Here Āc and X̄ are the computed matrices Ac and X , and the
estimated quantities are denoted by tilde.

The estimation of ‖Ω‖1, ‖Θ‖1, ‖Π‖1 for the discrete Riccati equation (14) is
done in a similar way. In this case instead of (18) - (20) it is necessary to solve
the corresponding discrete Lyapunov equations

AT
c YAc − Y = V

AcZAT
c − Z = V

(21)

AT
c YAc − Y = V T XAc + AT

c XV

AcZAT
c − Z = V T XAc + AT

c XV
(22)

AT
c YAc − Y = AT

c XV XAc

AcZAT
c − Z = AT

c XV XAc.
(23)
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The solution of these equations can be obtained in a numerically reliable way
using the discrete counterpart of the Bartels-Stewart algorithm, proposed by
Barraud (Barraud, 1977; Petkov, Christov, Konstantinov, 1991).

The accuracy of the estimates that we obtain via this approach depends on
the ability of xLACON to find a right-hand side vector v which maximizes the
ratios

‖y‖

‖v‖
,
‖z‖

‖v‖

when solving the equations Py = v, PT z = v. As in the case of other condition
estimators it is always possible to find special examples when the value pro-
duced by xLACON underestimates the true value of the corresponding norm by
an arbitrary factor. Note, however, that this may happens in rare circumstances.

5. Error estimation

A posteriori error bounds for the computed solution of the matrix equations (13),
(14) can be obtained in several ways. One of the most efficient and reliable ways
to get an estimate of the solution error is to use practical error bounds, similar
to the case of solving linear systems of equations (Arioli, Demmel, Duff, 1989;
Anderson et al., 1995) and matrix Sylvester equations (Higham, 1993).

Consider again the Riccati equation (13). Let

R = AT X̄ + X̄A + Q − X̄SX̄

be the exact residual matrix associated with the computed solution X̄. Setting
X̄ := X + ∆X , where X is the exact solution and ∆X is the absolute error in
the solution, one obtains

R = (A − SX̄)T ∆X + ∆X(A − SX̄) + ∆XS∆X.

If we neglect the second order term in ∆X , we obtain the linear system of
equations

P̄vec(∆X) = vec(R)

where P̄ = In ⊗ ĀT
c + ĀT

c ⊗ In, Āc = A − SX̄. In this way we have

‖vec(X − X̄)‖∞ = ‖P̄−1vec(R)‖∞ ≤ ‖ |P̄−1| |vec(R)| ‖∞.

As it is known (see Arioli, Demmel, Duff, 1989) this bound is optimal if we
ignore the signs in the elements of P̄−1 and vec(R).

In order to take into account the rounding errors in forming the residual
matrix, instead of R we use

R̄ = fl(Q + AT X̄ + X̄A − X̄SX̄) = R + ∆R
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where

|∆R| ≤ ε(4|Q| + (n + 4)(|AT | |X̄ | + |X̄ | |A|) + 2(n + 1)|X̄| |S| |X̄ |) =: Rε

and fl denotes the result of a floating point computation. Here we made use of
the well known error bounds for matrix addition and matrix multiplication.

In this way we have obtained the overall bound

‖X − X̄‖M

‖X̄‖M
≤

‖ |P−1| (|vec(R̄)| + vec(Rε))‖∞

‖X̄‖M
(24)

where ‖X‖M = max i,j |xij |.

The numerator in the right hand side of (24) is of the form ‖ |P−1|r‖∞, and
as in Arioli, Demmel, Duff (1989), and Higham (1993) we have

‖ |P̄−1| r ‖∞ = ‖ |P̄−1|D
R
e‖∞ = ‖ |P̄−1D

R
| e‖∞

= ‖ |P̄−1D
R
| ‖∞ = ‖P̄−1D

R
‖∞

where D
R

= diag(r) and e = [1, 1, . . . , 1]T . This shows that ‖ |P−1| r‖∞ can
be efficiently estimated using the norm estimator xLACON in LAPACK, which
estimates ‖Z‖1 at the cost of computing a few matrix-vector products involving
Z and ZT . This means that for Z = P̄−1D

R
we have to solve a few linear

systems involving P̄ = In ⊗ ĀT
c + ĀT

c ⊗ In and P̄T = In ⊗ Āc + Āc ⊗ In or, in
other words, we have to solve several Lyapunov equations

ĀT
c X + XĀc = V

ĀcX + XĀT
c = W.

(25)

Note that the Schur form of Āc is already available from the condition estima-
tion of the Riccati equation, so that the solution of the Lyapunov equations
can be obtained efficiently via the Bartels-Stewart algorithm. Also, due to the
symmetry of the matrices R̄ and Rε, we only need the upper (or lower) part of
the solution of this Lyapunov equations, which allows to reduce the complexity
by manipulating only vectors of length n(n + 1)/2 instead of n2.

The error estimation in the solution of the discrete Riccati equation (14) is
done in an analogous way. In this case instead of (25) we have to solve a few
discrete Lyapunov equations

ĀT
c XĀc − X = V

ĀcXĀT
c − X = W.

The software implementation of the condition and error estimates is based
entirely on LAPACK (Anderson et al., 1995) and BLAS (Lawson et al., 1979;
Dongarra et al., 1990) subroutines.
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6. Numerical examples

In this section we present two examples which demonstrate the performance
of the estimates implemented in the solution of families of Riccati equations
whose conditioning vary very much. All computations were carried out on a
Sun workstation with relative machine precision ε = 2.22 × 10−16.

In order to have a closed form solution, the matrices in the Riccati equations
are chosen as

A = TA0T
−1, Q = T−T Q0T

−1, S = TS0T
T

where A0, Q0, S0 are diagonal matrices and T is a nonsingular transformation
matrix. The solution is then given by X = T−T X0T

−1, where X0 is a diagonal
matrix whose elements are determined simply from the elements of A0, Q0, S0.
To avoid large rounding errors in constructing and inverting T , this matrix is
chosen as T = H2ΣH1, where H1 and H2 are elementary reflectors and Σ is a
diagonal matrix,

H1 = In − 2eeT /n, e = [1, 1, ..., 1]T

H2 = In − 2ffT /n, f = [1,−1, 1, ..., (−1)n−1]T

Σ = diag(1, s, s2, ..., sn−1), s > 1.

Using different values of the scalar s, it is possible to change the condition
number of the matrix T with respect to inversion, cond2(T ) = sn−1.

Example 1 (Higham et al., 2004) Consider a family of Riccati equations of
sixth order, constructed as described above with

A0 = diag(A1, A1), Q0 = diag(Q1, Q1), S0 = diag(S1, S1),

where

A1 = diag(−1 × 10−k,−2,−3× 10k), Q1 = diag(3 × 10−k, 5, 7 × 10k)

S1 = diag(10−k, 1, 10k).

The solution is given by X0 = diag(X1, X1), X1 = diag(1, 1, 1).
The conditioning of these equations deteriorates with the increase of k and s.

The equations are solved by the Schur method (Laub, 1979; Petkov, Christov,
Konstantinov, 1991).

Fig. 1 shows the ratio of the condition number estimate and the exact con-
dition number and Fig. 2 – the ratio of the exact forward error in the solution
and its estimate as functions of k and s. The results presented demonstrate the
good performances of the condition number and error estimates for different k
and s.
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Figure 1. Accuracy of the condition number estimate for a family of Riccati
equations
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Figure 2. Accuracy of the forward error estimate for a family of Riccati equations



Conditioning and error estimates in LQG design 95

The next example illustrates the potential pessimism in the forward error
estimate for the discrete Riccari equations.

Example 2 Consider a family of discrete Riccati equations whose matrices A0,
Q0, S0 are chosen as

A0 = diag(A1, A1), Q0 = diag(Q1, Q1), S0 = diag(S1, S1),

where
A1 = diag(0, 1, 2)

Q1 = diag(10k, 1, 10−k)

S1 = diag(10−k, 10−2k, 10−k).

The conditioning of these equations deteriorates with the increase of k and s.
The accuracy of the condition number estimate for the discrete Riccati equa-

tions is shown in Fig. 3. As in the previous example, the condition number
estimate is close to the true condition number. The results related to the for-
ward error estimate, presented in Fig. 4, show that for the given discrete Riccati
equations the error estimate may be very pessimistic for large k and s. In any
case, however, we are sure that the actual forward error in the solution is less
than the estimate obtained.
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Figure 4. Accuracy of the forward error estimate for a family of discrete Riccati
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7. Conclusions

The results presented in the paper show that it is possible to use successfully the
LAPACK matrix norm estimator in the condition and forward estimation for
the Riccati matrix equations arising in LQG design. The numerical experiments
show that the condition estimates are always of the same order as the true
condition numbers. However, the forward error estimates may be pessimistic
just as in the solution of linear systems of equations. It should be pointed out
that theoretically the forward error estimates may underestimate the true errors
in the solution of the Riccati equations due to the neglecting of the higher order
terms in the analysis. Such phenomenon was never observed in practice which
shows that the forward error estimates are sufficiently reliable.
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