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Abstract: This paper presents a fuzzy adaptive control of a class
of MISO nonlinear systems. The dynamic behaviour of each MISO
systems is composed of a nonlinear term, interactions effect between
the inputs, and disturbances. In these circumstances, adaptive con-
trol becomes very difficult to implement and not always an evident
task. Thus, the MISO system is approximated by the Takagi-Sugeno
fuzzy model. The advantage of this approximation is beneficial in
the sense that it allows for converting the nonlinear problem into a
linear one. In this respect, the coupling, nonlinearity and unmod-
eled dynamics are easily compensated. The identification and the
control are conducted at the level of each local linear model based
on fuzzy approach. The computational load and the complexity of
nonlinear approach are reduced and permit wide applicability. The
validity and the performance are tested numerically.
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1. Introduction

Identification of nonlinear multi-variable processes is an important and chal-
lenging problem. For nonlinear static and dynamic systems, the conventional
techniques of modelling and identification are difficult to implement and some-
times impracticable. However, other techniques, based on fuzzy logic system,
can be used for modelling of the complex nonlinear processes (Chen, Chen,
1994). Fuzzy modelling and identification from the input-output process data
is shown to be effective for the approximation of nonlinear uncertain dynamic
system (Johancen, Foss, 1993). The Takagi-Sugeno model has attracted the
attention of many researchers. Accordingly, the most important issue for fuzzy
logic system is how to obtain a system design with the guarantee of stability
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and control performance (Tanaka, Wang, 2001). In fact, this model is based
on if-then rules, which are characterized by fuzzy antecedent and mathemati-
cal functions in the consequent part (Takagi, Sugeno, 1985). The antecedent
fuzzy sets divide the input space into a number of fuzzy regions, while the con-
sequent function describes the system behaviour in these regions. The task of
fuzzy model construction is to determine both the nonlinear parameters of the
membership functions and the linear parameters of the local models (Johancen,
Foss, 1993). The human expert, in this regard, is able to formulate the process
knowledge in terms of the fuzzy rules. Unfortunately, this can not provide a
clear idea of the plant behaviour, because the human expert cannot come up
with all the details and might not be able to quantitatively express the observa-
tions. However, heuristic approaches, like fuzzy clustering, are applied (Nelles,
Fink, Isermann, 2000) to obtain the fuzzy model of nonlinear dynamic using
input-output measurement data, e.g., the local linear model tree method and
tree construction algorithm (Sugeno, Kang, 1987), or the neuro-fuzzy inference
system (Jang, 1993). There are different algorithms that construct fuzzy clus-
ters, such as the c-means algorithm (Bezdek, 1981), the Gath-Geva algorithm
(Gath, Geva, 1989), and ultimately the Gustafson-Kessel algorithm (Gustafson,
Kessel, 1979), which is the subject of this paper.

The paper presents a fuzzy adaptive control of a class of MISO systems.
Each MISO nonlinear system is coupled in the inputs. The considered system is
transformed by Takagi-Sugeno approach and fuzzy clustering into linear models
(Takagi, Sugeno, 1985). In this transformation, the parameters of the Gaussian
membership function and the local linear model are easily obtained. Moreover,
the time-variant behaviour of the plant, which is caused by disturbances or
aging of components, should be considered in the system model. Therefore, on-
line adaptation of the fuzzy models is required. The local linear parameters of
each model in the rule consequents of Takagi-Sugeno fuzzy models are updated
by a local recursive weighted least-squares algorithm with a forgetting factor
(Trabelsi et al., 2004). The proposed control law is derived from Feng and Chen
(2005), and is designed to compensate for the interactions between the inputs.
The identification and the control are obtained, independently, for each local
model. This strategy reduces the computational burden of the global approach.

The paper is organized as follows: Section 2 contains the presentation of the
Takagi-Sugeno fuzzy model. Section 3 describes fuzzy identification of MISO
nonlinear system. Section 4 presents the adaptive control law designs. In Sec-
tion 5, we present a numerical example.

2. Takagi-Sugeno fuzzy model of a MISO process

Consider a class of MISO nonlinear system represented as follows:

y(k + 1) =f(y(k), . . . , y(k − na + 1), u1(k), . . . , u1(k − nb + 1), u2(k), . . . ,

u2(k − nb + 1), . . . , unu(k), . . . , unu(k − nb + 1), η(k)) (1)
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where f represents the unknown nonlinear function and η(k) are the distur-
bances. We assume that the upper bound of the orders na and nb are known
and equal to n, and then:

y(k + 1) =f(y(k), . . . , y(k − n + 1), u1(k), . . . , u1(k − n + 1), u2(k), . . . ,

u2(k − n + 1), . . . , unu(k), . . . , unu(k − n + 1), η(k))

We define the regression vector φ(k):

φ(k) =[y(k), . . . , y(k − n + 1), u1(k), . . . , u1(k − n + 1), u2(k), . . . ,

u2(k − n + 1), . . . , unu(k − n + 1), . . . , unu(k − n + 1), η(k)] (2)

Then, equation (1) can be written as:

y(k + 1) = f(φ(k)). (3)

The function f(φ(k)) is approximated by Takagi-Sugeno fuzzy models, which are
characterized by the linear function rule consequents as in Takagi and Sugeno
(1985). The Takagi-Sugeno MISO rules are estimated from the system input-
output data (Babuska, 1998). The base rule contains M rules of the following
form:

Rj : if y(k) is Ωj1 and unu(k − n + 1) is Ωjnu then

yj(k + 1) =

n
∑

r=1

ajryj(k − r + 1) +

n
∑

r=1

bjru(k − r + 1)

+

nu
∑

l=1

n
∑

r=1

bjlrul(k − r + 1) + cj j = 1, 2, . . . , M. (4)

The number M of rules is determined by testing many values according to the
error criterion as given in Trabelsi et al. (2004). The antecedent fuzzy sets Ωji

are defined on the universe of discourse of input i; cj is the offset and the linear
parameters θj in the rule consequents are given by:

θj = [ aj1, . . . , ajn, bj1, . . . , bjn, . . . , bjnu1, . . . , bjnu n, cj]. (5)

The membership function is chosen as Gaussian with centre vj and standard
deviation σj .

We take the product as the AND operator. The output of the fuzzy system
with M rules is aggregated as:

y(k + 1) =

M
∑

j=1

µj(φ(k)) · yj(k + 1)

M
∑

j=1

µj(φ(k))

(6)
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or:

y(k + 1) =

M
∑

j=1

yj(k + 1) · Φj(φ(k), vj , σj) (7)

where Φj(φ(k), vj , σj) denotes the normalized validity function such that
M
∑

j=1

Φj(φ(k), vj , σj) = 1 for all the premise inputs φ(k).

This normalization is achieved by:

Φj(φ(k), vj , σj) =
µj(φ(k))

M
∑

j=1

µj(φ(k))

(8)

with µj being the degree of fulfillment of the rule j:

µj(φ(k)) = exp(−
1

2
(
(y(k) − vj1)

2

σ2
j1

))···exp(−
1

2
(
(unu(k − n + 1) − vjunu

)2

σ2
junu

)). (9)

Once the structure is fixed, the MISO parameters are estimated independently
by fuzzy clustering (Babuska, Verbruggen, 1995).

3. Fuzzy identification

Generally, the approximation by a Takagi-Sugeno fuzzy model enables wide
applicability in identification, modelling and control (Babuska, 1998; Takagi,
Sugeno, 1985). In fact, fuzzy clustering facilitates automatic generation of
Takagi-Sugeno rules and their antecedent parameters. The identification pro-
cedure consists of two distinct steps, Trabelsi et al. (2004). The first step is
off-line identification, where nonlinear parameters of the Gaussian membership
function (vj , σj) and linear parameters of the local models θj are determined
by the fuzzy clustering algorithm (Babuska, 1998). In the second step, the rule
consequents are locally adapted on-line by a recursive least-squares algorithm
(Nelles, Fink, Isermann, 2000).

3.1. Off-line identification of the fuzzy model

The previous section has shown how the consequent part of Takagi-Sugeno mod-
els can be identified by weighted least-squares method. This would not occur
unless the antecedent membership functions are given. The Gustafson-Kessel
algorithm is used to identify the Takagi-Sugeno models. The available data
samples are collected in matrix Z = [φT y], formed by concatenating the regres-
sion matrix and the output vector. Through clustering, the data Z are parti-
tioned into Nc clusters. The result is a fuzzy partition matrix U = [uij ]Nc×N ,
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whose elements uij ∈ [0, 1] represent the degree of membership in cluster i, a
prototype matrix Vj = [vj1, . . . , vjnu], and the set of cluster covariance matrices
Fj = [Fj1, . . . , Fjnu]. Once the triplet (Uj , Vj , Fj) determined, the parameters of
the rule premises (vji, σji) and the consequent parameters θj are computed. For
more details see Babuska and Verbruggen (1996). Afterwards, the antecedent
membership functions of the cluster parameters are determined. The Gaussian
functions are used to represent the fuzzy sets, ωji:

ωji(φ(k)) = exp(−
1

2
(
(φi(k) − vji)

2

σ2
ji

)) . (10)

The consequent parameters θj in each rule are estimated separately by weighted
least-squares method and by minimizing the following criterion (Babuska, Ver-
bruggen, 1996):

min
θj

1

N
[y − ξθj ]

T
Qj [y − ξθj ] (11)

where ξ = [φ 1] is the regression extended by a unitary column and Qj is a
matrix containing the values of validity functions Φj of each jth local model.

The weighting matrix is:

Qj = diag (Φj(φ(1), vj , σj), . . . , Φj(φ(N), vj , σj)) . (12)

Then, θj is obtained as the weighted least-squares solution:

θj = (ξT Qjξ)
−1ξT Qjy. (13)

3.2. On-line adaptation of fuzzy model

In the on-line phase, the rule consequents (13) are adapted by the recursive
weighted least-squares (RWLS) algorithm with a forgetting factor. This ap-
proach is used to estimate the parameters of each local linear model. For the
jth local linear model, we can compute new parameter estimates θ̂j(k) as in (14):

θ̂j(k) =θ̂j(k − 1) + δj(k)
(

y(k) − ξT (k)θ̂j(k − 1)
)

(14)

δj(k) =
Pj(k − 1)ξ(k)

ξT (k)Pj(k − 1)ξ(k) + λ/Φj(φ(k), vj , σj)
(15)

Pj(k) =
1

λ

[

I − δj(k)ξT (k)
]

Pj(k − 1). (16)

Here, λis a forgetting factor and Φj(φ(k), vj , σj) provide the weights of actual
data. Then, Pj is the matrix of adaptation gain.
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4. Fuzzy adaptive control design

In this section, we will shed light on the adaptive control design for MISO
nonlinear system using the Takagi-Sugeno fuzzy models as shown in Feng and
Chen (2005). In this respect, we propose a control law, which can easily control a
MISO nonlinear system without any restrictive conditions on nonlinearity. The
strategy of this control is based on the fuzzy approach, which transforms the
nonlinear problem to a linear one, and compensates for the unmodeled dynamics
and nonlinearity effects. The structure of the proposed control law takes into
account the coupling between the inputs and the disturbances, and permits to
ensure stability, performance and wide applicability.

The controller rule has the same antecedents and fuzzy sets as in plant rules.
The proposed local adaptive control law is given by:

Rj : if y(k) is Omegaj1 and . . . and unu(k − n + 1) is Ωjnu then

uj(k) =
1

b̂j1̂

[−

n
∑

r=1

âjryj(k − r + 1) −

n
∑

r=2

b̂jru(k − r + 1)

−

nu
∑

l=1

n
∑

r=1

b̂jlrul(k − r + 1) − ĉj + ym(k + 1) − α1e(k) − · · ·

−αne(k − n + 1)], j = 1, 2, . . . , M. (17)

The global control law is obtained as:

u(k) =

M
∑

j=1

Φj(φ(k), vj , σj)uj(k). (18)

More precisely, the objective of the fuzzy adaptive control is to find an adaptive
control law, which guarantees that the output of the MISO systems can track
a given bounded reference signal. The tracking error is given by:

e = y − ym. (19)

With {αi} being the coefficients of the Hurwitz polynomial:

α(z) = zn + α1z
n−1 + · · · + αn−1z + αn (20)

we pass over to

Theorem 1 For the fuzzy dynamic model of the system (7), if the adaptive
control law is chosen as (17), or (18), using the adaptation algorithm (14), then
the closed-loop system is stable in the sense that the output and all inputs are
bounded for all the time. The output tracking error e = y − ym will approach to
the zero as time goes to infinity.
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Proof. Substituting the control law (18) into the fuzzy dynamic model (7) leads
to the following closed-loop system:

e(k + 1) + α1e(k) + · · · + αn−1e(k − n + 2) + αne(k − n + 1)

= H(k) − Ĥ(k) +
M
∑

j=1

Φj(φ(k), vj , σj)(bj1 − b̂j1)uj(k) (21)

where

H(k) =

n
∑

r=1

ajryj(k−r+1) +

n
∑

r=2

bjru(k−r+1) +

nu
∑

l=1

n
∑

r=1

bjlrul(k−r+1) + cj

Ĥ(k) =
n

∑

r=1

âjryj(k−r+1) +
n

∑

r=2

b̂jru(k−r+1) +
nu
∑

l=1

n
∑

r=1

b̂jlrul(k−r+1) + ĉj .

(22)

By defining:

xe(k) = [e(k − n + 1) e(k − n + 2) · · · e(k)]T (23)

the above closed-loop system can be expressed in state-space form, as:

xe(k+1) = Axe(k)+B
{

H(k)−Ĥ(k)+

M
∑

j=1

Φj(φ(k), vj , σj)(bj1− b̂j1)uj(k)
}

. (24)

That is:

xe(k + 1) =Axe(k) + B
{

(H(k) +

M
∑

j=1

Φj(φ(k), vj , σj)bj1uj(k))

− (Ĥ(k) +
M
∑

j=1

Φj(φ(k), vj , σj)b̂j1uj(k))
}

(25)

where

y(k + 1) =H(k) +

M
∑

j=1

Φj(φ(k), vj , σj)bj1uj(k)

ŷ(k + 1) =Ĥ(k) +

Mi
∑

j=1

Φj(φ(k), vj , σj)b̂j1uj(k). (26)

We consider:

e(k + 1) = y(k + 1) − ŷ(k + 1) (27)

and so:

xe(k + 1) = Axe(k) + Be(k + 1) (28)
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where:

A =















0 1 0 · · · 0
0 0 1 0
...

... 0
. . . 0

0 0 · · · 0 1
−αn −αn−1 · · · −α2 −α1















, B =















0
0
...
0
1















. (29)

It should be noted that the matrix A has all its eigenvalues located inside the
unit circle of the z-plane, and so stability is ensured.

5. Simulation example

Consider a MIMO system (Weng, Lang, 1990) having a polynomial nonlinearity
described as:

A(q−1)y(t) = Bd(q
−1)Z(t) + η(t) (30)

where q−1 is the back shift operator.

A(q−1) =diag[Ai(q
−1)] , Ai(q

−1) =

na(i)
∑

r=0

airq
−r, ai0 = 1

Bd(q
−1) =[q−dijBij(q

−1)], Bij(q
−1) =

nb(i,j)
∑

r=0

bijrq
−r, bij0 6= 0

dij is time delay between the input uj(t)and the output yi(t), y(t) ∈ Rn, Z(t) ∈
Rn and η(t) ∈ Rnare respectively the output, nonlinear input and the distur-
bances vectors. As in Jinxing and Shijium (1989) the nonlinearity is assumed
to be represented as follows:

Zi(t) = fi0 + fi1ui(t) + . . . + fipu
pi−1
i (t). (31)

The MIMO system is represented through two MISO nonlinear systems as fol-
lows:

A1(q
−1)y1(t) =q−d11B11(q

−1)Z1(t) + q−d12B12(q
−1)Z2(t) + η1(t)

A2(q
−1)y2(t) =q−d22B22(q

−1)Z2(t) + q−d21B21(q
−1)Z1(t) + η2(t)

with

A =
[

A1 A2

]T
=

[

1 + 0.35q−1 + 0.15q−2

1 + 0.72q−1 + 0.05q−2

]

,

B =

[

B11 B12

B21 B22

]

=

[

1 + 0.85q−1 2 + 1.25q−1

0.12 + 0.65q−1 1.65 + 0.23q−1

]

d11 = 1, d12 = 1, d21 = 1, d22 = 1

Z1(t) = 0.5u1(t) + 0.25u2
1(t), Z2(t) = u2(t) + 0.83u2

2(t)

η1(t) = 0.1rand(1, 600), η2(t) = 0.12rand(1, 600)
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The inputs are u1 and u2. The outputs are y1 and y2, with η1 and η2 repre-
senting disturbances. A prototype matrix and covariance matrix are determined
by the Gustafson-Kessel algorithm (Babuska, 1998):

V1 =





0.0235 0.0720 0.0023 0.0022 0.0041 0.0042
0.0424 0.0422 0.0022 0.0022 0.0040 0.0040
0.0846 0.0688 0.0022 0.0022 0.0041 0.0039





F1 =





0.0713 0.0269 8.0335 8.4517 4.8071 4.9064 0.0408
0.1299 0.1224 6.4028 6.8515 4.1058 3.7856 0.0311
0.3344 0.4947 12.9454 13.1246 7.9306 8.1032 0.0614





V2 =





0.0313 0.0457 0.0023 0.0023 0.0041 0.0042
0.0378 0.0377 0.0022 0.0022 0.0040 0.0040
0.0722 0.0883 0.0022 0.0022 0.0040 0.0039





F2 =





0.1878 0.1397 13.1520 11.7753 6.1561 6.7180 0.0669
0.1956 0.1556 11.1458 10.6673 5.6689 5.8682 0.0579
0.4412 0.2936 23.6297 25.8100 14.0950 13.6570 0.0970





The consequent parameters of each rule of Takagi-Sugeno fuzzy model are com-
puted from equation (13) and adapted by using RLS algorithm with forgetting
factor (λ = 0.45), Trabelsi et al. (2004).

For the rule i:

Ri : yi1(k + 1) = ai111(k)y1(k) + ai112(k)y1(k − 1) + bi111(k)u1(k)

+bi112(k)u1(k − 1) + bi121(k)u2(k) + bi122(k)u2(k − 1) + ci111

yi2(k + 1) = ai211(k)y2(k) + ai212(k)y2(k − 1) + bi211(k)u2(k)

+bi212(k)u2(k − 1) + bi221(k)u1(k) + bi122(k)u1(k − 1) + ci211

Fig. 1 shows the evolutions of parameters of the first output y1 for three
rules. Fig. 2 shows the evolutions of parameters of the second output y2 for
three rules.

In Figs. 1 and 2 we can notice that the linear parameters vary until the
sample 80 and 100, respectively for the output y1 and y2. Afterwards, they are
practically constant.

The reference signals y1m(k) and y2m(k) are square waves with period 100.
As shown in Figs. 3 and 4, exact tracking is obtained using the proposed

adaptive fuzzy control. The corresponding control laws are presented in Figs. 5
and 6.

6. Conclusion

The approach presented provides a solution to the problem of robust control
of MISO nonlinear systems. For each MISO system a local fuzzy adaptive
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Table 1. Evolution of parameters of the first output y1(t)
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the control u1(k) the control u2(k)

control is given. The assumed unknown nonlinearity, coupling between inputs,
unmodeled dynamics and disturbances are approximated by the Takagi-Sugeno
fuzzy model. The latter allows the conversion of the nonlinear problem into a
linear one. This approximation leads to both solving the nonlinearity problem
and to releasing the decoupling through the control synthesis. It is shown on a
numerical example that the proposed approach is a robust scheme and can deal
with a large class of MISO nonlinear systems.
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