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206 M. ROMANIUKThe MCMC method is based on a simple but brilliant idea. In order to �ndthe expeted value EπX
h(X) for some funtion h(.) : X → R

p and probabilitydistribution πX(.), we ould generate Markov Chain X0, X1, X2, . . . with πXas the stationary distribution. The onvergene of the estimator, derived fromthe simulated sample is guaranteed by the ergodi theorems (see, e.g., Robert,Casella, 2004 for additional details). Therefore, we do not have to generatevalues diretly from πX(.) as in the MC method, but we may use more generalalgorithms like Gibbs sampler or the Metropolis�Hastings algorithm.Yet, during the ondut of simulations two questions arise all the time. The�rst one is onneted with hoosing appropriate number of steps nstat for sim-ulated trajetory, when the sampled transition probability Prnstat

x0
(.) is loseenough to the assumed stationary probability πX(.) regardless of starting point

x0. The seond one is related to �nding the number of steps nVar, when theestimator of EπX
h(X), derived from the sample Xnstat+1, Xnstat+2, . . . , XnVarhas error small enough, as measured e.g. by variane. These two questions areovered by onvergene diagnosis and are one of the main issues in MCMC sim-ulations. However, in this paper we fous only on the �rst problem, i.e. �ndingthe value nstat. Some answers for the seond problem may be found e.g. inRomaniuk (2007b).There is a lot of various onvergene diagnosis methods (see, e.g., Robert,Casella, 2004; El Adlouni et al., 2006, for omparative review). But we haveto say that it is not so easy to ompare them and �nd �the best one� or even�the best ones�. Firstly, very often these methods make use of di�erent featuresof the underlying Markov Chains, e.g. spei� probability struture of the statespae. Seondly, the two questions mentioned before are used to be writtenin mathematial formulas not orresponding to one another, i.e. not diretlyomparable. Thirdly, it is not even possible to draw a omparison betweenheuristi and theoretial (i.e. based on mathematial proofs) methods. There-fore, eah new onvergene diagnosis method may be seen as an additional toolfor experimenters, whih gives them a new possibility to hek the obtainedsimulations.In this paper we disuss the methods based on the onept of seondaryhain. The seondary hain is derived from the original trajetory by observingthe samples only in moments determined by speial probability rules. Theserules are onneted with the notions of atoms and renewal sets, whih are spei�examples of more general renewal moments and are a part of renewal theory.The methods desribed over both theoretial and heuristi approahes.The presented theoretial method has three main advantages. Firstly, it issupported by strong mathematial reasoning. Therefore, it is far less in�uenedby observer's intuition and his experiene than heuristi methods. Seondly,the obtained solutions are strit, i.e. they are not asymptoti. Hene, thismethod is not biased by additional error provided by limit theorems. Thirdly,the disussed lemmas may be used in a highly automated manner. This gives thepossibility for preparing general diagnosis algorithms for a wide lass of MCMC



Convergene diagnosis to stationary distribution in MCMC methods 207problems.The heuristi approah is also based on mathematial lemma, but involvessubjetive graph heking.The paper is organized as follows. In Setion 2 we present the neessarybasi de�nitions and theorems. Then, in Setion 3.1 we introdue the notion ofseondary hain and some fundamental fats about it. In Setion 3.2 we formu-late two inequalities whih are diretly onneted to the onvergene diagnosisquestions, mentioned before. Next, in Setion 3.3 we present some theoretiallemmas whih onstitute the foundation of the introdued method and providethe answers for the question about nstat. In Setion 3.4 we disuss a moreheuristi approah. In Setion 4 we present how the derived results may beapplied in two examples. The onluding remarks are ontained in Setion 5.Some of the solutions presented in this paper are based on ideas from Ro-maniuk (2007a and 2007b). As it was mentioned before, in Romaniuk (2007b)the methods for �nding both values nstat and nVar were presented. However, for
nstat appropriate lemmas only in atom ase were proved. In this paper we fousonly on the problem of nstat value, but the generalized lemmas for the ase ofrenewal sets are added. Additionally, a new heuristi approah for both � atomand renewal � ases is presented.2. Basi de�nitions and theoremsIn this setion we introdue fundamental de�nitions and theorems. Addi-tional neessary de�nitions may be found in, e.g., Bremaud (1999), Fishman(1996), Robert and Casella (2004).Let (Xi)i=0 = (X0 = x0, X1, . . .) denote a Markov Chain (abbreviated fur-ther MC), and B(X ) is the σ��eld of Borel sets for spae X .The hain (Xi)i=0 has its values in a spae X , where X ⊂ N or X ∈ B(Rk).In the �rst ase suh MC is alled as disrete MC, and in the seond � as MCon ontinuous state spae.Suppose that the hain (Xi)i=0 is ergodi and has an adequate stationaryprobability distribution πX(.). In this paper the term �ergodiity� means thatthe hain is reurrent (or Harris reurrent in ase of MC on ontinuous statespae X ), aperiodi and irreduible.If (Xi)i=0 is a disrete Markov Chain, we de�ne its transition matrix PX as

PX = (Pr (Xk+1 = j|Xk = i))
sX

i,j=1 , (1)where sX is power of X . In ase of ontinuous state spae X , let us denote by
KX(., .) the transition kernel of this hain

Pr(Xk+1 ∈ B|Xk = x) =

∫

B

KX(x, y) dy . (2)



208 M. ROMANIUKDefinition 1. The set A is alled an atom if there exists a probability distri-bution ν(.) suh that
Pr(Xk+1 ∈ B|Xk = x) = ν(B) (3)for every x ∈ A and every B ∈ B(X ).Definition 2. The set A is alled renewal set if there exists a real 0 < ǫ < 1and a probability measure ν(.) suh that
Pr(Xk+1 ∈ B|Xk = x) ≥ ǫν(B) (4)for every x ∈ A and every B ∈ B(X ).These two de�nitions may be found in, e.g., Asmussen (1979), Robert andCasella (2004).If A is a renewal set, it is onvenient to slightly hange the used MCMCalgorithm, whih generates the values of (Xi)i=0. It is easily seen that
Pr(Xk+1|Xk) = ǫν(Xk+1) + (1 − ǫ)

Pr(Xk+1|Xk) − ǫν(Xk+1)

1 − ǫ
(5)in ase of disrete MC, or

K(xk, xk+1) = ǫν(xk+1) + (1 − ǫ)
K(xk, xk+1) − ǫν(xk+1)

1 − ǫ
(6)for MC on ontinuous state spae X . Hene, we have the following modi�ationof the algorithm: when Xk ∈ A, generate Xk+1 aording to

Xk+1 =

{

Xk+1 ∼ ν(.) if Uk+1 ≤ ǫ

Xk+1 ∼ K(xk,.)−ǫν(.)
1−ǫ

if Uk+1 > ǫ
, (7)where Ui are iid random variables from a uniform distribution on [0, 1], inde-pendent on (Xi)i=0. In view of (5) and (6), the modi�ation (7) of the MCMCalgorithm does not hange the properties of the hain. Also its stationary dis-tribution is still the same, i.e. πX(.). This modi�ation for MCMC algorithmswas introdued in Athreya and Ney (1978), Nummelin (1978). The generationaording to (7) may be di�ult beause of the omplex struture of the �re-mainder� kernel. A way around this problem was shown in Mykland, Tierneyand Yu (1995).Definition 3. The atom (or renewal set) A is alled geometrially ergodiatom (or renewal set) if there exist r > 1 and M > 0 suh that

|Prn
x(y) − πX(y)| ≤ Mr−n , (8)for any x, y ∈ A, where Prn

x(.) denotes Pr(Xn = . |X0 = x).



Convergene diagnosis to stationary distribution in MCMC methods 209Let us denote by EπX
h(X) the expeted value of the funtion h : X → Ralulated aording to the stationary distribution πX . Appropriate symbols �

CovπX
(g, h) and VarπX

(h) � are used for ovariane and variane.Lemma 1. Let (Xi)i=0 be Harris reurrent Markov Chain and
EπX

|f(X)| =

∫

X

|f(x)|dπX(x) < ∞ (9)for some funtion f(.) : X → R and
EπX

|l(X)| =

∫

X

|l(x)|dπX(x) < ∞ , EπX
l(X) 6= 0 (10)for some funtion l(.) : X → R. Then we have

1
n+1

∑n

k=0 f(Xk)
1

n+1

∑n

k=0 l(Xk)

p.n.
−−−−→
n→∞

∫

X
f(x) dπX(x)

∫

X
l(x) dπX(x)

. (11)For proof of this lemma see Robert and Casella (2004).3. Proposal of a onvergene diagnosis methodIn this setion we present a onvergene diagnosis method for MCMC output.This proposal uses notions of atoms and renewal sets (see Setion 2).3.1. Introduing seondary hainSuppose that we are interested in diagnosing onvergene of some ergodiMarkov Chain (Xi)i=0 = (X0 = x0, X1, . . .). We denote a stationary distribu-tion for this hain by πX(.), its transition matrix by PX (or transition kernelby KX(., .) in ase of MC on ontinuous state spae) and the spae of its valuesby X . Suppose also that we know two atoms (or renewal sets) A1,A2 for thishain.Therefore, we an reate the seondary hain (Yi)i=1 based on our initialhain (Xi)i=0. If A1,A2 are atoms, then we an de�ne
ζ1 := min{i = 1, . . . : Xi ∈ A1 ∪ A2} , (12)
ζk+1 := min{i > ζk : Xi ∈ A1 ∪ A2} , (13)
Yk = Xζk

. (14)It is seen that the hain (Yi)i=1 has Markov Property for the trunated spae
Y

′

:= {A1,A2} � see Lemma 2.



210 M. ROMANIUKIf these two sets are renewal sets, we should introdue the modi�ation (7)and hange the de�nition of the hain (Yi)i=1 to
ζ1 := min{i = 1, . . . : (Xi ∈ A1 ∧ Ui ≤ ǫA1

) ∨ (Xi ∈ A2 ∧ Ui ≤ ǫA2
)} ,(15)

ζk+1 := min{i > ζk : (Xi ∈ A1 ∧ Ui ≤ ǫA1
) ∨ (Xi ∈ A2 ∧ Ui ≤ ǫA2

)} , (16)
Yk = Xζk

, (17)where ǫAj
denotes the parameter ǫ for appropriate renewal set Aj in ondi-tion (7). Also in this ase the seondary hain (Yi)i=1 has Markov Property forthe spae Y
′ . As it was mentioned before, a speial method to simulate fromthe �remainder� kernel may be neessary (see Mykland, Tierney and Yu, 1995).We may summarise previous observations in a simple lemma:Lemma 2. If A1,A2 are atoms (or renewal sets), the hain (Yi)i=1 de�ned byonditions (12) � (14) (or (15) � (17), respetively) is a Markov Chain forthe spae Y
′

:= {A1,A2}. This hain is ergodi.The proof may be found in Romaniuk (2007b).For simpliity of notation, we ontinue to all atoms or renewal sets Aj asspeial sets, keeping in mind di�erent de�nitions of the seondary hain (Yi)i=1for these both ases.The moments ζi de�ned previously, may be additionally partitioned betweenthe orresponding speial sets. Hene, we adopt the following de�nition of ζ
(j)
ifor the �xed atom Aj :

ζ
(j)
1 := min{i = 1, . . . : Xi ∈ Aj} , (18)

ζ
(j)
k+1 := min{i > ζ

(j)
k : Xi ∈ Aj} . (19)For the renewal set Aj the de�nition of ζ

(j)
i is an equivalent modi�ation of theabove formulas, i.e.:

ζ
(j)
1 := min{i = 1, . . . : Xi ∈ Aj ∧ Ui ≤ ǫAj

} , (20)
ζ
(j)
k+1 := min{i > ζ

(j)
k : Xi ∈ Aj ∧ Ui ≤ ǫAj

} . (21)Therefore, ζ
(j)
1 may be onsidered as the moment of �rst visit in the set Aj .Next lemma is used as justi�ation for a heuristi method desribed further.Lemma 3. If sets A1,A2 are atoms, then stationary distribution of πY (.) isgiven by

πY (Aj) =

∫

x∈Aj
dπX(x)

∫

x∈A1
dπX(x) +

∫

x∈A2
dπX(x)

, (22)



Convergene diagnosis to stationary distribution in MCMC methods 211for j = 1, 2.If sets A1,A2 are renewal sets, then stationary distribution of πY (.) is givenby
πY (Aj) =

ǫAj

∫

x∈Aj
dπX(x)

ǫA1

∫

x∈A1
dπX(x) + ǫA2

∫

x∈A2
dπX(x)

, (23)for j = 1, 2.Proof. Beause (Yi)i=1 is MC, then from the strong ergodi theorem for Markovhains we have
∑m

i=1 11(Yi ∈ Aj)

m

p.n.
−−−−→
m→∞

πY (Aj) , (24)for j = 1, 2, where
m = #{i ≤ n : Xi ∈ A1 ∪ A2} . (25)If A1,A2 are atoms, then let
m(n) = #{i ≤ n : Xi ∈ A1 ∪ A2} , (26)i.e. m(n) is the random number of visits into A1 and A2. Beause the initialhain is Harris reurrent, then for n → ∞, we have m(n) → ∞ (see Nummelin,2001).From (12) � (14) and Lemma 1 we have
∑m(n)

i=1 11(Yi ∈ Aj)

m(n)
=

∑m(n)
i=1 11(Yi ∈ Aj)

∑m(n)
i=1 11(Yi ∈ A1 ∪ A2)

=

=
1

n+1

∑n

i=0 11(Xi ∈ Aj)
1

n+1

∑n

i=0 11(Xi ∈ A1 ∪ A2)

p.n.
−−−−→
n→∞

∫

x∈Aj
dπX(x)

∫

x∈A1
dπX(x) +

∫

x∈A2
dπX(x)

.(27)Comparing (24) with (27), we obtain (22) (see also Nummelin, 2001 forsimilar inferene).If A1,A2 are renewal sets, then let
m(n) = #{i ≤ n : Xi ∈ (A1, Ui ≤ ǫA1

) ∪ (A2, Ui ≤ ǫA2
)} . (28)From (15) � (17) and Lemma 1 we have

∑m(n)
i=1 11(Yi ∈ Aj)

m(n)
=

∑m(n)
i=1 11(Yi ∈ Aj)

∑m(n)
i=1 11(Yi ∈ A1 ∪ A2)

=

=
1

n+1

∑n

i=0 11(Xi ∈ Aj , Ui ≤ ǫAj
)

1
n+1

∑n

i=0 11(Xi ∈ (A1, Ui ≤ ǫA1
) ∪ (A2, Ui ≤ ǫA2

))
→

p.n.
−−−−→
n→∞

ǫAj

∫

x∈Aj
dπX(x)

ǫA1

∫

x∈A1
dπX(x) + ǫA2

∫

x∈A2
dπX(x)

. (29)



212 M. ROMANIUKIn formula (29) we used the independene property for Ui and Xi (see (7)). Aspreviously, omparing (24) with (29), we prove (23).
3.2. Diagnosis of the initial hainAs we have noted in Setion 3.1, for hain (Xi)i=0 with two known speialsets Aj (j = 1, 2) we may introdue additional hain (Yi)i=1. The hain (Yi)i=1is a disrete MC with only two states, regardless of ardinality and power of thespae X .During diagnosis of the initial hain, we are interested in two values � nstatand nVar. The �rst value � nstat � is the time moment when we are lose enoughto stationary distribution πX , i.e.

∥

∥Pnstat

x0
− πX

∥

∥ ≤ ε1 , (30)where ‖.‖ indiates some determined norm for spae X , e.g. total variation normwhih is used in the rest of this paper, Prnstat

x0
(.) = Pr(Xnstat

= . |X0 = x0).When the number of simulations nstat in the MCMC algorithm is ahieved,in the light of (30) we may treat (Xi)i≥nstat
as being almost distributed fromstationary distribution πX .Suppose that we are interested in obtaining estimator of the expeted value

EπX
h(X) based on the average of the initial hain. Naturally, we would liketo ahieve small enough variane of this estimator and �nd the quantity nVarful�lling the ondition

Var

(

1

s

nVar
∑

k=nstat+1

h(Xk) − Eπx
h(X)

)

≤ ε2 , (31)where s = nVar − nstat.In the following we fous only on problem (30). We deal with the seondproblem in Romaniuk (2007b). Furthermore, for simpliity of formulation andnotation, we limit ourselves to the ase when X is a �nite set. However, appro-priate proofs may be easily generalized for the ase of ontinuous state spae X .It is worth noting that from the omputational and numerial point of view, theproblem of ardinality of X is rather aademi � in omputers all the numbersare represented by the �nite set of possibilities.



Convergene diagnosis to stationary distribution in MCMC methods 2133.3. Probability onstraintsLemma 4. Suppose that X is a �nite spae and A1 is a known atom for X .Then
∑

y∈X

|Prn
x(y) − πX(y)| ≤ 2Prx(ζ

(1)
1 ≥ n) +

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=1

∣

∣

∣Prk
A1

(A1) − πX(A1)
∣

∣

∣PrA1
(ζ

(1)
1 ≥ n − k − j)+

+ πX(A1)EA1

(

ζ
(1)
1 − (n − j)

)

+

) . (32)Proof. Let us remind that ζ
(1)
1 may be treated as the moment of the �rst visitin the set A1.If we know the atom A1, then for any y ∈ X we have

πX(y) = πX(A1)

∞
∑

n=0

PrA1
(Xn = y, ζ

(1)
1 ≥ n) , (33)where Prx(.), as usually, denotes Pr(.|X0 = x). The proof of (33) may be foundin Robert, Casella (2004, see Theorem 4.5.3).We have

Prn
x(y) = Prx(Xn = y, ζ

(1)
1 ≥ n) +

n−1
∑

j=0

Prx(Xj ∈ A1, ζ
(1)
1 = j)·

(

n−j−1
∑

k=0

Prk
A1

(A1)PrA1
(Xn−k−j = y, ζ

(1)
1 ≥ n − k − j)

) . (34)The notation P k
A1

(A1) and PrA1
(.) is validated beause of the thesis of Lemma 2.Using expansion (34) we obtain

|Prn
x(y) − πX(y)| ≤ Prx(Xn = y, ζ

(1)
1 ≥ n) +

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=0

Prk
A1

(A1)PrA1
(Xn−k−j = y, ζ

(1)
1 ≥ n − k − j

)

− πX(y)

∣

∣

∣

∣

∣

. (35)



214 M. ROMANIUKHene
|Prn

x(y) − πX(y)| ≤ Prx(Xn = y, ζ
(1)
1 ≥ n) +

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=0

Prk
A1

(A1)PrA1
(Xn−k−j = y, ζ

(1)
1 ≥ n − k − j) − πX(y)

)

−πX(y)
∞
∑

j=n

Prx(ζ
(1)
1 = j)

∣

∣

∣

∣

∣

∣

. (36)From (33) for any j ≤ n − 1 we have
πX(y) = πX(A1)

n−j−1
∑

k=0

PrA1
(Xn−k−j = y, ζ

(1)
1 ≥ n − k − j)+

+ πX(A1)

∞
∑

l=n−j+1

PrA1
(Xl = y, ζ

(1)
1 ≥ l) . (37)After applying (37) to (36) we have

|Prn
x(y) − πX(y)| ≤ Prx(Xn = y, ζ

(1)
1 ≥ n) +

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=0

(

Prk
A1

(A1) − πX(A1)
)

PrA1
(Xn−k−j = y, ζ

(1)
1 ≥ n − k − j)−

πX(A1)
∞
∑

l=n−j+1

PrA1
(Xl = y, ζ

(1)
1 ≥ l)



− πX(y)Prx(ζ
(1)
1 ≥ n)

∣

∣

∣

∣

∣

∣

. (38)Straightforwardly
|Prn

x(y) − πX(y)| ≤ Prx(Xn = y, ζ
(1)
1 ≥ n) +

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=0

∣

∣

∣Prk
A1

(A1) − πX(A1)
∣

∣

∣PrA1
(Xn−k−j = y, ζ

(1)
1 ≥ n − k − j)+

+πX(A1)

∞
∑

l=n−j+1

PrA1
(Xl = y, ζ

(1)
1 ≥ l)



+ πX(y)Prx(ζ
(1)
1 ≥ n) , (39)



Convergene diagnosis to stationary distribution in MCMC methods 215whih onstitutes (32).The equations (32) and (39) may be used to establish further dependeniesbetween the initial and the seondary hains. Now we present a simple lemma,whih may be helpful in pratie of MCMC setups.Lemma 5. Suppose that A1 is a geometrially ergodi atom with onstant M1and oe�ient r1, and there exist M2 > 0, r2 > 1, M3 > 0, r3 > 1 suh that
PrA1

(ζ
(1)
1 ≥ n) ≤ M2r

−n
2 , (40)and

Prx(ζ
(1)
1 = n) ≤ M3r

−n
3 (41)are ful�lled. Then inequality

∑

y∈X

|Prn
x(y) − πX(y)| ≤ ε1 (42)is satis�ed for n given as the solution of formula

2
M3r

1−n
3

r3 − 1
+

M2M3r3(r
−n
3 − r−n

2 )

(r2 − 1)(r2 − r3)
+

+
M1M2M3

(r2 − r1)

(

r1r3(r
−n
3 − r−n

1 )

(r1 − r3)
+

r2r3(r
−n
3 − r−n

2 )

(r3 − r2)

)

≤ ε1 . (43)Proof. After applying onditions (8), (40), (41) to inequality (32) we an straight-forwardly prove (43).It is worth noting that it is possible to improve the inequality (43). If weknow the value of stationary probability πX(A1), then we have a more detailedondition
2
M3r

1−n
3

r3 − 1
+

πX(A1)M2M3r3(r
−n
3 − r−n

2 )

(r2 − 1)(r2 − r3)
+

+
M1M2M3

(r2 − r1)

(

r1r3(r
−n
3 − r−n

1 )

(r1 − r3)
+

r2r3(r
−n
3 − r−n

2 )

(r3 − r2)

)

≤ ε1 . (44)In Lemma 4 there is an important assumption that A1 is an atom. However,we an relax this requirement using the following result:Lemma 6. Suppose that A1 is a renewal set. Then we have
πX(y) =

1

ǫA1

πX(A1)

∞
∑

n=0

PrA1
(Xn = y, ζ

(1)
1 ≥ n) . (45)



216 M. ROMANIUKProof. As it was noted, for simpliity of notation the proof will be onduted fordisrete MC. However, it ould be easily adapted for ontinuous state spae X .Let
π

′

X(y) =

∞
∑

n=0

PrA1
(Xn = y, ζ

(1)
1 ≥ n) . (46)For any y ∈ X we have

∑

x∈X

Prx(y)π
′

X(x) =
∑

x∈ renewal set A1

Prx(y)π
′

X(x)+

+
∑

x 6∈ renewal set A1

Prx(y)π
′

X(x) . (47)For the �rst sum, if x ∈ renewal set A1, then we apply the formula (7). There-fore the probability of transition to the next state does not depend on a parti-ular state x. For the seond sum, we use (46). Hene
∑

x∈X

Prx(y)π
′

X(x) = πX(A1)νA1
(y)+

+
∑

x 6∈ renewal set A1

Prx(y)

(

∞
∑

n=0

PrA1
(Xn = x, ζ

(1)
1 ≥ n)

)

= PrA1
(y)+

+
∑

x 6∈ renewal set A1

∞
∑

n=0

PrA1
(Xn = x, Xn+1 = y, ζ

(1)
1 ≥ n) . (48)Formula (48) may be simpli�ed to

∑

x∈X

Prx(y)π
′

X(x) = PrA1
(y) +

∞
∑

n=1

PrA1
(Xn = y, ζ

(1)
1 ≥ n) = π

′

X(y) , (49)therefore, (46) is an invariant measure.From (46) we obtain
π

′

X(X ) =

∞
∑

n=0

PrA1
(Xn ∈ X , ζ

(1)
1 ≥ n) =

=

∞
∑

m=0

mPrA1
(ζ

(1)
1 = m) = EA1

(ζ
(1)
1 ) . (50)Hene, this measure is �nite. Then from the theorem of invariant measureuniqueness, (46) is probability distribution after normalization.
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EA1

(ζ
(1)
1 ) = EA1

(X ∈ A1, U1 ≤ ǫA1
) = (π

′

X(A1))
−1

ǫA1
, (51)whih gives an appropriate normalizing onstant for (45). Therefore

πX(y) =
1

ǫA1

πX(A1)π
′

X(y) , (52)whih leads to (45).The tehnique similar to the above proof was used in Robert and Casella(2004).Now we an prove the generalization of Lemma 4.Lemma 7. Let A1 be a renewal set and all other assumptions be the same as inLemma 4. Then
∑

y∈X

|Prn
x(y) − πX(y)| ≤ 2Prx(ζ

(1)
1 ≥ n) +

n−1
∑

j=0

Prx(ζ
(1)
1 = j)·

(

n−j−1
∑

k=1

∣

∣

∣

∣

Prk
A1

(A1) −
1

ǫA1

πX(A1)

∣

∣

∣

∣

PrA1
(ζ

(1)
1 ≥ n − k − j)+

+
1

ǫA1

πX(A1)Ex

(

ζ
(1)
1 − (n − j)

)

+

) . (53)Proof. Analogously to proof of Lemma 4, we apply the formula (45) to (36),obtaining (53).Having Lemma 7 we an modify the result of Lemma 5.Lemma 8. Suppose that A1 is a renewal set whih ful�ls the ondition
|Prn

A1
(A1) −

1

ǫA1

πX(A1)| ≤ M1r
−n
1 (54)and there exist M2 > 0, r2 > 1, M3 > 0, r3 > 1 suh that inequalities (40)and (40) are satis�ed. Then ondition (42) is met for n given as the solutionof formula (43).Proof. Using Lemma 7 analogously as in proof of Lemma 5, we obtain solu-tion (43).3.4. Heuristi approahIn the heuristi approah we use results from Lemma 3. The method maybe generalized for ontinuous spae X .



218 M. ROMANIUKFrom Lemma 3 for atoms we have
πY (Aj) =

∑

x∈Aj
πX(x)

∑

x∈A1
πX(x) +

∑

x∈A2
πX(x)

, (55)and for renewal sets
πY (Aj) =

ǫAj

∑

x∈Aj
πX(x)

ǫA1

∑

x∈A1
dπX(x) + ǫA2

∑

x∈A2
dπX(x)

. (56)It is easily seen that these equations may be used as indiators of distanebetween stationary distributions πX(.) and πY (.), if for left and right sides of(55) and (56) we take estimators based on various information. We denote theseestimators as π̂X,n(.) and π̂Y,n(.), where n emphasizes the number of steps inthe sequene X0, X1, . . . , Xn. We are then interested in onvergene diagnosisbased on di�erene
∣

∣

∣

∣

∣

π̂Y,n(Aj) −

∑

x∈Aj
π̂X,n(x)

∑

x∈A1
π̂X,n(x) +

∑

x∈A2
π̂X,n(x)

∣

∣

∣

∣

∣

≤ ε3 (57)for atoms, and after adequate modi�ation of formula (57) aording to (56),for renewal sets. Intuitively, if quantity (57) is small enough, we ould diagnoseonvergene.Estimator π̂Y,n(.) is based on transition probabilities. Let
m(j,l),n = #{k : Yk ∈ Aj , Yk+1 ∈ Al, ζk+1 ≤ n} . (58)Then
α̂Y,n =

m(1,2),n

m(1,1),n + m(1,2),n
(59)whih is a natural estimator for probability of moving between states A1 and

A2 for seondary hain Y . Analogously
β̂Y,n =

m(2,1),n

m(2,1),n + m(2,2),n
, (60)and the estimator of transition matrix for Y is given by

P̂Y,n =

(

1 − α̂Y,n α̂Y,n

β̂Y,n 1 − β̂Y,n

) . (61)For two-state disrete MC, the estimator of stationary distribution in this aseis
π̂T

Y,n = (π̂Y,n(A1), π̂Y,n(A2)) =
1

α̂Y,n + β̂Y,n

(β̂Y,n, α̂Y,n) . (62)
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ηX,n(x) =

11(X0 = x) + . . . + 11(Xn = x)

n + 1
. (63)Then natural estimator for unknown parameter is

π̂X,n(x) = ηX,n(x) . (64)It is worth noting that apart from using the same MC, we reate the aboveestimators based on other kind of information � the frequeny of moving betweenstates and alulation of transition probability from transition matrix in ase of
π̂Y,n(.), and diret ounting of visits in the appropriate states with appliationof ergodi theorem for π̂X,n(.).For additional diversi�ation of information used for these estimators, it ispossible to onstrut two separate hains or to divide one hain into two parts.4. Example of appliationAfter introduing methods appropriate for �nding the value nstat, now wepresent examples of their appliation. Firstly, we use state spae X with a fewatoms. Then we investigate the renewal sets ase.4.1. Atoms aseWe should emphasize that the solutions established in lemmas of Setion 3.3give exat (i.e. proved by mathematial reasoning, not heuristi) and preise(i.e. non-asymptoti) values. Therefore we may fous only on the problemof transferring the obtained results from theoretial formulas to the pratialexample.Let us suppose that we are interested in MCMC algorithm, for whih fun-tion f(.) desribes the state spae X with eight atoms and stationary probabi-lities

f(.) = (1/20, 1/20, 2/20, 2/20, 3/20, 3/20, 4/20, 4/20) , (65)i.e. �rst atom has stationary probability 1/20, the seond one � 1/20, et.We use independent Metropolis-Hastings algorithm (see e.g. Robert andCasella, 2004). Our main trajetory has one million elements and starts fromstate one. We also assume that A1 = 3 and A2 = 7. Therefore, we may omparethe values nstat based on states with various stationary probabilities.In order to apply lemmas from Setion 3.3, we have to evaluate the neessaryparameters r1, M1, r2, M2, r3, M3 (see assumptions for Lemma 5). Normally, ex-perimenter may have some additional knowledge about these values, but we use



220 M. ROMANIUKadditional simulations in order to determine them. Hene, we generate addi-tional sets of 50,000 trajetories with 100 steps in eah trajetory and appropri-ate starting points � states one, three and seven. Then, we apply �pessimistioptimization� approah (see also Romaniuk, 2007b).So, if we suppose that for the optimal parameters r1 and M1 we have
|Prn

A1
(A1) − πX(A1)| ≈ M1r

−n
1 , (66)then

|PrnA1
(A1) − πX(A1)|

|PrA1
(A1) − πX(A1)|

≈ r−n+1
1 . (67)Therefore, we ould �nd �pessimisti� evaluation of r̂1 in the sense of satisfyingthe ondition

r̂1 = min
r∈R+

{

∀n = 2, 3, . . . : r−n+1 −
|Prn

A1
(A1) − πX(A1)|

|PrA1
(A1) − πX(A1)|

≥ 0

} . (68)It an be easily seen that (68) gives us the �maximal pessimisti� guess of r̂1,beause in this light r̂1 has to be the upper limit for all steps in a stritlydeterministi sense. In ase of any numerial errors or even for greater valuesfor n (note exponential derease in onditions for Lemma 5), this method maygive larger values of r̂1 than they are in reality. However, other methods, likesatisfying the weaker ondition
r−n+1 −

|Prn
A1

(A1) − πX(A1)|

|PrA1
(A1) − πX(A1)|

≥ 0

∨

∣

∣

∣

∣

r−n+1 −
|Prn

A1
(A1) − πX(A1)|

|PrA1
(A1) − πX(A1)|

∣

∣

∣

∣

≤ δ (69)for some small enough δ, may be easily ritiized beause of unknown errorgenerated by the seletion of value δ.After �xing the value r̂1 like in (68), we may �nd M̂1 in the same manner,as satisfying the ondition
M̂1 = min

M∈R+

{

∀n = 1, 2, . . . : Mr̂−n
1 − |Prn

A1
(y) − πX(A1)| ≥ 0

} . (70)The analogous formulas may be derived for parameters r2, M2, r3, M3.Then, from the �pessimisti optimization� for A1 we have
r̂1 = 1.04 , M̂1 = 0.0268 ,r̂2 = 1.0941 , M̂2 = 1.0888 ,

r̂3 = 1.0904 , M̂3 = 0.1372 . (71)We an substitute these values into the formula (43) in order to �nd the numberof steps nstat for the given value ε1 (see Table 1). In this table, the olumn �true



Convergene diagnosis to stationary distribution in MCMC methods 221Assumed value ε1 Number of steps nstat True value ε10.1 90 0.09781450.02 120 0.01967670.01 135 0.009742420.001 190 0.000981598Table 1. Evaluation of nstat for A1value ε1� gives the exat value of the left hand side for (43) and number of steps
nstat is in the seond olumn.The graph of the left hand side (43) as a funtion of the number of steps nis shown in Fig. 1.
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Figure 1. Error level ε1 as a funtion of n for A1If we use the improved inequality (44) instead of (43), we may observe theredution of the neessary number of steps nstat, espeially for larger ε1 (seeTable 2). This phenomenon is even more easily seen in Fig. 2, where urve ismuh steeper at the beginning of the graph.We may perform the same analysis for the seventh state, i.e. speial set A2.In this ase the neessary parameters may be evaluated as
r̂1 = 1.0438 , M̂1 = 0.0793 , r̂2 = 1.14385 , M̂2 = 1.1439 ,

r̂3 = 1.1231 , M̂3 = 0.1394 . (72)Beause the atom A2 has higher stationary probability than A1, we obtain less
nstat values (see Table 3 and Fig. 3).



222 M. ROMANIUKAssumed value ε1 Number of steps nstat True value ε10.1 75 0.09818650.02 114 0.01950480.01 131 0.009891270.001 190 0.000967164Table 2. Evaluation of nstat for A1 based on inequality (44)
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Figure 2. Error level ε1 as a funtion of n for A1 based on inequality (44)
Assumed value ε1 Number of steps nstat True value ε10.1 71 0.09921840.02 107 0.01921240.01 123 0.009613690.001 176 0.000988225Table 3. Evaluation of nstat for A2
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Figure 3. Error level ε1 as a funtion of n for A2We an also apply improved inequality (44) for the set A2, but by reasonof faster exponential onvergene guaranteed by higher values of r̂i, the pro�tin terms of redution of the nstat value is not so visible as in previous ase.Now we turn to the heuristi approah (see Setion 3.4). Beause the di�er-ene (57) has the same value for both A1 and A2, we may fous only on any ofthe atoms.The appropriate graph of (57) as a funtion of n may be found in Fig. 4.Beause of the �jerked� nature of this diagram, it is not so easy to diretly pointout the moment where the di�erene is lesser than the �xed value ε3. However,we may risk hyphotesis, that (57) is lesser than ε3 = 0.2 from 100th � 150thstep, and lesser than ε3 = 0.1 from 300th � 350th step. Compared with previousresults, these numbers of steps are muh bigger. It seems that suh heuristiapproah is rather onservative. However, it ould be easily applied and thegraphs like Fig. 4 may be used as warnings against possible problems withdiagnosis or multimodality of πX .It is worth noting that despite the simple struture of the state spae X ,the presented appliation has deep onnetions with more omplex problems,e.g. similar atom state spae may be found in analysis and restoration of imagesdegraded by noise issues (see e.g. Koronaki, Lasota, Niemiro, 2005, and Lasota,Niemiro, 2003).
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Figure 4. The value of (57) as a funtion of steps number4.2. Renewal sets aseNow we apply the methods disussed for the ase of renewal sets. Let ussuppose that the density f(.) is desribed by the two-modal mixture of normaldistributions
f(.) ∼ αN(µ1, σ

2
1) + (1 − α)N(µ2, σ

2
2) , (73)where N(µi, σ

2
i ) is a normal distribution with expeted value µi and standarddeviation σi, and α is a mixture parameter. In our example we take

α = 0, 5 , µ1 = 3 , σ1 = 1 , µ2 = 7 , σ2 = 2 (74)(see Fig. 5).From (4) for ontinuous state spae X for any x ∈ Aj we have (with aurayto the zero-measure sets)
KX(x, y) ≥ ǫjfνj

(y) , (75)where fνj
(.) is the density funtion of measure ν(.) for renewal set Aj .In this example MC is generated by Metropolis-Hastings algorithm withrandom walk and symmetri proposal density, i.e. g(y|x) = g(x|y) = g(|x− y|).For simpliity let g(|. − x|) be a uniform distribution on (x − 0, 5; x + 0, 5) for�xed x. Let A1 = [2, 2.25] and A2 = [7.75, 8]. In order to use solution providedby Lemma 8, we have to use modi�ation (7). The graph of fν1

(.) without thenormalizing onstant may be found in Fig. 6. It an be easily seen that this
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Figure 5. Example of mixture (73)
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Figure 6. Graph of fν1
(.) without the normalizing onstant for A1 = [2, 2.25]



226 M. ROMANIUKnormalizing onstant is simultaneously the inverse of maximum ǫ1 and may befound numerially, whih gives ǫ1 = 0.6506717064872144.Similary, ǫ2 = 0.722459686557494 and graph of fν2
(.) may be found in Fig. 7.
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Figure 7. Graph of fν2
(.) without the normalizing onstant for A2 = [7.75, 8]In order to �nd parameters r1, M1, r2, M2, r3, M3, neessary for onditions(40), (41), (54) we use similar approah as in Setion 4.1. Therefore, for A1 wehave

r̂1 = 1.034 , r̂2 = 1.0345 , r̂3 = 1.0131 ,
M̂1 = 1.05 , M̂2 = 1.0069 , M̂3 = 0.022 (76)and for A2

r̂1 = 1.03 , r̂2 = 1.0318 , r̂3 = 1.0078 ,
M̂1 = 10.6702 , M̂2 = 0.9957 , M̂3 = 0.007 . (77)These parameters give us the solutions for inequality (43) (see Tables 4 and 5)As previously, evaluation for the �less frequent� set A2 inreases the nstatvalue by about 20 � 30%.The heuristi approah may also be applied for this ase. The graph issimilar as in the previous example with �jerked� harater.5. Conluding remarksWe started from formulation of two inequalities, whih orrespond to stan-dard questions in MCMC setups, i.e. when the sampled transition probability



Convergene diagnosis to stationary distribution in MCMC methods 227Assumed value ε1 Number of steps nstat True value ε10.1 521 0.09896170.02 644 0.01996620.01 698 0.00988720.001 875 0.000987682Table 4. Evaluation of nstat for set A1Assumed value ε1 Number of steps nstat True value ε10,1 682 0.09952180,02 889 0.01992630,01 979 0.009902290,001 1275 0.000992949Table 5. Evaluation of nstat for set A2is lose to determined stationary probability of Markov Chain? and how manyiterations should be used in order to minimize the error of estimator? Theseinequalities orrespond to �nding two values � the numbers of steps nstat and
nVar for the trajetory generated by some MCMC method. Then we use thefeatures of seondary hain in order to �nd the nstat estimator. Therefore, weobtain a useful set of onditions whih ould be used for heking the onver-gene in MCMC setup. The examples of appliation of theoretial lemmas andof heuristi approah for the ase of state spae with atoms and renewal sets arealso provided. It has to be mentioned that this paper omprises some ontentsof dotoral dissertation (see Romaniuk, 2007a), where additional remarks maybe found.We should emphasize the usefulness of the presented method, whih ouldbe used in a highly automated manner and provide the strit results for theexperimenter. However, we should note that not just one, but a whole setof various algorithms and methods should be applied in order to ontrol theMCMC output and guarantee the onvergene of the simulated trajetory at asuitable satisfatory level.The possibilities of omplementing the disussed method might also be on-sidered. For example, the obtained onditions might be improved, like in (44).However, additional information about the struture of state spae or under-lying Markov Chain may be neessary in suh ase. The dependenies amongthe number of speial sets, their alloation, possible modes in state spae andobtained solutions may be examined. The lemmas may be also generalized forother ases of state spae struture and number of speial sets.
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