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252 J. C. DE LOS REYES, C. MEYER, B. VEXLERadditional onstraints on the ontrol and the state:
(P)







minimize J(v, u) :=
1

2

∫

Ω

|v − z|2
Rd dx+

α

2

∫

Ω

|u|2
Rd dxsubjet to −∆ v + ∇p = u in Ω

∇ · v = 0 in Ω

v = 0 on Γ := ∂Ωand v ∈ K ⊂ L∞(Ω′)d

a ≤ u(x) ≤ b a.e. in Ω,where u denotes the ontrol, v and p are veloity and pressure, respetively, and
z is the given desired state. Furthermore, Ω ⊂ R

d, d = 2, 3 is a bounded domainwith boundary Γ and α > 0 is a given number. Moreover, a, b ∈ R
d are givenvetors, whereas K denotes a losed and onvex subset of L∞(Ω′)d, where Ω′ isa �xed (not neessarily proper) subset of Ω. Possible examples for K are boxonstraints for v or restritions on the Eulidian norm of v, i.e.,

K(1) :=
{
v ∈ L∞(Ω′)d|va ≤ v(x) ≤ vb a.e. in Ω′

}

K(2) :=
{
v ∈ L∞(Ω′)d||v(x)|2

Rd ≤ ̺ a.e. in Ω′
}with given bounds va, vb ∈ R

d, and ̺ > 0. In view of the no-slip onditions onthe boundary, it might be reasonable to require the state onstraints only in theinterior of Ω. The theory presented is appliable for both ases, i.e. Ω′ 6= Ω and
Ω′ = Ω. We point out that the subsequent analysis an be extended to the aseof more general ontrol onstraints, i.e. u ∈ Ku with a nonempty onvex subset
Ku ∈ L∞(Ω)d. For a better readability of the paper, we onentrate on boxonstraints for the ontrol, while general onstraints on the state are onsidered.It is well known that, if ertain onstraint quali�ations are satis�ed, thenthe generalized Karush-Kuhn-Tuker theory allows to derive �rst-order nees-sary onditions that inlude the existene of Lagrange multipliers assoiated tothe state onstraints in (L∞(Ω′)d)∗, i.e., the dual of L∞(Ω′)d with respet tothe inner produt of L2(Ω′)d (see Zowe and Kuryusz, 1979, or Casas, 1993).This lak of regularity of the multipliers ompliates the numerial analysis ofstate-onstrained optimal ontrol problems. Nevertheless, in the reent past,some progress has been ahieved onerning the �nite element error analysisof state-onstrained ellipti problems. We exemplarily mention Casas (2002),where a semilinear ellipti ontrol problem with �nitely many state onstraints isonsidered, and Casas and Mateos (2002), where onvergene of a �nite elementdisretization for state-onstrained semilinear ellipti problems is proved in ageneral setting. Moreover, we refer to Dekelnik and Hinze (2007 a,b), wherea variational disretization of state-onstrained ellipti problems is onsidered,and to Dekelnik, Günther and Hinze (2007) for problems with pointwise on-straints on the gradient of the state variable. Furthermore, Dekelnik and Hinze



Optimal ontrol of the Stokes equations 253(2008) also investigated pieewise onstant approximations of the ontrol in thepresene of pointwise state onstraints and obtained an order of onvergene of
h| log h| in the two dimensional ase and h1/2 in ase of three dimensions withrespet to the L2-norm on the ontrol. Afore, slightly worse results for the samesetting are proven in Meyer (2008) by employing a ompletely di�erent analysis.In this paper, we show that the analysis of Meyer (2008) an be trans-ferred to the Stokes equations and more general disretizations for the ontrol,e.g. pieewise linear and ontinuous ansatz funtions. In partiular, the use ofmore general ansatz funtions, as e.g. pieewise linear ones, requires signi�antmodi�ation of the theory presented in Meyer (2008), whih is performed byusing a partiular quasi-interpolant introdued in Carstensen (1999). More-over, to deal with di�erent disretization tehniques for the Stokes equations,we have to allow for disrete states whih may not be feasible for the ontinuousproblem. This onstitutes another signi�ant di�erene to the existing theory.The presented analysis overs results for di�erent settings suh as for instanethe following: Let Ω ∈ R

2 be a onvex polygon and Ω′ be stritly ontained in
Ω and suppose that the Stokes equations are disretized with the Taylor-Hoodelement, while we use pieewise linear ansatz funtions for the ontrol. Thenthere holds for every ε > 0

‖ū− ūh‖L2(Ω)2 + ‖v̄ − v̄h‖H1(Ω)2 + ‖p̄− p̄h‖L2(Ω) ≤ C h1−ε,where (ū, v̄, p̄) is the solution of (P), while (ūh, v̄h, p̄h) denotes the solution ofits disrete ounterpart.To the authors' best knowledge, this is the �rst note that deals with the dis-retization error for the optimal ontrol of the Stokes equations in the presene ofpointwise state onstraints. There are several papers onsidering �nite elementdisretizations of the unonstrained optimal ontrol of the Stokes and Navier-Stokes equations (see for instane Bohev and Gunzburger, 2004; DekelnikHinze, 2004; Gunzburger, Hou and Svobodny, 1991a,b), as well as ontributionsfor the purely ontrol-onstrained ase, Rösh and Vexler (2006). However, theanalysis in ase of pointwise state onstraints di�ers signi�antly from thesesettings sine, among other things, optimal L∞-error estimates for the �niteelement disretization of the Stokes equations are required.The paper is organized as follows: after stating the main assumptions andknown results for the ontinuous problem (P) in the following setion, we intro-due a general framework for a disretization of (P) in Setion 3, whih oversdi�erent onrete disrete shemes. Thereafter, in Setion 4 we disuss some spe-ial interpolation results to be used in Setion 5, where a priori error analysisfor the problem under onsideration is presented. Finally, Setion 6 is devotedto onrete disretization shemes and their pratial realization, whereas thenumerial examples are presented in Setion 7.



254 J. C. DE LOS REYES, C. MEYER, B. VEXLER2. Notation and assumptionsIn all what follows, |z|Rd =
(∑d

i=1 z
2
i

)1/2 denotes the Eulidian norm andinequalities of the form z ≤ w with w, z ∈ R
d, are understood omponent-wise. Moreover the natural inner produt of L2(Ω)d is abbreviated by (·, ·) :=

(·, ·)L2(Ω)d . Furthermore, we introdue the Hilbert spaes
V := H1

0 (Ω)d, L :=
{
p ∈ L2(Ω)|

∫

Ω

p(x) dx = 0
}
.Throughout this artile, let σ be a real number satisfying 1 < σ < d/(d − 1).Then we de�ne the onjugate exponent by σ′ = σ/(σ − 1). In addition, Wσdenotes the Sobolev spae W 1,σ(Ω)d, whereas we set V∞ := L∞(Ω′)d. The dualspaes assoiated to Wσ and V∞ with respet to the inner produt of L2(Ω)dand L2(Ω′)d, respetively, are denoted by W ∗

σ and V ∗
∞.Assumption 2.1 On the quantities in (P), we impose the following onditions:

• Ω is an open, bounded, simply onneted Lipshitz domain Ω ⊂ R
d, d =

2, 3, while Ω′ denotes an open subset of Ω.
• K is a losed and onvex subset of L∞(Ω′)d

• a, b ∈ R
d with a ≤ b

• z ∈ L2(Ω)d.Let us introdue the variational formulation of the Stokes equations by
(∇v,∇ϕ) − (p,∇ · ϕ) + (∇ · v, ψ) = (u, ϕ) ∀ (ϕ, ψ) ∈ V × L. (1)It is well known that, for a given right-hand side u ∈ L2(Ω)d, there exists aunique solution to (1) and the assoiated solution operator, denoted by G :

u 7→ (v, p), is ontinuous from L2(Ω)d to V × L. Moreover, we introdue theontrol-to-state operator S : L2(Ω)d → V whih maps the ontrol variable u tothe veloity omponent of the solution Gu, i.e., S : u 7→ v. Sometimes S and
G are onsidered in di�erent spaes (e.g. L∞(Ω′)d), for simpliity also denotedby S and G, respetively. Based on the ontrol-to-state operator, we de�ne theredued ontrol problem by:

(P)







min
u∈L2(Ω)d

f(u) := J(S u, u)s.t. S u ∈ K

a ≤ u(x) ≤ b a.e. in Ω.For the solution operator of the Stokes system, the following mapping propertiesare known. We refer to Brown and Shen (1995, Theorem 2.9) and the referenestherein.Proposition 2.1 Under the hypothesis on Ω in Assumption 2.1, there is apositive number 2d/(d + 2) ≤ σ̄ < d/(d − 1) suh that S ontinuously maps
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W ∗

σ = (W 1,σ(Ω)d)∗ to W 1,σ′

(Ω)d for all σ ∈ [σ̄, d/(d − 1)[. Hene, due to
σ̄′ > d, Sobolev embedding theorems give

S : L2(Ω)d →֒W ∗
σ →W 1,σ′

(Ω)d →֒ V∞ ∀σ ∈ [σ̄, d/(d− 1)[. (2)For the rest of the paper, let σ be a �xed, but arbitrary number in [σ̄, d/(d−
1)[. As already mentioned in the introdution, a ertain onstraint quali�a-tion is needed to derive the existene of Lagrange multipliers by means of thegeneralized Karush-Kuhn-Tuker theory. Here, we rely onAssumption 2.2 (Slater ondition) There is a û∈ L∞(Ω)d∩Wσ , satisfying

S û ∈ intK

a ≤ û(x) ≤ b a.e. in Ω.In order to state the neessary optimality onditions for the solution of (P)we introdue the set of admissible ontrols, whih inorporates both the ontroland the state onstraints:
Uad :=

{
u ∈ L∞(Ω)d|a ≤ u(x) ≤ b a.e. in Ω, S u ∈ K

}
.Theorem 2.1 Under Assumption 2.2 there exists a unique solution of (P), de-noted by ū. This solution provides some additional regularity, namely ū ∈ Wσ,and satis�es the following variational inequality

(S ū− z , S u− S ū) + α (ū , u− ū) ≥ 0 ∀ u ∈ Uad (3)where Uad is de�ned as above.Proof. The existene and uniqueness result is standard. To show the additionalregularity of ū, we make use of the generalized Karush-Kuhn-Tuker theory (seeZowe and Kuryusz, 1979). To this end, set v̄ = S(ū). Under the Slater on-dition in Assumption 2.2, the generalized KKT theory guarantees the existeneof a Lagrange multiplier µ̄ ∈ V ∗
∞ suh that ū satis�es

ū = Π[a,b]

{
− 1

α
S∗
(
E2(v̄ − z) + E∞µ̄

)} (4)with the adjoint operator S∗ : (W 1,σ′

(Ω)d)∗ →Wσ (see Proposition 2.1). More-over, E2 : L2(Ω)d → (W 1,σ′

(Ω)d)∗ and E∞ : V ∗
∞ → (W 1,σ′

(Ω)d)∗ are the asso-iated embedding operators. Furthermore, Π[a,b] denotes the omponent- andpointwise projetion operator on the interval [a, b]. Sine this projetion opera-tor mapsWσ to itself, we have ū ∈Wσ. Finally, the derivation of the variationalinequality follows standard arguments.Remark 2.1 We point out that the onvergene analysis, presented below, doesnot involve dual variables, i.e., the adjoint state or Lagrange multipliers. Inthis ontext, the existene of Lagrange multipliers is just required to guaranteethe additional regularity of ū whih is needed for the derivation of interpolationerror estimates (see Lemmata 4.3 and 4.4 below).



256 J. C. DE LOS REYES, C. MEYER, B. VEXLER3. DisretizationNow we turn to the disretization of (P). First, let us introdue a family ofmeshes {Th} with mesh size h > 0. The mesh Th onsists of open ells T(triangles, tetrahedra, quadrilaterals, hexahedra) suh that
Ω̄ =

⋃

T∈Th

T̄ful�lling usual assumptions on the �nite element mesh, see, e.g., Brenner andSott (1994). Notie that this implies that the ells lying on the boundary of
Ω may be urved if Γ is smooth (see Setion 6.1 for details). The mesh size isde�ned by

h := max
T∈Th

hT with hT := diam (T ).With eah T ∈ Th, we assoiate the diameter of the largest ball ontained in T ,denoted by RT . We suppose the following regularity assumptions for {Th}:Assumption 3.1 There exist two positive onstants ρ and R suh that
hT

RT
≤ R ,

h

hT
≤ ρhold for all ells T ∈ ∪h>0Th.To eah mesh, we assoiate �nite dimensional subspaes of V and L, denotedby Vh and Lh. The disrete ounterpart of (1) is then given by

(∇vh,∇ϕh) − (ph,∇ · ϕh) + (∇ · vh, ψh) = (u, ϕh) ∀ (ϕh, ψh) ∈ Vh × Lh (5)with assoiated solution operator Ghu = (vh, ph) ∈ Vh × Lh. Conrete hoiesfor the pairs (Vh, Lh), allowing for existene of the solution operator Gh, willbe disussed in Setion 6. Analogously to the above, we de�ne the disreteontrol-to-state operator Sh mapping given ontrol u to the veloity omponent
vh of Ghu. In all what follows, we rely on the following onditions on Sh, thatwill be veri�ed in Setion 6 for di�erent settings.Assumption 3.2 The following error estimates hold true

‖S u− Sh u‖V∞
≤ c δ(h) ‖u‖L∞(Ω)d (6)with some funtion δ : R

+ → R
+, satisfying δ(h) → 0 if h ↓ 0, and a onstant cindependent of h and u.Next, we turn to the disretization of the ontrol. To this end, we de�ne theassoiated ansatz funtions.



Optimal ontrol of the Stokes equations 257Assumption 3.3 For eah mesh Th there is a family of ontrol ansatz funtionsonsisting of n ansatz funtions φi ∈ L∞(Ω), 1 ≤ i ≤ n. Here, the number n aswell as the ansatz funtions themselves are allowed to depend on the mesh andtherefore on the mesh size. Moreover, for every i ∈ {1, ..., n} there holds
ess sup

x∈Ω̄

φi(x) = 1, φi(x) ≥ 0 a.e. in Ω,
n∑

i=1

φi(x) = 1 a.e. in Ω. (7)In addition, we assume that the path ωi := suppφi is a onneted set of positivemeasure and ontained in the union of Mi adjaent ells that share at least oneommon vertex. Further, there exists a onstant M ∈ N, independent of h, suhthat Mi ≤ M for all i ∈ {1, ..., n}. Finally, eah ell T ∈ Th is ontained in atmost N supports ωi, N independent of h.Remark 3.1 If Ω is a polygon (d = 2) or polyhedron (d = 3), the assumptionson the ansatz funtions φi, i = 1, ..., n are learly ful�lled for di�erent ommon�nite elements suh as:
• pieewise onstant elements,
• linear �nite elements in ase of triangles and tetrahedrons, respetively,
• bi-/trilinear elements for quadrilaterals and hexahedrons, respetively.The assumption φi(x) ≥ 0 a.e. in Ω is not needed for the derivation of interpo-lation error estimates, but for the feasibility of interpolated ontrols (see Lemma5.5).The disrete ontrol spae is given by Uh := span {φi | 1 ≤ i ≤ n}d. Now weare in the position to de�ne the disrete ounterpart to (P):

(Ph)







min
uh∈Uh

f(u) := J(Sh uh, uh)s.t. Sh uh ∈ K,

a ≤ uh(x) ≤ b a.e. in Ω.Notie that (Ph) is not a fully disrete problem, sine K and z are not dis-retized. The disretization of K and z is postponed to Setion 6.3. One showsby standard arguments:Theorem 3.1 Assume that the feasible set for (Ph) is not empty, i.e., thereexists a disrete ontrol uh ∈ Uh with a ≤ uh(x) ≤ b a.e. in Ω and Sh uh ∈ K.Then there exists unique solution of (Ph), denoted by ūh ∈ Uh, whih satis�esthe following disrete variational inequality
(Sh ūh − z , Sh uh − Sh ūh) + α (ūh , uh − ūh) ≥ 0 ∀ uh ∈ Uh

ad (8)with
Uh

ad :=
{
uh ∈ Uh|a ≤ uh(x) ≤ b a.e. in Ω, Sh uh ∈ K

}
.



258 J. C. DE LOS REYES, C. MEYER, B. VEXLER4. Interpolation estimatesIn this setion we disuss some interpolation estimates for funtions in Wσ. Forthe error analysis in the next setion we need an interpolation operator whihprovides interpolation estimates of optimal order among other things in negativeSobolev norms (see Lemma 4.4) and additionally has the following property:
a ≤ u(x) ≤ b a.e. in Ω ⇒ a ≤ (Πhu)(x) ≤ b a.e. in Ω. (9)To this end we onsider the quasi-interpolation operator introdued in Carstensen(1999). For an arbitrary u ∈ L1(Ω), the onstrution is as follows:
Πhu =

∑

i

πi(u)φi, (10)where πi(u) ∈ R is de�ned by
πi(u) =

∫

ωi
uφi dx

∫

ωi
φi dx

. (11)Analogously, the quasi-interpolation operator for vetorial quantities is de�nedomponentwise and for simpliity also is denoted by Πh. The property (9) isobviously ful�lled due to the above onstrution and Assumption 7.In the following we disuss error estimates for u − Πhu in di�erent normson the omputational domain Ω ⊂ R
d, d = 2, 3. To keep the disussion onise,we argue for a single omponent for the rest of this setion. The results forvetorial quantities immediately follow from norm equivalene in R

d.Lemma 4.1 For eah i ∈ {1, ..., n}, there is a onstant ci whih may depend ondiam ωi suh that
‖u− πi(u)‖L2(ωi) ≤ ci ‖∇u‖Ls(ωi) ∀u ∈ W 1,s(ωi)for all 2d

d+2 ≤ s <∞.Remark 4.1 The ondition s ≥ 2d
d+2 is required for the embedding W 1,s(ωi) →֒

L2(ωi). There obviously holds:
2d

d+ 2
<

d

d− 1
for d = 2, 3.Proof. Let i ∈ {1, ..., n} be arbitrary. For the proof we use an indiret argument.If the proposed assertion is false, there exists a sequene {uk} ⊂W 1,s(ωi) with

‖uk − πi(uk)‖L2(ωi) = 1 and ‖∇uk‖Ls(ωi) ≤
1

k
∀ k ∈ N.



Optimal ontrol of the Stokes equations 259Now, let us onsider vk = uk − πi(uk). Sine πi(uk) ∈ R by onstrution, wehave ∇πi(uk) = 0 and therefore
‖vk‖L2(ωi) = 1 and ‖∇vk‖Ls(ωi) ≤

1

k
∀ k ∈ N. (12)Therefore, thanks to s ≤ 2, {vk} is bounded in W 1,s(ωi) and there exists asubsequene denoted again by {vk} with

vk ⇀ v in W 1,s(ωi)and therefore
vk → v in Ls(ωi).Due to (12), ∇vk is a Cauhy sequene in Ls(ωi) and therefore
vk → v in W 1,s(ωi).Hene, ∇v = 0 and v = const. Moreover there holds by the de�nition of πi:
∫

ωi

vkφi dx = 0,and therefore
∫

ωi

vφi dx = 0,whih implies v = 0. Due to the embeddingW 1,s(ωi) →֒ L2(ωi), we have vk → vin L2(ωi) and therefore ‖v‖L2(ωi) = 1. This is a ontradition.Lemma 4.2 There is a onstant c whih is independent of h suh that
‖u− πi(u)‖L2(ωi) ≤ c hd( 1

2−
1
s )+1 ‖∇u‖Ls(ωi) ∀u ∈ W 1,s(ωi)for all i ∈ {1, ..., n} and all 2d

d+2 ≤ s <∞.Proof. The proof uses the assertion from Lemma 4.1 on a referene path ω̂iand a standard transformation argument. For onveniene of the reader, weshortly sketh the arguments for a domain with polygonal (d = 2) or polyhedral(d = 3) boundary and the ase of triangles and tetrahedra, respetively. Let ωibe an arbitrary path onsisting of the ells T (i)
j , j = 1, ...,Mi. By Assumption3.3, M = maxi{Mi} is bounded independently of h. To eah path ωi, weassoiate a referene path ω̂i whose verties lie on the surfae of the unit ballin R

d. Moreover, it onsists of Mi ongruent ells T̂ (i)
j . Due to Mi ≤ M , thenumber of possible referene pathes is �nite and they an be onstruted so



260 J. C. DE LOS REYES, C. MEYER, B. VEXLERthat |T̂ (i)
j | is bounded from below and above by onstants independent of h (seeBernardi, 1989, Setion 4, for the onstrution of suitable referene pathes).Now denote by Fi, Fix̂ = x, the bi-Lipshitz transformation from ω̂i to ωi,and set F (i)

j := Fi|T̂ (i)
j

, i.e. the a�ne-linear transformation from T̂
(i)
j to T (i)

j .Analogously to (11), let π̂i be de�ned by
π̂i(v) :=

∫

ω̂i
φ̂i v dx̂

∫

ω̂i
φ̂i dx̂

=

∫

ω̂i
(φi ◦ Fi) v dx̂
∫

ω̂i
φi ◦ Fi dx̂

,where φ̂i denotes the ansatz funtion on ω̂i. Then, due to u ◦Fi ∈ W 1,s(ω̂i), weobtain
‖u− πi(u)‖2

L2(ωi)
=

Mi∑

j=1

|T (i)
j |

|T̂ (i)
j |

∫

T̂
(i)
j

(

u(F
(i)
j x̂) − πi(u)

)2

dx̂

≤ c hd

∫

ω̂i

(
u ◦ Fi − π̂i(u ◦ Fi)

)2
dx̂ ≤ c hd

(
∫

ω̂i

|∇x̂(u ◦ Fi)|sdx̂
) 2

s

≤ c hd

(
Mi∑

j=1

|T̂ (i)
j |

|T (i)
j |

∫

Tj

|∇xu|s
∣
∣
∂x

∂x̂

∣
∣
s
dx

) 2
s

≤ c hd(1− 2
s )+2‖∇u‖2

Ls(ωi)with a onstant c > 0 independent of h. If quadrilaterals or hexahedra areused, one argues analogously using suitably de�ned referene pathes. In aseof smooth boundaries, where F (i)
j is not longer a�ne-linear, the result followsfrom similar transformation arguments known from the theory of interpolationon urved domains (see Bernardi, 1989, Lemma 2.3).Lemma 4.3 There is a onstant c whih is independent of h suh that

‖u− Πhu‖L2(Ω) ≤ c hd( 1
2−

1
s )+1 ‖∇u‖Ls(Ω) ∀u ∈ W 1,s(Ω),with 2d

d+2 ≤ s ≤ 2.Proof. Due to ∑n
i=1 φi ≡ 1 and the de�nition of Πh, we �nd for all v ∈ L2(Ω)

(u− Πhu, v) =

(

u

n∑

i=1

φi −
n∑

i=1

πi(u)φi, v

)

=

n∑

i=1

∫

ωi

(u− πi(u))φi v dx,

≤ c hd( 1
2−

1
s )+1

n∑

i=1

‖∇u‖Ls(ωi) ‖v‖L2(ωi)

≤ c hd( 1
2−

1
s )+1

(
n∑

i=1

‖∇u‖s
Ls(ωi)

)1/s( n∑

i=1

‖v‖s′

L2(ωi)

)1/s′

.
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2 ≥ 1 sine s ≤ 2, we have
n∑

i=1

‖v‖s′

L2(ωi)
=

n∑

i=1

(

‖v‖2
L2(ωi)

) s′

2 ≤
(

n∑

i=1

‖v‖2
L2(ωi)

) s′

2

.Hene,
|(u− Πhu, v)| ≤ c hd( 1

2−
1
s )+1 ‖∇u‖Ls(Ω) ‖v‖L2(Ω).Notie that Assumption 3.3 implies ∑n

i=1 ‖∇w‖
q
Lq(ωi)

≤ c ‖∇w‖q
Lq(Ω) for every

w ∈ W 1,q(Ω) and every 1 ≤ q < ∞. Setting v = u − Πhu, we omplete theproof.Lemma 4.4 There exists a onstant c, independent of h, suh that
‖u− Πhu‖W 1,s(Ω)∗ ≤ c h2d( 1

2−
1
s )+2 ‖u‖W 1,s(Ω) ∀u ∈W 1,s(Ω)with 2d

d+2 ≤ s ≤ 2.Proof. Similarly to the beginning of the proof of the previous lemma, one hasfor all v ∈W 1,s(Ω):
(u− Πhu, v) =

(

u

n∑

i=1

φi −
n∑

i=1

πi(u)φi, v

)

=

n∑

i=1

∫

ωi

(u− πi(u))φi v dx.The de�nition of πi implies
∫

ωi

(u− πi(u))φi dx = 0,and therefore we ontinue with
(u− Πhu, v) =

n∑

i=1

∫

ωi

(u− πi(u))φi (v − πi(v)) dx

≤ c h2d( 1
2−

1
s )+2

n∑

i=1

‖∇u‖Ls(ωi) ‖∇v‖Ls(ωi)

≤ c h2d( 1
2−

1
s )+2

(
n∑

i=1

‖∇u‖s
Ls(ωi)

) 1
s
(

n∑

i=1

‖∇v‖s′

Ls(ωi)

) 1
s′

.Using the fat s′

s ≥ 1 sine s ≤ 2, we obtain
n∑

i=1

‖∇v‖s′

Ls(ωi)
=

n∑

i=1

(

‖∇v‖s
Ls(ωi)

) s′

s ≤
(

n∑

i=1

‖∇v‖s
Ls(ωi)

) s′

s
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|(u− Πhu, v)| ≤ c h2d( 1

2−
1
s )+2

(
n∑

i=1

‖∇u‖s
Ls(ωi)

) 1
s
(

n∑

i=1

‖∇v‖s
Ls(ωi)

) 1
s

≤ c h2d( 1
2−

1
s )+2 ‖u‖W 1,s(Ω) ‖v‖W 1,s(Ω).This ompletes the proof.Lemma 4.5 For every u ∈ L∞(Ω), there holds

‖Πh u‖L∞(Ω) ≤ ‖u‖L∞(Ω).Proof. In view of (11), we obtain
|πi(u)| ≤ ‖u‖L∞(Ω) ∀ i ∈ {1, ..., n}.Together with (7), this implies
∣
∣
∣
∣
∣

n∑

i=1

πi(u)φi(x)

∣
∣
∣
∣
∣
≤ max

i
{|πi(u)|}

n∑

i=1

φi(x) ≤ ‖u‖L∞(Ω) ∀x ∈ Ω,whih gives the assertion.5. Convergene analysisWith the above results at hand, in partiular Lemmata 4.3 and 4.4, one anextend the theory from Meyer (2008) to problem (P). The analysis of Meyer(2008) is mainly based on the existene of funtions ud ∈ Uh and uc ∈ U whihare feasible for one of the problems (P) or (Ph), but in some sense lose to thesolution of the other problem. In Meyer (2008), the proofs are presented for thease of box onstraints on the state. With the help of the support funtional, thearguments an easily be adapted to the more general state onstraint in (P).For onveniene of the reader, this is demonstrated in the following setion.We haraterize the onvex set K by means of the support funtional: sinethe interior of K is not empty by Assumption 2.2, the supporting hyperplanetheorem implies
intK =

⋂

µ∈V ∗

∞
, µ6=0

{v ∈ V∞ | 〈µ , v〉V ∗

∞
,V∞

< s(µ)}, (13)where s : V ∗
∞ → R denotes the support funtional, i.e. s(µ) = supv∈K〈µ , v〉V ∗

∞
,V∞(see, e.g., Luenberger, 1969). Based on Assumption 2.2, we �nd the followingLemma 5.1 There is a onstant τ > 0 suh that

〈µ , S û〉V ∗

∞
,V∞

≤ s(µ) − τ for all µ ∈ V ∗
∞ with ‖µ‖V ∗

∞
= 1 (14)holds true.



Optimal ontrol of the Stokes equations 263Proof. First, sine S û ∈ intK by Assumption 2.2, there exists an r > 0 suhthat {v ∈ V∞ | ‖v − S û‖V∞
≤ r} ⊂ K. Hene, for all w ∈ V∞ with ‖w‖V∞

= 1,we have S û± r w ∈ K. Now let µ with ‖µ‖V ∗

∞
= 1 be arbitrary. Sine

‖µ‖V ∗

∞
= sup

‖w‖V∞
=1

|〈µ , w〉V ∗

∞
,V∞

| = 1,there is a ŵ with ‖ŵ‖V∞
= 1 suh that |〈µ , ŵ〉| ≥ 1/2. For the rest of the proofassume that 〈µ , ŵ〉 ≥ 1/2 and de�ne v̂ := S û+r ŵ. If −〈µ , ŵ〉 ≥ 1/2, the proofan be arried out analogously with v̂ := S û − r ŵ. Clearly, by onstrution,

v̂ ∈ K suh that
s(µ) ≥ 〈µ , v̂〉V ∗

∞
,V∞

= 〈µ , S û〉V ∗

∞
,V∞

+ r〈µ , ŵ〉V ∗

∞
,V∞

≥ 〈µ , S û〉V ∗

∞
,V∞

+
r

2
.Hene, setting τ = r/2 �nally gives the assertion.Next reall that σ is a �xed, but arbitrary number in [σ̄, d/(d − 1)[ and

Wσ = W 1,σ(Ω)d.Definition 5.1 Given σ ∈ [σ̄, d/(d− 1)[ and h > 0, we set
η(σ, h) := h2d( 1

2−
1
σ )+2

β(σ, h) := max{η(σ, h), δ(h)},where δ(h) is de�ned as in Assumption 3.2. Moreover, we de�ne
uc := ūh + γcδ(h)(û − ūh)

ud := Πh ū+ γd β(σ, h)(Πh û− Πh ū),with onstants γc, γd > 0 de�ned in the subsequent.Lemma 5.2 There exists a onstant γc independent of h suh that the funtion
uc is feasible for (P) for all h < h1, where h1 > 0 is hosen su�iently smallso that γc δ(h) ≤ 1.Proof. First we show S uc ∈ K. To this end, let µ ∈ V ∗

∞, µ 6= 0, be arbitraryand de�ne
µ̃ :=

1

‖µ‖V ∗

∞

µ.suh that ‖µ̃‖V ∗

∞
= 1. Then, by Lemma 5.1, one obtains

〈µ̃ , S uc〉V ∗

∞
,V∞

= (1 − γcδ(h))〈µ̃ , S ūh〉V ∗

∞
,V∞

+ γcδ(h)〈µ̃ , Sû〉V ∗

∞
,V∞

≤ (1 − γcδ(h))
[
〈µ̃ , Sh ūh〉V ∗

∞
,V∞

+ 〈µ̃ , (S − Sh)ūh〉V ∗

∞
,V∞

]
+ γcδ(h)

(
s(µ̃) − τ

)

≤ s(µ̃) − γcδ(h)τ + (1 − γcδ(h))‖µ̃‖V ∗

∞
‖(S − Sh)ūh‖V∞

≤ s(µ̃) − δ(h)
(
γcτ − c(1 − γcδ(h))‖ūh‖L∞(Ω)d

) (15)



264 J. C. DE LOS REYES, C. MEYER, B. VEXLERwhere we used Assumption 3.2, (14), and the feasibility of ūh for (Ph) whihimplies 〈µ̃ , Sh ūh〉 ≤ s(µ̃). In view of the ontrol onstraints in (P), we obtainfor the seond addend in the last inequality
γcτ − c(1 − γcδ(h))‖ūh‖L∞(Ω)d ≥ γcτ − c max{|a|, |b|}suh that 〈µ̃ , S uc〉 < s(µ̃) is ful�lled if we hoose γc > c max{|a|, |b|}/τ . Hene,

uc satis�es
〈µ , S uc〉V ∗

∞
,V∞

= ‖µ‖V ∗

∞
〈µ̃ , S uc〉V ∗

∞
,V∞

< ‖µ‖V ∗

∞
s(µ̃) = s(µ),sine the support funtional is learly sublinear. As µ was hosen arbitrary, (13)implies S uc ∈ K if γc > c max{|a|, |b|}/τ . Furthermore, if we hoose h1 smallenough suh that γcδ(h) ≤ 1, then uc is a onvex linear ombination of twofuntions in {u ∈ L∞(Ω)d | a ≤ u(x) ≤ b a.e. in Ω} and therefore also satis�esthe ontrol onstraints in (P). Consequently, the assertion holds true.To prove a similar result for the other diretion, i.e., the feasibility of ud for(Ph), we need some auxiliary results whih are presented in the subsequent.Lemma 5.3 Suppose u ∈Wσ is given. Then

‖S(u− Πh u)‖V∞
≤ c η(σ, h) ‖u‖Wσholds true with a onstant c > 0 independent of h.Proof. The mapping properties of S in Proposition 2.1 imply

‖S(u− Πh u)‖V∞
≤ c ‖S‖L(W∗

σ ,W 1,σ′ (Ω)d) ‖u− Πh u‖W∗

σ
≤ c η(σ, h) ‖u‖Wσ

,where we used Lemma 4.4 and the de�nition of η.Lemma 5.4 Let µ̃ ∈ V ∗
∞ with ‖µ̃‖V ∗

∞
= 1 be arbitrary. Then, for every u ∈

Wσ ∩ L∞(Ω)d,
〈µ̃ , Sh Πh u〉V ∗

∞
,V∞

≤ 〈µ̃ , S u〉V ∗

∞
,V∞

+ c β(σ, h)
(
‖u‖Wσ

+ ‖u‖L∞(Ω)d

)is satis�ed with a onstant c > 0 independent of h and u.Proof. In view of ‖µ̃‖V ∗

∞
= 1, we �nd

〈µ̃ , Sh Πh u〉V ∗

∞
,V∞

= 〈µ̃ , S u〉V ∗

∞
,V∞

+ 〈µ̃ , S(Πh u− u)〉V ∗

∞
,V∞

+ 〈µ̃ , (Sh − S)Πh u〉V ∗

∞
,V∞

≤ 〈µ̃ , S u〉V ∗

∞
,V∞

+ ‖µ̃‖V ∗

∞

‖S(Πh u− u)‖V∞
+ ‖µ̃‖V ∗

∞

‖(Sh − S)Πh u‖V∞

≤ 〈µ̃ , S u〉V ∗

∞
,V∞

+ c
(
η(σ, h) ‖u‖Wσ

+ δ(h) ‖u‖L∞(Ω)d

)where we used Lemma 5.3, Assumption 3.2, and Lemma 4.5. With the de�nitionof β (see De�nition 5.1), the assertion is veri�ed.



Optimal ontrol of the Stokes equations 265Lemma 5.5 There exists a onstant γd depending on ū and σ, but not on h,suh that ud is feasible for (Ph) if h < h2, where h2 > 0 is hosen so that
γd β(σ, h) ≤ 1.Proof. Let µ ∈ V ∗

∞ again be arbitrary and de�ne µ̃ = µ/‖µ‖V ∗

∞
as in the proofof Lemma 5.2. Similarly to (15), we estimate

〈µ̃ , Sh ud〉V ∗

∞
,V∞

= (1 − γdβ(σ, h))〈µ̃ , Sh Πh ū〉V ∗

∞
,V∞

+ γdβ(σ, h) 〈µ̃ , Sh Πh û〉V ∗

∞
,V∞

≤ (1 − γdβ(σ, h))
[

〈µ̃ , S ū〉V ∗

∞
,V∞

+ c β(σ, h)
(
‖ū‖Wσ

+ ‖ū‖L∞(Ω)d

)]

+γdβ(σ, h)
[

〈µ̃ , S û〉V ∗

∞
,V∞

+ c β(σ, h)
(
‖û‖Wσ

+ ‖û‖L∞(Ω)d

)]

(16)
≤ s(µ̃) − β(σ, h)

[

γdτ − c
(
‖ū‖Wσ

+ ‖ū‖L∞(Ω)d + ‖û‖Wσ
+ ‖û‖L∞(Ω)d

︸ ︷︷ ︸

:= cu

)]

.Hene, if we hoose γd > c cu/τ , then one obtains 〈µ̃ , Sh ud〉 < s(µ̃) whih gives,in turn, Sh ud ∈ K by the same arguments as in the proof of Lemma 5.2. Notiethat γd is independent of h, but depends on ‖ū‖Wσ
and therefore on ū and σ.Moreover, we have that

a ≤ (Πhu)(x) ≤ b a.e. in Ω,see (9). Hene, the same arguments as in the proof of Lemma 5.2 give
a ≤ ud(x) ≤ b a.e. in Ω,for all h < h2 if h2 is su�iently small, namely ful�lls γdβ(σ, h) ≤ 1. Sine

ud ∈ Uh by onstrution, we therefore end up with ud ∈ Uh
ad.Now we are in the position to prove our main result whih reads as follows:Theorem 5.1 Let ū and ūh denote the optimal solutions of (P) and (Ph), re-spetively. Then, under Assumptions 2.1�2.2 and 3.1�3.3, the following estimateholds true for all h < min{h1, h2}

‖ū− ūh‖L2(Ω)d + ‖S ū− Sh ūh‖L2(Ω)d ≤ C
√

max{η(σ, h), δ(h)}with a onstant C > 0 whih depends on ū and σ, but not on h.Proof. Based on a tehnique introdued in Falk (1973), it is shown in Meyer(2008) that the variational inequalities (3) and (8) imply for all u ∈ Uad and all
uh ∈ Uh

ad
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α

2
‖ū− ūh‖2

L2(Ω)d +
1

2
‖S ū− Sh ūh‖2

L2(Ω)d

≤ c
[

‖uh − ū‖2
L2(Ω)d +

(
‖ū‖Wσ

+ ‖S ū− z‖L2(Ω)d

)(
‖u− ūh‖W∗

σ
+ ‖uh − ū‖W∗

σ

)

+‖uh − ū‖2
W∗

σ
+ ‖(S − Sh)uh‖2

L2(Ω)d

+‖S ū− z‖L2(Ω)d

(
‖(S − Sh)ūh‖L2(Ω)d + ‖(S − Sh)uh‖L2(Ω)d

)]

. (17)Here, the onstant c depends on α, but not on ū, ūh, u, and uh. Thanks toLemmata 5.2 and 5.5, we are allowed to insert u = uc and uh = ud in (17).Then, by means of Lemmata 4.3 and 4.4 and the de�nition of β, we obtain
‖ud − ū‖L2(Ω)d ≤ ‖Πhū− ū‖L2(Ω)d + γd β(σ, h) ‖Πhû− Πhū‖L2(Ω)d

≤ c
(
‖ū‖Wσ

+ ‖û‖Wσ

)
max{

√

η(σ, h), β(σ, h)}
(18)

‖ud − ū‖W∗

σ
≤ ‖Πhū− ū‖W∗

σ
+ γd β(σ, h) ‖Πhû− Πhū‖W∗

σ

≤ c
(
‖ū‖Wσ

+ ‖û‖Wσ

)
β(σ, h).

(19)In ase of u = uc, we have
‖uc − ūh‖W∗

σ
≤ c γc δ(h) ‖û− ūh‖W∗

σ
. (20)For the remaining expressions in (17), (6) implies

‖(Sh − S)ud‖L2(Ω)d ≤ c δ(h) ‖Πhū+ γd δ(h)(Πhû− Πhū)‖L∞(Ω)d

≤ c
(
‖ū‖L∞(Ω)d + ‖û‖L∞(Ω)d

)
δ(h)

(21)
‖(Sh − S)ūh‖L2(Ω)d ≤ c δ(h) ‖ūh‖L∞(Ω)d , (22)where we used Lemma 4.5 for the estimation of the right hand side in (21).Notie that ū and û are bounded in Wσ and L∞(Ω)d due to Assumption 2.2and Theorem 2.1, whereas ūh is uniformly bounded in L∞(Ω)d due to the ontrolonstraints. Inserting (18)�(22) in (17) �nally implies
α

2
‖ū− ūh‖2

L2(Ω)d +
1

2
‖S ū− Sh ūh‖2

L2(Ω)d

≤ c
[

max{η(σ, h), β(σ, h)2} +
(
‖ū‖Wσ

+ ‖S ū− z‖L2(Ω)d

) (
β(σ, h) + δ(h)

)

+ β(σ, h)2 + δ(h)2 + ‖S ū− z‖L2(Ω)d δ(h)
]

≤ C2 max{η(σ, h), δ(h)}thanks to the de�nition of β. For the last estimate we taitly assumed that
β(σ, h) ≤ 1, whih is learly ful�lled if the mesh size is small enough. Aninspetion of the proof yields that C depends on ū and σ, but not on h.



Optimal ontrol of the Stokes equations 267Corollary 5.1 Suppose that, in addition to the assumptions of Theorem 5.1,
‖(Gh −G)u‖H1(Ω)d×L2(Ω) ≤ c ϑ(h) ‖u‖L∞(Ω)dis ful�lled with ϑ : R

+ → R
+, ϑ(h) → 0 as h ↓ 0. Then, (v̄, p̄) = G ū and

(v̄h, p̄h) = Gh ūh satisfy
‖v̄ − v̄h‖H1(Ω)d + ‖p̄− p̄h‖L2(Ω) ≤ C max{ϑ(h),

√

δ(h),
√

η(σ, h)}with a onstant C independent of h.Proof. The proof is almost standard. The mapping properties of G imply
‖Gū−Ghūh‖H1(Ω)d×L2(Ω)

≤ ‖G(ū− ūh)‖H1(Ω)d×L2(Ω) + ‖(G−Gh)ūh‖H1(Ω)d×L2(Ω)

≤ ‖G‖L(L2(Ω)d,H1(Ω)d×L2(Ω))‖ū− ūh‖L2(Ω)d + c ϑ(h) ‖ūh‖L∞(Ω)d ,so that Theorem 5.1 yields the assertion.6. Conrete numerial settingsIn the subsequent, several ontrol problems and disretization tehniques aredisussed that are overed by the above theory. The ritial point is to verify(6) for a onrete disretization suh that δ(h), i.e., the L∞-error of the �niteelement approximation, is not worse than η(σ, h), i.e., the interpolation error.To keep the disussion onise, we restrit ourselves to disretization shemesthat ful�ll the disrete inf-sup ondition so that there is no need for stabilization.We rely on the following assumptions:Assumption 6.1 The spaes Vh ⊂ V and Lh ⊂ L satisfy the following ondi-tions
• There is a number k ∈ N, k ≥ 1, suh that

Vh ⊂ C(Ω̄)d, Pk(T )d ⊆ Vh|T , Pk−1(T ) ⊆ Lh|T ∀ T ∈ Th. (23)Consequently, there exist interpolation operators ivh and iph that ful�ll stan-dard approximation properties. In partiular, if t ∈ {0, 1} and q, r, s ∈
[1,∞] are given suh that W 2,r(Ω) →֒ W t,q(Ω) and W 1,s(Ω) →֒ Lq(Ω),then there holds:
‖∇t(v − ivh v)‖Lq(T ) ≤ c h2−t+d(1/q−1/r) ‖∇2v‖Lr(T ) ∀ v ∈W 2,r(T ) (24)
‖p− iph p‖Lq(T ) ≤ c h1+d(1/q−1/s) ‖∇p‖Ls(ωT ) ∀ p ∈ W 1,s(ωT ) (25)for all T ∈ Th. Here, ωT denotes the union of pathes assoiated to theansatz funtions that are non-zero on T , and c > 0 does not depend on h.
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• Inverse property: For all vh ∈ Vh,

‖vh‖L∞(T )d ≤ c h−
d
2 ‖vh‖L2(T )d ∀T ∈ Th (26)is valid with a onstant c > 0 independent of h.

• Disrete inf-sup ondition: There is a real number γ > 0, independent of
h, suh that

sup
φh∈Vh

(ph,∇ · φh)

‖∇φh‖
≥ γ ‖ph‖ ∀ ph ∈ Lh.The onditions in Assumption 6.1 are ful�lled by many standard �nite el-ements, in partiular by all examples mentioned in the following. Beside As-sumption 6.1, we suppose Assumptions 2.1�2.2, 3.1, and 3.3 to be satis�ed inall what follows. We again point out that the assumptions on the ontrol dis-retization are ful�lled by onstant and linear (bilinear) ansatz funtions (seeRemark 7). Furthermore, we assume the mesh size to be small enough to ensure

h < min{h1, h2} throughout the following (see Theorem 5.1). The aim of thesubsequent setions is to verify Assumption 3.2.6.1. Smooth domains with Ω′ = ΩIn this setion we onsider the following setting: The boundary Γ is of lass C2and the subdomain Ω′, where the state onstraints are imposed, oinides withthe domain Ω. Before we start the disussion, let us point out that we assumea triangulation that exatly �ts the boundary whih is fairly arti�ial in aseof a smooth boundary. Moreover, we taitly supposed that the integrals in (5)are exatly evaluated whih is learly hard to implement if Ω is not polygonallybounded. Therefore, a realisti disretization would ause other types of errors,whih are negleted here, sine this would go beyond the sope of this paper.Notie that these problems do learly not arise if Ω has a polygonal boundaryas in the ase of the subsequent setions. We apply the result of Chen (2006),whih requires some additional assumptions on the disretization, in partiulara loal L2-error estimate of the Ritz-projetion, see Chen (2006, Setion 2) fordetails. The additional onditions are veri�ed by Arnold and Liu (1995) fordi�erent types of �nite elements suh as
• all stable disretizations formed with Lagrange elements suh as for in-stane the Taylor-Hood element (i.e. P2/P1-element)
• the Mini element, i.e., the unstable P1/P1-element enrihed with bubblefuntions.Using a tehnique developed in Shatz (1998), Chen proved the followingresult:Theorem 6.1 Assume that the solution of (1) satis�es (v, p) ∈ W 1,∞(Ω)d ×

L∞(Ω). There is a onstant c > 0, independent of h, v, and p, suh that the



Optimal ontrol of the Stokes equations 269solution of (5), denoted by (vh, ph) ∈ Vh × Lh, satis�es
‖v − vh‖L∞(Ω)d ≤ c h | log(h)|m

(
inf

w∈Vh

‖v − w‖W 1,∞(Ω)d + inf
q∈Lh

‖q − p‖L∞(Ω)

)
,where m = 0 if k > 1 and m = 1 if k = 1.If Ω is of lass C2, then G : Lp(Ω)d →W 2,p(Ω)d×W 1,p(Ω) for all 1 < p <∞(see Temam, 1977, Proposition 2.3). Therefore, together with (24) and (25),Chen's result yieldsCorollary 6.1 For every ε > 0, there is a onstant cε > 0, independent of hand u, so that

‖v − vh‖L∞(Ω)d ≤ cε h
2−ε ‖u‖L∞(Ω)d .Theorem 6.2 For every ε > 0, there holds

‖ū− ūh‖L2(Ω)d + ‖v̄ − v̄h‖H1(Ω)d + ‖p̄− p̄h‖L2(Ω) ≤ C h2− d
2−ε (27)with a onstant C > 0 whih depends on ε, but not on h.Proof. Let ε > 0 be given. In view of Corollary 6.1, Assumption 3.2 is ful�lledwith a onstant c depending on ε and δ(h) = h2−2ε. Moreover, by hoosing

σ = max
{

σ̄, d
d−1+ε

}, we obtain η(σ, h) ≤ h4−d−2ε (see De�nition 5.1). Thus,Theorem 5.1 and Corollary 5.1 together with standard �nite element results givethe assertion.Remark 6.1 Notie that C depends on ε �rstly beause of the onstant cε fromCorollary 6.1 and seondly due to the oupling of σ and ε.Remark 6.2 As above, let σ = σ(ε) = max
{

σ̄, d
d−1+ε

} with a �xed, but arbi-trary ε > 0. Then, Lemma 4.3 implies
‖u− Πhu‖L2(Ω)d ≤ c h2− d

2−ε ‖u‖Wσ(ε)
∀u ∈Wσ(ε) (28)and therefore, the order in (27) oinides with the one of the interpolation error.6.2. Convex domains with polygonal or polyhedral boundaryFirst, we onsider the ase Ω′ = Ω. In ase of polygons and polyhedrons,respetively, the following regularity result is known. For the proof, we refer toDauge (1989) and Kellog and Osborn (1976).Theorem 6.3 Let Ω be a onvex domain with polygonal (d = 2) or polyhedral(d = 3) boundary. Then, for all u ∈ L2(Ω)d, the unique solution (v, p) ∈ V × Lof (1) belongs to H2(Ω)d ×H1(Ω).



270 J. C. DE LOS REYES, C. MEYER, B. VEXLERBased on this result and standard �nite element error estimates, one provesfor an arbitrary u ∈ L2(Ω)

‖v − vh‖L∞(Ω)d ≤ c h2−d
2 ‖u‖L2(Ω)d ,where v = S u and vh = Sh u and c > 0 only depends on Ω (see, for instane,Rösh and Vexler, 2006, Lemma 3.2). Therefore, by setting δ(h) = h2−d/2and σ = max{σ̄, 4/3} (notie that 4/3 < d/(d − 1) for d = 2, 3) suh that

η(δ, h) ≤ h2−d/2, Theorem 5.1 and Corollary 5.1 implyTheorem 6.4 Suppose that Ω is a onvex domain with polygonal (d = 2) orpolyhedral (d = 3) boundary. Then, we have
‖ū− ūh‖L2(Ω)d + ‖v̄ − v̄h‖H1(Ω)d + ‖p̄− p̄h‖L2(Ω) ≤ C h1− d

4with a onstant C > 0 independent of h.Notie that the order of onvergene now di�ers from the one of the interpo-lation error. The situation hanges if we restrit ourselves to two-dimensionaldomains with polygonal boundary and a maximum angle less or equal π/2. Tosee this, let us de�ne the weighted L2-norm as follows:
‖q‖2

ςν :=

∫

Ω

|q(x)|2 ς(x)ν dx, q ∈ L2(Ω)d, (29)where ς : Ω̄ → R+ is de�ned by
ς(x) :=

√

|x− x0|2 + θ2, (30)with given x0 ∈ Ω and θ > h > 0.Theorem 6.5 Let Ω ⊂ R
2 be a onvex polygon whose maximum aperture an-gle is less or equal π/2. Moreover, suppose that (Vh, Lh) satis�es the disreteweighted inf-sup ondition, i.e., for every θ > h and every point x0 ∈ Ω, thereholds

sup
φh∈Vh

(ph,∇ · φh)

‖∇φh‖ς2

≥ c | log θ|−1/2‖ph‖ς−2 ∀ ph ∈ Lh, (31)with a onstant c > 0 independent of h, θ, and x0. Then, for every ε > 0, thedisrete solution satis�es
‖ū− ūh‖L2(Ω)2 + ‖v̄ − v̄h‖H1(Ω)2 + ‖p̄− p̄h‖L2(Ω) ≤ C h1−εwith a onstant C > 0 whih depends on ε, but not on h.



Optimal ontrol of the Stokes equations 271Proof. Aording to a result from Kozlov, Maz'ya and Rossmann (2001, Setion5.8.1), for all q ∈ [1,∞[, the solution v ∈ (V × L) of (1) belongs to W 2,q(Ω)2 ×
W 1,q(Ω), provided that u ∈ Lq(Ω)2, and there holds

‖v‖W 2,q(Ω)2 + ‖p‖W 1,q(Ω) ≤ c ‖u‖Lq(Ω)2 . (32)Moreover, Duran and Nohetto (1990) proved that, for all disretizations ful-�lling Assumption 6.1 and (31), there exists a onstant c > 0 independent of hsuh that
‖v − vh‖L∞(Ω)2 ≤ c h | log(h)|3

(
inf

w∈Vh

‖v − w‖W 1,∞(Ω)2 + inf
q∈Lh

‖q − p‖L∞(Ω)

)
.Hene, together with (32), (24) and (25) give the existene of a onstant cε > 0,depending on ε, but not on h, suh that for every ε > 0

‖v − vh‖L∞(Ω)2 ≤ cε h
2−ε ‖u‖L∞(Ω)2 .Then an argument, analogous to the proof of Theorem 6.2, �nally implies theassertion.Remark 6.3 The disrete weighted inf-sup ondition (31) is satis�ed by variousommon stable �nite elements, as proven in Duran and Nohetto (1990). Weonly mention

• the Taylor-Hood element on triangles or quadrilaterals (i.e., P2/P1- and
Q2/Q1-elements, respetively)

• the Mini element
• the Crouzeix-Raviart element of di�erent order k ≥ 2, i.e., the Pk/Pk−1-element enrihed with bubble funtions.If the state onstraints are only imposed in a ompat subset of Ω, the resultsof Duran and Nohetto (1990) allow to get same the order of onvergene asin the interpolation error (28), even if the maximum angle is larger than π/2.Notie that, in the presene of no-slip boundary onditions, it appears naturalto onsider the state onstraints only in the interior of Ω, as illustrated in theintrodution.Theorem 6.6 Assume that Ω is a onvex polygon and let Ω′ ⊂ Ω be given.Furthermore, we assume that, for every h, a union of ells of Th, denoted by Ω′′,exists that ontains Ω′ and ful�lls dist(Ω′,Ω \ Ω′′) =: d > 0 and dist(Ω′′,Γ) =:

δ > 0 with d and δ independent of h. Furthermore, suppose that (Vh, Lh) satis�esthe disrete weighted inf-sup ondition (31). Then, for every ε > 0, there is aonstant C > 0 depending on ε, but not on h, suh that
‖ū− ūh‖L2(Ω)2 + ‖v̄ − v̄h‖H1(Ω)2 + ‖p̄− p̄h‖L2(Ω) ≤ C h1−ε.



272 J. C. DE LOS REYES, C. MEYER, B. VEXLERProof. The proof is similar to the proof of Duran and Nohetto (1990, Theorem4.1). In view of Theorem 6.3 and embedding theorems for d = 2, we have
∇v ∈ Lq(Ω) for all q < ∞. Thus, Theorem 4.1 in Galdi (1994) yields for every
q ∈ [1,∞[ that (v, p) ∈ W 2,q

loc (Ω)2 ×W 1,q
loc (Ω) if u ∈ Lq

loc(Ω)2, whih is learlyful�lled due to the ontrol onstraints. Thus we obtain (v, p) ∈ W 2,q(Ω′′)2 ×
W 1,q(Ω′′) for all q < ∞. Based on (31), it is shown in Duran and Nohetto(1990) that
‖v−vh‖2

ς−4 ≤ c
h2

θ2
| log θ|3

(

‖∇(v−ivhv)‖2
ς−2 +‖v − ivhv‖2

ς−4 +‖p− iphp‖2
ς−2

) (33)holds for all θ > h > 0 provided that Ω is a onvex polygon. Here, ς and theassoiated norms are de�ned as in (30) and (29). Reall that V∞ = L∞(Ω′)2.We start by estimating
‖v − vh‖V∞

≤ ‖v − ivhv‖V∞
+ ‖vh − ivhv‖V∞

.Sine |vh − ivhv| ∈ C(Ω̄′), there is an x0 ∈ T̄0 ⊆ Ω′ suh that ‖vh − ivhv‖V∞
=

|vh(x0) − ivhv(x0)|. In all what follows, we use this x0 in the de�nition of ς in(30). The inverse estimate (26) implies
|vh(x0) − ivhv(x0)| ≤ ‖vh − ivhv‖L∞(T0)2

≤ c h−1 ‖vh − ivhv‖L2(T0)2 ≤ c
θ2

h
‖vh − ivhv‖ς−4 ,where the last estimate follows from the de�nition of ‖ · ‖ς−4 beause of θ > h.Now, one an apply (33) and ontinue with

‖v − vh‖V∞
≤ ‖v − ivhv‖V∞

+ c θ| log θ| 32
(

‖∇(v − ivhv)‖ς−2 + ‖p− iphp‖ς−2

)

+ c
(θ2

h
+ θ| log θ|3/2

)

‖v − ivhv‖ς−4 .For an arbitrary w ∈ L∞(Ω) and ν ≥ 0, we obtain
‖w‖ς−(2+ν) ≤ ‖w ς−(1+ν/2)‖L2(Ω′′) + ‖w ς−(1+ν/2)‖L2(Ω\Ω′′)

≤ ‖w‖L∞(Ω′′)

∫

Ω′′

ς−(2+ν) dx
1
2 + c ‖w‖L2(Ω),where we used the norm equivalene of ‖ · ‖ς−(2+ν) and ‖ · ‖L2 on Ω \ Ω′′ whihholds due to dist(x0,Ω \ Ω′′) ≥ d > 0. Together with

∫

Ω′′

ς−(2+ν) dx ≤
{
c θ−ν , ν > 0
c | log θ|, ν = 0



Optimal ontrol of the Stokes equations 273(see Duran and Nohetto, 1990), it follows with ν = 0 and ν = 2, respetively,that
‖v − vh‖V∞

≤ ‖v − ivhv‖L∞(Ω′′)2

+ c θ| log θ|2
(

‖∇(v − ivhv)‖L∞(Ω′′)2 + ‖∇(v − ivhv)‖L2(Ω)2

+ ‖p− iphp‖L∞(Ω′′) + ‖p− iphp‖L2(Ω)

)

+ c
( θ

h
+ | log θ|3/2

)(

‖v − ivhv‖L∞(Ω′′)2 + ‖v − ivhv‖L2(Ω)2

)

.Now we hoose θ = h| log h| suh that θ > h for su�iently small h. Beause ofthe regularity of (v, p) stated at the beginning of the proof, applying (24) and(25) then yields the existene of a onstant cε > 0, depending on ε, suh that
‖v − vh‖V∞

≤ cε h
2−ε ‖u‖L∞(Ω)2 ∀ ε > 0.Here, we taitly assumed that h ≤ 1/e = 0.3679 to ensure | log(h| log h|)| ≤

| log h|. Notie, moreover, that the assumption dist(Ω′′,Γ) =: δ > 0 implies
dist(ωT ,Γ) > 0 for all T ∈ Ω′′ if h is su�iently small. Hene, the aboveregularity result implies

p ∈ W 1,q

(
⋃

T⊂Ω′′

ωT

)

∀ q <∞suh that (25) applies to ‖p − iphp‖L∞(Ω′′). For the rest of the proof, we argueas in the proof of Theorem 6.2, whih gives the assertion.6.3. Disretization of the dataUp to now, problem (Ph) is no �nite dimensional optimization problem sinewe have not disretized the problem data, i.e., the desired state z and the set
K. To this end, let us introdue the spae of linear (bilinear) �nite elements
V

(1)
h ⊂ Vh and the standard nodewise linear interpolant i(1)h : C(Ω̄)d → V

(1)
h .In addition, we introdue a disretization of K, denoted by Kh ⊂ V∞. Theorresponding ompletely disrete problem for

uh =

n∑

i=1

uiφi,for simpliity also denoted by (Ph), is then given with
(Ph)







min Jh(vh, uh) :=
1

2
‖vh − i

(1)
h z‖2

L2(Ω)d +
α

2
‖uh‖2

L2(Ω)ds.t. vh = Sh uhand i
(1)
h vh ∈ Kh

uh ∈ Uh, a ≤ ui ≤ b ∀ i ∈ {1, ..., n}.



274 J. C. DE LOS REYES, C. MEYER, B. VEXLERRemark 6.4 Notie that it depends on the onrete struture of K and itsdisretization whether (Ph) is straight forward to implement as a �nite dimen-sional optimization problem or not. In the ases, disussed in this paper, thelinear (bilinear) interpolation operator i(1)h allows a nodewise evaluation of thestate onstraints and hene an easy implementation of (Ph) if K is disretizedproperly (see Remark 6.6 below).To shorten the desription, we assume in all what follows that Assumption3.2 is ful�lled with δ(h) = c h2−ε with a �xed but arbitrary ε > 0 (see Setions6.1 and 6.2). Moreover, for the sake of simpliity, we suppose that Ω′ is a unionof ells. If these assumptions are not ful�lled, the subsequent analysis an easilybe modi�ed.Assumption 6.2 Beside Assumptions 2.1�2.2 and 3.1�3.3, assume that z ∈
H2(Ω)d. Furthermore, let Assumption 3.2 hold with

δ(h) = c h2−ε (34)with some �xed but arbitrary ε > 0. Moreover, let Ω′ be a union of ells of Th forevery h > 0 and assume that S : L∞(Ω)d →W 2,q(Ω′)d for all q <∞. Moreover,suppose that Kh is onvex with assoiated support funtional sh : V ∗
∞ → R thatful�lls

|s(µ) − sh(µ)| ≤ cs h
2−ε ‖µ‖V ∗

∞
∀µ ∈ V ∗

∞ (35)with a onstant cs > 0. To guarantee the existene of a solution to (Ph), werequire the existene of a feasible point, i.e., there is a û ∈ Uh with a ≤ ûi ≤
b ∀ i ∈ {1, ..., n} and i(1)h Sh ûh ∈ Kh.Remark 6.5 Notie that the hypothesis on S and δ(h) agree with the theorypresented in Setions 6.1 and 6.2 (see in partiular, Corollary 6.1 and the proofsof Theorems 6.5 and 6.6).Lemma 6.1 Suppose that Assumption 6.2 holds. Let u ∈ L∞(Ω)d be arbitraryand set as before vh = Sh u. Then, for every ε > 0, there is a onstant c > 0,independent of u and h, suh that

‖vh − i
(1)
h vh‖V∞

≤ c h2−ε ‖u‖L∞(Ω)d .Proof. The arguments are standard. For the onveniene of the reader, wesketh the proof for a single omponent of vh, for simpliity also denoted by vh.Hene V∞ = L∞(Ω′). Let ε > 0 be arbitrary. We start by estimating
‖vh−i(1)h vh‖L∞(Ω′) ≤ ‖i(1)h (v−vh)‖L∞(Ω′) + ‖v−i(1)h v‖L∞(Ω′) + ‖v−vh‖L∞(Ω′)



Optimal ontrol of the Stokes equations 275with v = S u. Sine Ω′ is a union of ells by assumption, we �nd for the �rstaddend
‖i(1)h (v − vh)‖L∞(Ω′) = max

T⊂Ω′

‖i(1)h (v − vh)‖L∞(T ) = max
T⊂Ω′

max
xi∈T̄

|v(xi) − vh(xi)|

≤ max
T⊂Ω′

‖v − vh‖L∞(T ) = ‖v − vh‖L∞(Ω′),where we used that i(1)h is the standard linear (bilinear) interpolation operator.Here xi denotes a node of Th. Moreover, i(1)h satis�es
‖v − i

(1)
h v‖L∞(Ω′) ≤ c h2−d/q‖∇2v‖Lq(Ω′) ∀ q <∞(see Brenner and Sott, 1994, or Bernardi, 1989). Thus, by hoosing q = d/ε <

∞, the mapping properties of S together with Assumption 3.2 and (34), i.e.
‖v − vh‖L∞(Ω′) ≤ c h2−ε‖u‖L∞(Ω),give the assertion.Theorem 6.7 Assume that Assumption 6.2 is ful�lled. Then, for every ε > 0,the unique solution of (Ph) satis�es

‖ū− ūh‖L2(Ω)d + ‖v̄ − v̄h‖H1(Ω)d + ‖p̄− p̄h‖L2(Ω)d ≤ C h2− d
2−εwhere the onstant C > 0 depends on ε but not on h.Proof. Sine z is su�iently smooth by assumption, we have ‖z− i(1)h z‖L2(Ω)d ≤

c h2 ‖z‖H2(Ω)d due to standard interpolation estimates. In view of this, thedisretization of z an easily inorporated in the presented analysis. The under-lying arguments are presented in detail in Meyer (2008, Setion 7). In addition,due to Assumption 3.3, it is su�ient to require the ontrol onstraints only inthe oe�ients of uh as done in (Ph). If K is disretized, then the proofs ofLemmata 5.2 and 5.5 have to be modi�ed, more preisely (15) and (11), respe-tively. We exemplarily onsider (11), the arguments in ase of (15) are similar.Using (35) and Lemmata 5.1 and 6.1, we obtain for all µ̃ with ‖µ̃‖V ∗

∞
= 1

〈µ̃ , i(1)h Sh ud〉V ∗

∞
,V∞

≤ 〈µ̃ , Sh ud〉V ∗

∞
,V∞

+ ‖Sh ud − i
(1)
h Sh ud‖V∞

≤ s(µ̃) − c h2− d
2−ε(γdτ − cu) + c h2−ε ‖ud‖L∞(Ω)d

≤ sh(µ̃) − c h2− d
2−ε(γdτ − cu − cs),where cu is de�ned as in (11). Hene, if we hoose γd > (cu + cs)/τ , then thesame arguments as in the proof of Lemma 5.5 imply that ud is feasible for (Ph).Again γd depends on ū and σ, but not on h. Based on the feasibility of uc and

ud, one an argue as in the proof of Theorem 5.1 to verify the assertion.



276 J. C. DE LOS REYES, C. MEYER, B. VEXLERLet us investigate two exemplary state onstraints that are also used for thenumerial tests in Setion 7:
K(1) :=

{
v ∈ V∞|va(x) ≤ v(x) ≤ vb(x) a.e. in Ω′

}

K(2) :=
{
v ∈ V∞||v(x)|2

Rd ≤ ̺ a.e. in Ω′
}
.First, we onsider K(1), i.e., the ases of box onstraints. Let us assume that

Ω′ oinides with a union of ells of Th and denote the set of all nodes of Th by
N (Th). We onsider the following �nite dimensional optimization problem

(P
(1)
h )







min
uh∈Uh

Jh(vh, uh)s.t. vh = Sh uhand va,h(xi) ≤ vh(xi) ≤ vb,h(xi) ∀xi ∈ N (Th) ∩ Ω′

a ≤ ui ≤ b ∀ i ∈ {1, ..., n},with vb,h = i
(1)
h vb and va,h de�ned analogously.Corollary 6.2 Suppose that Ω is a onvex polygon and let Ω′ ⊂ Ω be a unionof ells of Th for all h > 0. Assume in addition that Ω′ ful�lls the assumptions ofTheorem 6.6. Furthermore, suppose that z ∈ H2(Ω)d and va, vb ∈ W 2,∞(Ω′)d.Then the solution of (P(1)

h ) satis�es for every ε > 0

‖ū− ūh‖L2(Ω)2 + ‖v̄ − v̄h‖H1(Ω)2 + ‖p̄− p̄h‖L2(Ω) ≤ C h1−ε,where the onstant C > 0 depends on ε, but not on h.Proof. First observe that the state onstraints in (P(1)
h ) are equivalent to theones in (Ph) if K(1) is disretized as indiated above, whih is demonstratedin the following. We exemplarily onsider the upper bound vb. The ase withlower onstraint an be disussed analogously. Let ϕi, i = 1, ...,m, denote theansatz funtions assoiated to the linear (bilinear) interpolant i(1)h . Sine theyare non-negative and satisfy ϕi(xj) = δij , the state onstraints in (P(1)

h ) areequivalent to
(i

(1)
h vh)(x) ≤ vb,h(x) a.e. in Ω′ ⇔ i

(1)
h vh ∈ K

(1)
h ,where K(1)

h is given by
K

(1)
h := {v ∈ V∞ | v(x) ≤ vb,h(x) a.e. in Ω′}. (36)Thus, the nodewise state onstraints in (P(1)

h ) indeed agree with the state on-straints in (Ph) if K(1) is disretized as done in (36).



Optimal ontrol of the Stokes equations 277To apply Theorem 6.7, we have to verify (35). Given an arbitrary v ∈ K(1),we de�ne Π
K

(1)
h

(v)(x) := min{v(x), vb,h(x)}, hene ‖v − Π
K

(1)
h

(v)‖V∞
≤ ‖vb −

vb,h‖V∞
. Therefore we have for every µ ∈ V ∗

∞

〈µ , v〉V ∗

∞
,V∞

≤ 〈µ , Π
K

(1)
h

(v)〉V ∗

∞
,V∞

+ ‖µ‖V ∗

∞
‖vb − vb,h‖V∞

∀ v ∈ K(1).Sine Π
K

(1)
h

(v) ∈ K
(1)
h , this gives

s(µ) ≤ sh(µ) + ‖µ‖V ∗

∞
‖vb − vb,h‖V∞

. (37)An analogous argument with ΠK(1)(v)(x) := min{v(x), vb(x)}, v ∈ K
(1)
h , implies

sh(µ) ≤ s(µ) + ‖µ‖V ∗

∞
‖vb − vb,h‖V∞

. (38)Together with (37), this veri�es (35) provided that vb is su�iently smooth,for instane vb ∈ W 2,∞(Ω′)d. The remaining onditions in Assumption 6.2,in partiular (34), are veri�ed by the proof of Theorem 6.6 whih gives theassertion.Remark 6.6 We point out that the introdution of the standard linear (bilin-ear) interpolant i(1)h in (Ph) allows to obtain the desired order of onvergeneeven if the state onstraints are only evaluated in the nodes of the triangulationwhih is easy to implement (see Remark 6.4). The situation hanges if K(1) isfor instane disretized using quadrati ansatz funtions whih ompliates theimplementation. Similar problems arise if the bound ̺ in K(2) is not onstantand has to be disretized.Now, let us turn to K(2), i.e., onstraints on the Eulidian norm of v. Forthis ase we set K(2)
h = K(2). The ompletely disrete problem is now given by

(P
(2)
h )







min
uh∈Uh

Jh(vh, uh)s.t. vh = Sh uhand |vh(xi)|2R2 ≤ ̺ ∀xi ∈ N (Th) ∩ Ω′

a ≤ ui ≤ b ∀ i ∈ {1, ..., n}.Corollary 6.3 Suppose that Ω is a onvex polygon and Ω′ ⊂ Ω ful�lls theassumptions of Corollary 6.2. Furthermore, assume that z ∈ H2(Ω)d. Then,the solution of (P(2)
h ) satis�es for every ε > 0

‖ū− ūh‖L2(Ω)2 + ‖v̄ − v̄h‖H1(Ω)2 + ‖p̄− p̄h‖L2(Ω) ≤ C h1−ε,where the onstant C > 0 depends on ε, but not on h.Proof. Similar arguments as in the proof of Corollary 6.2, together with theonvexity of |·|2
R2 imply that the state onstraints in (P(2)

h ) are equivalent to
|(i(1)h vh)(x)|2

R2 ≤ ̺ a.e. in Ω′. Thus, Theorem 6.7 and the same arguments as inthe proof of Theorem 6.6 give the assertion.



278 J. C. DE LOS REYES, C. MEYER, B. VEXLER7. Numerial experimentsIn this setion we perform numerial tests in order to verify the �nite elementerror estimates obtained in the previous setions. The onvex polygonal domain
Ω = (0, 1) × (0, 1) was disretized using a uniform triangular mesh. Boundaryonditions of Dirihlet type were imposed on the boundary.In the �rst example, the horizontal veloity on the upper boundary takes thevalue one, while the vertial omponent is zero. On the remaining boundarythe ondition is of no slip type. This problem is known in the literature as the"driven avity �ow".In the seond example we onsider homogeneous Dirihlet boundary ondi-tions and try to trak the �uid to the vetor �eld given by

z =

(
sin(πx)2 · sin(πy) · cos(πy)
−sin(πy)2 · sin(πx) · cos(πx)

)

. (39)Let us point out that the latter test ase is overed by the above theory,whereas the driven avity example is stritly speaking not aptured by the aforepresented analysis due to a lak of regularity indued by the non-ontinuousinhomogeneity in the boundary onditions. Nevertheless, the driven avity �owis investigated here as it an be seen as a benhmark for the Stokes system.For the �nite element disretization, we use Taylor-Hood elements withquadrati ansatz funtions for the veloity and linear funtions for the pressure.The ontrols were also disretized using pieewise linear polynomials, onsistentwith the onditions in Assumption 3.3. The disretized inequality onstrainedoptimization problems are solved by applying a semi-smooth Newton methodas stated in Hintermuller, Ito and Kunish (2002). The inequality state on-straints are added to the ost funtional through a penalized Moreau-Yosidaregularization term, see, e.g., De Los Reyes and Kunish (2005).For the solution of the disretized systems appearing in eah semi-smoothNewton step a penalty method is applied (see Gunzburger, 2000, p. 125). Thismethod onsiders, for 0 < ǫ << 1, the modi�ed Stokes system
(
A BT

B ǫI

)(
~v
~p

)

=

(
M~u
0

)

,where A, B, and M are the matries resulting from the �nite element dis-retization of (1), I is the identity matrix, and ~v, ~p, and ~u are the vetors for theveloity, pressure, and ontrol, respetively. A similar penalty sheme was usedfor the adjoint equations. For onvergene results on this approah we refer toGunzburger (2000).The semi-smooth Newton algorithm stops if the L2-residuum of the dis-retized ontrol is lower than a given tolerane, typially set as 10−4. Themethod is initialized setting the ontrols equal to 0 and solving suessively theStokes and the adjoint equations. With these values at hand, the ative andinative sets are determined for the �rst iteration.



Optimal ontrol of the Stokes equations 279The resulting linear systems in eah semismooth Newton iteration weresolved using Matlab exat solver. All algorithms were implemented in Mat-lab 7.4 and run on a 300 GHz mahine with 24 GByte RAM and a preision ofeps=2.2204e-16.7.1. Example 1: box onstraintsFirst, we onsider pointwise box onstraints on the state, i.e., onstraints of theform K(1). To be more preise, the state onstraint is given by y1 ≥ −0.15 in
Ωs = [0.1, 0.9]× [0.1, 0.9]. The target is to diminish the bakward �ow veloityand, as a onsequene, the intensity of the vortex. The desired state is givenby z ≡ 0. Thus, the example �ts to the setting of Corollary 6.2. The Tikhonovregularization parameter is set to α = 0.1, while we hoose 105 as penalizationparameter for the state onstraints.With a mesh size h =

√
2/32 the algorithm stops after 20 iterations. Thehorizontal and vertial omponents of the optimal ontrol are depited in Fig. 1,for h =

√
2/64. In Fig. 2 the optimal ontrol vetor �eld and the ative setfor the horizontal veloity omponent are depited. From the graphis, theonentration of the irregular part of the horizontal ontrol on the ative setan be observed.In Table 1 the onvergene history is registered. The experimental errornorms for di�erent values of h are tabulated. We onsider as optimal solutionthe one obtained numerially with a mesh step size h =

√
2/160, whih will bedenoted by u∗h in all what follows. The quantity #it refers to the number ofsemi-smooth Newton iterations.Table 1. Example 1, onvergene history.

√
2/h 5 10 20 40 80

#it 4 8 20 20 32
‖uh − u∗h‖L2 1.1601 0.7982 0.4804 0.2572 0.1098To illustrate the onvergene behavior, we de�ne the quantity
EOC2(u) :=

log(‖uh − u∗h‖L2) − log(‖uhref
− u∗h‖L2)

log(h) − log(href)
(40)as the experimental order of onvergene for the L2-norm of u. Here, hrefrefers to the �nest mesh size, hene in this ase href =

√
2/80. The values for

EOC2(u) are listed in Table 2. From this table, a rough oinidene betweenthe theoretial and experimental onvergene order an be inferred, sine theexperimental order of onvergene order averages approximately 1 − ε. Thisobservation on�rms the theoretial preditions of Corollary 6.2.
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Figure 1. Example 1: horizontal and vertial omponents of the optimal ontrol;
h =

√
2/64.
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Figure 2. Example 1: ontrol vetor �eld (left) and ative set for the horizontalomponent of the veloity (right); h =
√

2/32.



Optimal ontrol of the Stokes equations 281Table 2. Example 1, experimental order of onvergene
√

2/h 5 10 20 40 80
EOC2(u) 0.85 0.95 1.06 1.23 �7.2. Example 2: onstraint on the Eulidian norm of the veloityvetorIn this example we onsider the state onstraint v2

1(x) + v2
2(x) ≤ 10−4 in theenter of the avity. With this onstraint, the norm of the veloity vetor �eldis restrited pointwise in the subdomain Ωs = [38 ,

5
8 ]2. The desired state is givenas in (39). As already mentioned before, this example is overed by the aboveanalysis, to be more preise by Corollary 6.3. Thus, we expet a onvergenerate of order 1 − ε.The resulting veloity vetor �eld, with the Tikhonov parameter value α =

0.1 and the Moreau-Yosida parameter value 105, is shown in Fig. 3, togetherwith the optimal state without pointwise state onstraints. The obstale e�etof the state onstraint an be observed in the plot.
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Figure 3. Example 2: optimal veloity vetor �eld without state onstraints(left) and with state onstraint (right); h =
√

2/24.The evolution of the �nite element error and of the onvergene rate as
h→ 0 is registered in Table 3. The Tikhonov parameter is set to α = 0.2, whilewe used 5 × 103 for the Moreau-Yosida penalization of the state onstraints.Here, we onsider as optimal solution u∗h the one obtained numerially with amesh step size h =

√
2/240. In average, an approximate order of 1 − ǫ for the

L2-norms of ontrol an be observed also in this example. Thus, the theoretialerror estimate of Corollary 6.3 an be seen to be experimentally veri�ed.
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√

2/h 5 15 30 60 120
#it 7 8 10 20 14

‖uh − u∗h‖L2 1.3108 0.5984 0.3637 0.2001 0.0863
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