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308 U. FELGENHAUERMaurer, 2003; Felgenhauer, 2005) using standard sensitivity results from non-linear programming, or from a shooting type approah applied to the �rst-ordersystem of onditions in Pontryagin's maximum priniple (see Felgenhauer 2003,2006). From a numerial point of view, the traditional shooting method beamean e�ient tool for solving ontrol problems after multiple-shooting tehniques(see Bulirsh and Stoer, 1980) had been developed and implemented. On theother hand, its lose relation to Newton's method in solving the underlyingsystems of equations makes it attrative for theoretial purpose as well.The following stability results have been presented previously: (i) di�eren-tiability of swithing points w.r.t. parameters under onditions 1, 2a for linearstate systems in Felgenhauer (2003), (ii) di�erentiability under restrition toproblems with only simple swithes (i.e. swith of only one ontrol omponentat eah time) under assumptions 1, 2a, 3 in Kim and Maurer (2003), (iii) di�er-entiable behavior and loal uniqueness of struture of extremals for semilinearsystems with possibly multiple swithes, see Felgenhauer (2006).In this paper, Lipshitz ontinuity of the shooting mapping is obtainedand used, in partiular, for deriving new results on loal Lipshitz stabilityof swithing points w.r.t. parameters. In Setion 2, the problem lass andregularity assumptions are given. Setion 3 repeats the fats on the indued�nite-dimensional problem and provides generalization to multiple swithes. Inthe ase of a simultaneous swithing of two ontrol omponents, ertain loalstability of prinipal ontrol struture was proved in Felgenhauer (2007) (seealso Theorem 1, setion 3). The main result is derived by using a nonsmoothversion of the Impliit Funtion Theorem in Setion 4, Theorem 3. An exampledesigned for illustrating nondi�erentiability is onsidered in Setion 5 and Ap-pendix 2. Some numerial experiments on bakward parameterized extremalsand loal swithing points predition are inluded.It should be notied that the investigation is restrited to at most doubleswithes. Generalization to simultaneous swithes of more than two ontrolomponents are not overed yet and should be the subjet of future researh(see also Poggiolini and Stefani, 2006, for related optimality issues).Notation. Let Rn be the Eulidean vetor spae with norm | · |, and salarprodut written as (a, b) = aT b. Supersript T is generally used for transpositionof matries, respetively vetors. For r > 0, de�ne Br(x) as the losed ball withenter x and radius r in Rn. The Lebesgue spae of order p of vetor-valuedfuntions on [0, 1] is denoted by Lp(0, 1; Rk). W l
p(0, 1; Rk) is the related Sobolevspae, and norms are given as ‖ ·‖p and ‖ ·‖l,p, (1 ≤ p ≤ ∞, l ≥ 1), respetively.The symbol ∇x denotes (partial) gradients whereas ∂x is used for (partial)generalized derivative in the sense of Clarke. In several plaes, Lie brakets

[g, f ] = ∇xg f − ∇xf g our. By convM , respetively cl M , the onvex hulland losure of a set M are desribed. For haraterizing disontinuities, jumpterms are denoted [v]
s

= v(ts + 0) − v(ts − 0), where the index s will beomelear from the ontext.



The shooting approah in analyzing bang-bang extremals 3092. Multi-input bang-bang optimal ontrolConsider a parametri optimal ontrol problem with terminal ost funtionaland system dynamis linear w.r.t. ontrol:(Ph) min Jh(x, u) = k(x(1), h)

s.t. ẋ(t) = f(x(t), h) + g(x(t), h)u(t) a.e. in [0, 1], (1)
x(0) = a(h), (2)
|ui(t)| ≤ 1, i = 1, . . . , m, a.e. in [0, 1] . (3)The funtion x : [0, 1] → Rn denotes the state of the system, and u : [0, 1] →

Rm the (generally vetor-valued) ontrol. The parameter h ∈ R is assumed tobe lose to the referene value h0 = 0. We further assume that, at h = 0, a(possibly loal) solution (x0, u0) ∈ W 1
∞ × L∞ exists with the ontrol u0 beingbang-bang, i.e. taking only extremal values ±1 in eah omponent. More preiseassumptions are given below.All data funtions are supposed to be su�iently smooth w.r.t. their inputvariables at least in a ertain neighborhood Nρ = {(t, x, u) : t ∈ [0, 1], |u| ≤

1, i = 1, . . . , m, |x − x0(t)| < ρ} of the referene trajetory.For problem (Ph), Pontryagin's maximum priniple holds in normal form.Denote by H the Hamilton funtion,
H(x, u, p, h) = f(x, h)T p +

m
∑

i=1

ui gi(x, h)T p,then the swithing funtion for the ontrol is σ = ∇uH = g(x, h)T p. The�rst-order neessary optimality onditions may be given in a bakward shootingformulation as follows:
ẋ(t) = f(x(t), h) + g(x(t), h)u(t), x(1) = z,
ṗ(t) = −A(x(t), u(t), h)T p(t), p(1) = ∇xk(z),
σ(t) = g(x(t), h)T p(t), u(t) ∈ −Sign σ(t),

(4)
T (z, h) = x(0, z, h) − a(h) = 0 . (5)(The symbol Sign is used for the generalized signum funtion de�ned as set-valued at zero, i.e. Sign(0) = [−1, +1], and the matrix funtion A stands for

∇x(f + g u).)Solutions x = x(t, z, h), u = u(t, z, h) and p = p(t, z, h) of the generalizeddi�erential-algebrai system (4) yield extremals for the ontrol problem at h ifthe initial ondition (5) is ful�lled. In general, for varying z ≈ x0(1), the urves
(x(t, z, h), p(t, z, h)) from (4) with t ∈ [0, 1] and �xed h provide a bakwardparameterized family of extremals (in the sense of Noble and Shättler, 2002;Ledzewiz, Nowakowski and Shättler, 2004) related to (Ph) but with free initialstate value. In the language of Hamiltonian methods, they form the �ow Ht of



310 U. FELGENHAUERthe maximized Hamiltonian, see Poggiolini and Stefani (2006), Agrahev andSahkov (2004).The ontrol u0 related to (P0) for h = 0 is assumed to be of strit and regularbang-bang type:Assumption 1 (bang-bang regularity)The pair (x0, u0) is a solution suh that u0 is pieewise onstant and has nosingular ars. For every j and σ0
j = gj(x

0, 0)T p, the set Σ0
j = { t ∈ [0, 1] :

σ0
j (t) = 0 } is �nite, and 0, 1 /∈ Σ0

j .It will not be exluded that more than one ontrol omponent swithes at a time(simultaneous or multiple swithes). However, for the aim of the given paper,we will restrit ourselves to at most double swithes. Notie that, in ase ofmultiple swithes, the swithing funtions may be nondi�erentiable at points ofontrol disontinuity, sine
σ̇0

j (t) = p(t)T [gj , f ] (t) +
∑

k 6=j

u0
k(t) p(t)T [gj , gk] (t) (6)where [ ·, · ] stand for Lie brakets.Assumption 2a (strit bang-bang property)For every j = 1, . . . , m, for all ts ∈ Σ0

j : σ̇0
j (ts + 0) · σ̇0

j (ts − 0) > 0.Assumption 2b (double swith restrition)All ts ∈
⋃

Σ0
k related to h = 0 are swithing points of at most two ontrolomponents.3. Swithing points variationAn important tool for investigating optimality and stability properties of bang-bang solutions for the problems (Ph) onsists in formulating and analyzing theindued �nite-dimensional program with swithing points positions as main un-known variables, see Agrahev, Stefani and Zezza (2002), Kim and Maurer(2003), Felgenhauer (2005), Poggiolini and Stefani (2006). The prinipal on-trol struture, i.e. the number and type of ontrol swithes for eah omponent

ui, are assumed to be �xed. For ertain loal solution examinations, this prop-erty is ensured by the following result, Felgenhauer (2007):Theorem 1 Suppose Assumptions 1, 2a and 2b hold true. Further, let (xh, uh,
ph) ∈ W 1

∞ × L∞ × W 1
∞ with z = zh = xh(1) be a solution of (4) satisfying theinitial ondition (5) and the estimate

‖xh − x0‖∞ + ‖uh − u0‖1 < ǫ . (7)If δ = |h|+ǫ is su�iently small then the following relations hold for (xh, uh, ph)together with σh = g(xh, h)T ph:



The shooting approah in analyzing bang-bang extremals 311(i) uh(t) = −sign σh(t) almost everywhere on [0, 1], and uh has the sameswithing struture and number of swithing points as u0,(ii) if σh
j (ths ) = 0, then σ̇h

j (ths + 0) · σ̇h
j (ths − 0) > 0 (j = 1, . . . , m).In partiular, one an assume u(1) = u0(1) for extremals (x, u, p) whih are loseto (x0, u0, p0) in the sense of (7). The swithing points will be omponentwiseenumerated, i.e. Σj = { τjs : 1 ≤ s ≤ l(j), 0 = τj0 < τjk < τj,k+1 < τj,l(j)+1 =

1 for k < l(j)}, j = 1, . . . , m, and assembled to a vetor Σ = (τjs) ∈ RL with
L =

∑m
j=1 l(j). Notie that all vetors satisfying the above monotone orderingonditions form an open subset DΣ in RL.Let a vetor Σ ∈ DΣ be given, su�iently lose to Σ0, related to the referenesolution of (P0). We onstrut an admissible pair x = x(t, Σ, h), u = u(t, Σ) for(Ph) by solving

uj(t, Σ) ≡ (−1)l(j)−su0
j(1) for t ∈ (τjs, τj,s+1), (8)

ẋ(t) = f(x(t), h) + g(x(t), h)u(t, Σ), x(0) = a(h) , (9)and de�ne the parametri auxiliary problem(OPh) min φh(Σ) = k (x(1, Σ, h), h) w.r.t. Σ ∈ DΣ.Then, at h = 0, the vetor Σ = Σ0 is a loal minimizer of φ0 (see Kim andMaurer, 2003, and Felgenhauer, 2007) with
Z(Σ0, 0) = ∇Σφ0(Σ

0) = −
(

[

u0
j

]s
σ0

j (tjs)
)

j,s
= 0 . (10)In general, relation Z(Σ, h) = ∇Σφh(Σ) = 0 is the stationary point mapassoiated to (OPh).If all swithing points in Σ are simple or if, for eah double swith τα = τβwith α = (j, s), β = (i, r) and i 6= j, the vetor �elds gi(x(t, Σ, h), h) and

gj(x(t, Σ, h), h) are ommuting at t = τα, then φh is twie ontinuously di�eren-tiable in a neighborhood of Σ0 ∈ DΣ, see Kim and Maurer (2003), Felgenhauer(2007), or Poggiolini and Stefani (2006). In ase of double, respetively mul-tiple swithes of several ontrol omponents, in general only φh ∈ C1,1 holds.However, one an �nd generalized seond-order derivatives e.g. in the sense ofClarke (see Clarke, 1983; Klatte and Kummer, 2002). Suppose that there are
k double swithes in Σ0, then in DΣ one an �nd 2k disjoint subsets Dν suhthat, for eah of the double swithing pairs tα = tβ from u0, either τα < τβor τα > τβ holds in Dν . Sine the swithing points for Σ ∈ Dν are well sep-arated, φh ∈ C2(Dν) follows for eah ν = 1, . . . , 2k. Further, for vetors
Σ′ ∈

⋂

{ cl Dν: ν = 1, . . . , 2k} one an �nd the limits
∇ν (∇φh)|Σ′ = lim

Σ∈Dν ,Σ→Σ′

∇2
Σφh(Σ) .By a representation theorem for Clarke's generalized derivative in ase of piee-wise C2 funtions (Klatte and Kummer, 2002; Sholtes, 1994), we obtain

∂Σ(∇Σφh(Σ′)) = conv{ ∇ν (∇φh)|Σ′ , ν = 1, . . . , 2k}. (11)



312 U. FELGENHAUERThus, the matries ∇ν (∇φh) as partiularly hosen limiting Hessians are span-ning matries of ∂(∇φh). Formulas for their respetive elements inluding thease of double swithes have been derived in Felgenhauer (2007).In the following, it will be assumed that the solution Σ0 of (OPh) with h = 0satis�es a strong generalized seond-order optimality ondition in the sense ofClarke (see Clarke, 1983):Assumption 3 ∃ c > 0: vT Q v ≥ c | v |2 for all v ∈ RL and eah matrix
Q ∈ ∂Σ (∇Σφ0) (Σ0).It should be notied that Assumption 3 holds if and only if eah of the span-ning Hessians ∇ν(∇φ0) is positive de�nite at Σ0 (see Kojima, 1980, for nonlin-ear programming appliation). The given assumption ould be also formulatedby means of more general (and possibly nononvex) subdi�erentials, see Mor-dukhovih (2006).The generalized oerivity ondition on ∂(∇φh) ensures, in partiular, fullrank property of the matries so that, by the generalized Impliit FuntionTheorem, the loal Lipshitz invertibility of the stationary point map follows(for the proof see Felgenhauer, 2007):Theorem 2 Let (P0) have a bang-bang solution (x0, u0) with swithing points
Σ0 suh that Assumptions 1, 2a,b and 3 are ful�lled. Then, a neighborhood Uof h0 = 0 exists suh that the following statements hold:(i) In RL there exists a neighborhood S of Σ0 suh that ∀ h ∈ U equation

Z(Σ, h) = ∇Σφh(Σ) = 0 (12)has an unique solution Σ = Σ(h) ∈ S. As a funtion of h, Σ = Σ(h) is Lipshitzontinuous on U .(ii) ∀ h ∈ U : Σ = Σ(h) ∈ DΣ.In partiular, ths may be (an at most) double swith belonging to Σj(h) ∩ Σi(h)only if there is a neighboring t0s ∈ Σ0
j ∩ Σ0

i , too.(iii) All matries Q in ∂Σ (∇Σφh) (Σ(h)) are positive de�nite with lower eigen-value bound c′ > 0 independent of h ∈ U . The vetor Σ(h) is thus a strit loalminimizer of φh from (OPh).4. Bakward shooting and extended shootingapproahIn Theorem 1, loal strutural stability of prospetive solutions to the shootingsystem (4), (5) has been established. However, the arguments did not allow todeide whether suh solutions exist for h 6= 0. In this setion the loal existeneof shooting extremals is shown. For their onstrution, a so-alled extendedshooting system is used ombining the original shooting approah with the ideaof varying swithing point positions.



The shooting approah in analyzing bang-bang extremals 313Let there be given a vetor pair (Σ, z) ∈ RL × Rn near the referene value
(Σ0, z0) where z0 = x0(1). Set

c = c(z) = −sign
{

g(z)T∇xk(z)
}

.Under Assumption 1, c oinides with u0(1) if only z is taken su�iently loseto z0. Let us hoose a bang-bang ontrol funtion u = u(·, Σ) related to c = c(z)and Σ by
uj(t, Σ) ≡ (−1)l(j)−scj for t ∈ (τjs, τj,s+1). (13)Then, for su�iently small h, the following system has a unique solution x =

x(·, Σ, z, h), p = p(·, Σ, z, h):
ẋ(t) = f(x(t), h) + g(x(t), h)u(t, Σ), x(1) = z, (14)
ṗ(t) = −A(x(t), u(t, Σ), h)T p(t), p(1) = ∇xk(z), (15)and we aomplish the onstrution by de�ning σ(·, Σ, z, h) = g(x(·), h)T p(·).Lemma 1 Let Assumptions 1, 2a and 2b hold at h = 0, and assume |(Σ, z, h)−

(Σ0, z0, 0)| < δ with δ given in Theorem 1. Then, the solution omponents x, uand p of (13) � (15) satisfy Pontryagin's maximum priniple if and only if theinitial ondition for x and the swithing riteria for u are ful�lled, i.e.
V (Σ, z, h) = x(0, Σ, z, h) − a(h) = 0, (16)
W (Σ, z, h) = −Γ(Σ) · σ(·, Σ, z, h)|Σ = 0, (17)

Γ(Σ) = diag(js)

{

[

u0
j

]s
}

.Notie that all entries in Γ are ±2 so that this matrix is always regular.Thus, in equation (17), for eah α = (j, s) with τα ∈ Σj it is required that
Wα(Σ, z, h) = −

[

u0
j

]s
σj(τα, Σ, z, h) = 0.Proof. (The proof follows Felgenhauer, 2007, proof of Theorem 1.)Conditions (14) � (16) represent state and adjoint equations together withboundary and transversality onditions related to (Ph). It will be shown that,loally, the maximum ondition (or equivalently: u(t) ∈ −Sign σ(t) a.e. on

[0, 1]) follows from (13) together with (17):For (Σ, z, h) lose to (Σ0, z0, 0), from (13) and (14) the estimate (7) follows:
‖x − x0‖∞ + ‖u − u0‖1 < ǫ .By Gronwall's Lemma, we further get
‖x − x0‖1,1 + ‖p− p0‖1,1 + ‖σ − σ0‖1,1 = O(δ)for x = x(·, Σ, z, h), σ = σ(·, Σ, z, h) = p(·, Σ, z, h)T g(x(·, Σ, z, h)) et.



314 U. FELGENHAUERIf δ is su�iently small, r > 0 exists suh that the following properties hold:(i) for j = 1, . . . , m, ∀ts ∈ Σ0
j , outside the balls Br(ts) the funtions uj =

uj(·, Σ) and u0
j are ontinuous, and σj(t), σ0

j (t) are of the same sign.(ii) for j = 1, . . . , m, ∀ts ∈ Σ0
j , σ̇j(t) with t ∈ Br(ts) has the same sign as

σ̇0
j (ts ± 0).Indeed, in analogy to (6), by (14), (15) we have

σ̇j(t) = p(t)T [gj, f ] (t) +
∑

k 6=j

uk(t) p(t)T [gj, gk] (t).Let us start from t = 1 where −sign σ(1) = u(1) = u0(1), and �nd bak-wards the next swithing point, t̄s ∈ Σ0
i : If t̄s is a simple swith of u0

i then, inside
Br(t̄s), all uk with k 6= i are ontinuous and equal to u0

k, so that |σ̇i(t)− σ̇0
i (t)| =O(δ). If t̄s is a double swith, e.g. t̄s ∈ Σ0

j ∩ Σ0
i , then

σ̇i(t) ∈ p(t)T [gi, f ] (t) +
∑

k 6∈{i,j}

uk(t) p(t)T [gi, gk] (t)

+ conv{u0
j(t̄s + 0), u0

j(t̄s − 0)} p(t)T [gi, gj] (t),so that
dist

{

σ̇i(t), conv{σ̇0
i (t̄s + 0), σ̇0

i (t̄s − 0)}
}

= O(δ + r).Thus, for su�iently small δ and r, the time derivatives are of the samesign, and σi is stritly monotone on Br(t̄s). Therefore, σi has a regular zeroin Br(t̄s), and for t = t̄s − r the values of u = u(·, Σ) and −sign σ(·, Σ, z, h)again oinide. The proess will be repeated bakwards from swithing point toswithing point and we onlude that, for all i, −sign σi(·, Σ, z, h) and ui(·, Σ)have the same number and type of disontinuities on [0, 1]. Thus, they are equalif and only if (17) is ful�lled.The system (16), (17) with (x, u, p) and σ from (13) � (15) an be shortly writtenas one equation in Rn+L,
F (Σ, z, h) = 0 (18)where F = (V, W )T as a mapping to Rn+L is de�ned on some neighborhoodof (Σ0, z0, 0) ∈ RL+n × R. It will be shown that, under assumptions 1, 2a, 2band 3, equation (18) loally determines impliit funtions Σ = Σ(h), z = z(h)depending Lipshitz ontinuously on the parameter h.In Felgenhauer (2006), funtion F and the extended shooting system havebeen onsidered for the ase of semilinear state system in (Ph) where g is inde-pendent of x. In this situation, F turned out to be ontinuously di�erentiableeven if multiple swithes ourred, and the partial Jaobian
∇(Σ,z)F =

(

∇ΣV ∇zV
∇ΣW ∇zW

) (19)



The shooting approah in analyzing bang-bang extremals 315was proved to be regular under strit bang-bang assumptions. In the moregeneral situation, with state equation of type (1), the funtion F may be non-di�erentiable if multiple ontrol swithes our. However, one an �nd at leastgeneralized derivatives by using similar tehniques as in preeding setion: in-deed, the restrition of F to sets with Σ ∈ Dν (i.e. to those areas where theswithing points are well separated) provides di�erentiable parts and one an�nd respetive limits ∇νF for approximating possible double swithes.In analogy to (19), Clarke's subdi�erential ∂F is obtained after repla-ing ∇ΣW by the generalized partial derivative term ∂ΣW . In ase of doubleswithes, ∂ΣW is determined due to the representation theorem in Sholtes(1994) as
∂Σ(W (Σ′, z, h)) = conv{ ∇ν

ΣW (Σ, z, h)|Σ=Σ′ , ν = 1, . . . , 2k},

∇ν
ΣW (Σ, z, h)|Σ=Σ′ = lim

Σ∈Dν ,Σ→Σ′

∇ΣW (Σ, z, h).
(20)For the notation we refer to (11). The matrix elements will be desribed indetail by formulas (34) � (36) in the Appendix.Lemma 2 Under Assumptions 1, 2a,b and 3, the matrix ∇zV (Σ0, z0, 0) togetherwith all matries from ∂ΣW (Σ0, z0, 0) is regular. In partiular, all M ∈

∂ΣW (Σ0, z0, 0) have positive determinants.The proof of the lemma is left to the Appendix.After this preliminary analysis of the the prinipal struture of ∂F , loalsolvability and Lipshitz stability of the extended shooting system is obtained:Lemma 3 Let Assumptions 1 � 3 hold for Ph at h0 = 0 for the solution (x0, u0),swithing set Σ0, and the related adjoint funtion p. Then, near (Σ0, z0, 0) with
z0 = x0(1), equation F (Σ, z, h) = 0 de�nes loally unique funtions Σ = Σ(h)and z = z(h) depending Lipshitz ontinuously on the parameter h.Proof. Consider F = (V, W )T and its generalized partial Jaobian,

∂(Σ,z)F (Σ, z, h) =

(

∇ΣV (Σ, z, h) ∇zV (Σ, z, h)
∂ΣW (Σ, z, h) ∇zW (Σ, z, h)

)near (Σ0, z0, 0). The underlying extended shooting approah an be interpretedas one way for obtaining a solution to the stationary point map Z(Σ, h) = 0related to the �nite-dimensional program (OPh) in setion 3, see (10). Tothis aim we follow a primal-dual onstrution where the mapping (Σ, h) →
(x, u) given by equations (8), (9) is ompleted by adjoint information, i.e.
p̃ = p̃(t, Σ, h), σ̃ = σ̃(t, Σ, h) solving

˙̃p(t) = −(∇xf(x(t, Σ, h), h) + ∇xg(x(t, Σ, h), h)u(t, Σ))T p̃(t) ,

p̃(1) = ∇xk(x(1, Σ, h), h) ,

σ̃(t) = g(x(t), h)T p̃(t).



316 U. FELGENHAUERObviously, p̃ an be equivalently obtained by �nding z̃ = z̃(Σ, h) from (16),
V (Σ, z, h) = 0 ,and inserting z = z̃ into (15). The partial Jaobian of V w.r.t. z an beexpressed as ∇zV = ΦT (1) where Φ = Φ(·, Σ, z, h) and Ψ = Ψ(·, Σ, z, h) are thefundamental matrix solutions of the linearized state resp. adjoint equations,
Ψ̇ = AΨ, Φ̇ = −AT Φ, Ψ(0) = ΦT (0) = I. (21)Sine the matries Φ(t), Ψ(t) are regular for all t ∈ [0, 1] and (Σ, z, h) near

(Σ0, z0, 0), the funtion z̃ turns out to be di�erentiable at (Σ0, 0).Further, we �nd
Zα(Σ, h) = Wα(Σ, z̃(Σ, h), h) = −

[

u0
j

]s
σ̃j(τα) (22)so that the generalized partial Jaobian ∂ΣZ = ∂Σ (∇Σφh(Σ)) satis�es

∂ΣZ = ∂ΣW + ∇zW · ∇Σz̃

= ∂ΣW − ∇zW (∇zV )
−1

∇ΣV
(23)Under Assumption 3, all matries in the right hand side are thus regular at

(Σ0, z0, 0). On the other hand, eah of them represents the Shur omplementof the regular matrix blo ∇zV in the related matrix from ∂(Σ,z)F (Σ, z, h) sothat all elements in Clarke's generalized Jaobian of the mapping F turn outto be regular near the referene point. The partial invertibility of equation (18)and Lipshitz ontinuity of the solution funtions follow by Generalized ImpliitFuntion Theorem from Clarke (1983).For su�iently small h, the solution (z(h), Σ(h)) of (18) in their z-omponentsontains a solution of the bakward shooting proess (4), (5):Aording to Lemma 2, equation W (Σ, z, h) = 0 from (17) has the loallyunique solution Σ̃ = Σ̃(z, h) whih as a funtion of (z, h) is Lipshitz ontinuous.By Lemma 1, loally the related ontrol u(·, Σ̃) satis�es the maximum ondition.Inserting now Σ̃ into V (Σ, z, h) = 0 we end up with
T (z, h) = V (Σ̃(z, h), z, h) = 0,i.e. the bakward-shooting relation. Obviously, z = z(h) from (17), (16) isa solution, and the orresponding Σ = Σ(h) oinides with Σ̃(z(h), h). ByTheorem 1 and Lemma 3, loal uniqueness (in restrition to sets where (7) isful�lled) and Lipshitz stability of z = z(h) follow.Summarizing the obtained results leads toTheorem 3 Let the Assumptions 1 � 3 hold together with the parameter re-stritions from Theorem 1. Then the bakward shooting proedure (4), (5) near

z0 = x0(1) and h = 0 has a solution z = z(h) whih is uniquely determined inthe neighborhood (7) of the referene state-ontrol pair. The funtion z = z(h)



The shooting approah in analyzing bang-bang extremals 317as well as the related swithing times vetor Σ = Σ(h) are Lipshitz ontinuousnear h = 0. Further, the solution satis�es regularity and oerivity onditions(ii), (iii) from Theorem 2, respetively.Corollary 1 Let the Assumptions of Theorem 3 hold true. If, in addition, themapping W from (17) is di�erentiable w.r.t. (Σ, z) at (Σ0, z0, 0) then z = z(h)is di�erentiable at h = 0. The matrix
∇zT = ∇zV − ∇ΣV (∇ΣW )

−1
∇zW (24)is a regular matrix then, and

dz

dh

∣

∣

∣

∣

h=0

= − (∇zT )
−1 ∂T

∂h
with ∂T

∂h
=

∂V

∂h
− ∇ΣV (∇ΣW )

−1 ∂W

∂h
.Notie that di�erentiability of W in partiular holds in ase of simple swithes,or for semilinear state system (see Felgenhauer, 2006). The regularity of (24)follows from Lemma 2 and the regularity of ∇F (see proof of Lemma 3), againby Shur omplement argumentation.In general, i.e. the possibly nondi�erentiable ase, it is an open questionwhether one an �nd, e.g., diretional or generalized derivatives for (Σ, z) =

(Σ(h), z(h)) from the bakward, respetively extended shooting approah near
h = 0. In speial ases, when one an predit struture and prove that Σ(λh)belongs to a �xed subset Dν for λ ∈ (0, λ̄) and ertain λ̄ > 0, one-sided deriva-tives are available and an be alulated in analogy to dz/dh from the aboveCorollary after replaing ∇W by ∇νW .The example in the next setion illustrates suh speial ase for the situationof two ontrol omponents allowing for one ontrol swith eah, with a doubleswith ouring for appropriate parameter hoie.5. Double-swith exampleLet us onsider the following ontrol problem with initial state value dependingon a parameter h, and �xed terminal time T > 0:(Ph(ǫ)) min J(x, u) = 0.5 |x(T ) |

2

s.t. ẋ1 = x2 + ǫ (ǫ x2 + x1 + 1)u1,
ẋ2 = u2 a.e. in [0, T ],

x(0) = a(h),

|ui(t)| ≤ 1, i = 1, 2, a.e. in [0, T ] .

(25)By ǫ we denote an auxiliary onstant from (0, 1). It will be assumed that, forall h from a ertain neighborhood U of h0 = 0, the time parameter T is smallerthan the optimal termination time for the system with initial position in a(h).The given problem is two-dimensional in both the state and ontrol variables,and bilinear in the sense that the oe�ient vetor funtions gi related to ui,
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i = 1, 2, are a�ne-linear funtions of the state variables. It is worth notiingthat, in this ase, the generalized oerivity ondition follows diretly from thestrit and regular bang-bang behavior of the optimal ontrol. The Hamiltonianrelated to (Ph(ǫ)) has the form:

Hǫ = p1x2 + ǫ p1 (ǫ x2 + x1 + 1 ) u1 + p2u2,so that, by Pontryagin's maximum priniple, we obtain �rst-order optimalityonditions
ṗ1 = −ǫ p1u1, p1(T ) = z1 = x1(T ),
ṗ2 = −p1(1 + ǫ2u1), p2(T ) = z2 = x2(T ),

σ1 = ǫ p1(ǫ x2 + x1 + 1), u1 ∈ −Sign σ1,
σ2 = p2, u2 ∈ −Sign σ2.

(26)If x1(T ) 6= 0 then eah swithing funtion σj is nonsmooth at tis, i 6= j, ( i.e.where σi vanishes) sine
pT [ g1, g2] = ǫ2p1 6= 0.For appropriately hosen parameters T, ǫ and a0 = a(0) one an show that theorresponding referene extremal (x0, u0) has bang-bang ontrol omponentsswithing simultaneously at a point ts ∈ (0, T ). In order to �nd suh trajetory,in a �rst step we onstrut ertain bakward parameterized family of extremals

(x(·, z, ǫ), p(·, z, ǫ)) related to (Ph(ǫ)) where the terminal state variables x(T ) =
z are taken as parameters, and the initial state is onsidered free, see Nobleand Shättler (2002). The parameters are supposed to satisfy ondition (39),Appendix 2, guaranteeing strit monotoniity of both swithing funtions σ1and σ2 for z from some set Z = Z(ǫ, T ) ⊂ R2. Next, for (ǫ, T ) being �xed, we�nd values z = zd for whih u1 and u2 hange their signs at the same time,
t1s = t2s: to this aim, one has to solve the system W (Σ, z) = 0, or equivalentlyask for (t, z) ∈ (0, T )× Z suh that

σ1(t, z) = 0, σ2(t, z) = 0.In Appendix 2, the solution is desribed by ts = T − δ(r), zd = zd(r) parame-terized via r = −z2/z1, where δ = δ(r) and zd = zd(r) are di�erentiable w.r.t.
r on some interval Ir (see also (40) and (43)).Now we are able to hoose the referene data for (P0(ǫ)) orresponding toa ontrol with double swith behavior: to this aim, set ǫ = 0.5, T = 2 and
r0 = 1.5. The orresponding swithing point and terminal state are t0s = 1.06and z0 = zd(r0) ≈ (−0.4839, 0.7258). From the bakward solution method, theinitial state vetor a0 = a(0) ≈ (−3.6547, 0.6059) is obtained. By the hoie of
z with (39) and (42), Assumptions 1 and 2a, 2b are satis�ed. Formulas (23)and (37), Appendix 1, allow further for alulating the matries ∇1,2 (∇φ0(Σ0))spanning the generalized Hessian (11) of φ from the indued mathematial pro-gram (OP0). For the test parameters orresponding to z0 resp. a0, we get
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∇1

Σ (∇Σφ0)
∣

∣

Σ0
≈

(

1.677 0.000
0.000 14.935

)

, ∇2
Σ (∇Σφ0)

∣

∣

Σ0
≈

(

0.903 0.774
0.774 14.161

)whih are both positive de�nite. Consequently, Assumption 3 holds for h = 0,
Σ0

1 = Σ0
2 = {t0s}. By Theorem 3, the Lipshitz invertibility of the mapping

T = T (z, h) w.r.t. z follows, and z = z(h), Σ = Σ(h) related to a = a(h) areloally uniquely determined near a0.For the given example one an further observe that, near a0, the initialvalues orresponding to simultaneous swith of both ontrol omponents forma (di�erentiable) urve Cx in R2. For r = 1.1 : 0.1 : 1.7, initial values ad ∈ Cxand terminal parameters zd ∈ C orresponding to double-swith situation havebeen found from formula (43) and bakward shooting. The results are given inTable 1. Table 1. Double-swith data for di�erent r

r 1.1 1.2 1.3 1.4 1.5 1.6 1.7
ts 1.2707 1.2159 1.1626 1.1106 1.0600 1.0106 0.9624
a

d

1 -3.8434 -3.8313 -3.7901 -3.7290 -3.6547 -3.5726 -3.4861
a

d

2 0.3116 0.4025 0.4801 0.5471 0.6059 0.6584 0.7061
z

d

1 -0.7755 -0.6953 -0.6194 -0.5488 -0.4839 -0.4247 -0.3711
z

d

2 0.8530 0.8344 0.8052 0.7683 0.7258 0.6796 0.6309The urve Cx divides a ertain small neighborhood of a0 into parts X1, X2suh that the extremals orresponding to a(h) ∈ Xν have swithing struture
Σ(h) ∈ Dν , ν = 1, 2, resp. For simpliity, the swithing points are denoted by
τ i
s, and we delare

D1 = {(τ1
s , τ2

s ) : 0 < τ1
s < τ2

s < T }, D2 = {(τ1
s , τ2

s ) : 0 < τ2
s < τ1

s < T }.The partition is onstruted from the orresponding subsets Z1, Z2 of a relatedneighborhood of the referene terminal state z0 and the urve C = cl(Z1) ∩
cl(Z2), see (44), Appendix 2, for details. The related swithing vetors loal-ization in one of the sets Dν is desribed in Table 2.Table 2. Order of swithes depending on z

z1 = -0.2 -0.3 -0.4 -0.5 -0.6 -0.7
r = 1.1 D

1
D

1
D

1
D

1
D

1
D

11.3 D
1

D
1

D
1

D
1

D
1

D
21.5 D

1
D

1
D

1
≈ ∂D

2
D

2
D

21.7 D
1

≈ ∂D
1

≈ ∂D
2

D
2

D
2

D
21.8 D

1
≈ ∂D

1
D

2
D

2
D

2
D

2In situation where the two swithing points nearly oinide we use symbol ∂Dνto re�et approahing of respetive boundaries.



320 U. FELGENHAUERFor general bang-bang ontrol problems with simultaneous swithing of twoontrols at a time, assumptions 1 � 3 alone do not guarantee yet the existeneof a manifold dividing neighborhoods of a0 (respetively of z0) into subsetswhere the order of swithings is invariant. Conditions for suh kind of non-degeneray an be found e.g. in Poggiolini and Stefani (2006) where they aredisussed in the ontext of seond-order su�ient optimality onditions.Finally, in the partiular example, one an try to �nd �rst-order approxima-tions for the swithing points under parameter perturbation. Although Theorem3 in general does not provide yet tools for sensitivity alulation, one an utilizeLemma 2 for W (Σ, z) = 0, respetively,
σ1(t

1
s, Σ, z) = σ2(t

2
s, Σ, z) = 0to analyze the in�uene of hanges of the terminal parameter z.Obviously, the following property holds:If ∆z is a small perturbation suh that, for all ρ ∈ (0, 1), the swithing vetors

Σρ orresponding to zρ = z0 + ρ∆z all belong to the same set Di, i ∈ {1, 2},then
∇i

ΣW · ∆Σ + ∇zW ∆z = o(∆z).In this situation, one an �nd the diretional derivative ∂i(Σ(z0), ∆z) of Σ and
Σlin = Σ0 −

(

∇i
ΣW

)−1
∇zW ∆z ∈ Dias the �rst-order swithing point predition.If z0 ∈ Zi then, under small perturbation, Σ will remain in Di and the hoiefor Σlin is well-determined. The more interesting ase is z0 ∈ C where theapproximation requires prediting of swithing order. In the example given onean utilize the speial struture of M ∈ ∂ΣW :In ase of two ontrol omponents swithing eah exatly one on the timeinterval, the matries ∇i

ΣW are (2,2)-triangular and regular. By (37), with
e = (1, 1)T we get

∇1
ΣW e = ∇2

ΣW e =: w 6= 0, (27)see Lemma 2. Moreover, the matries have both positive determinants.Denote p = −∇zW∆z:If the vetor p is not parallel to w from (27) then, multiplying with (one of)
(

∇i
ΣW

)−1, preserves the orientation between images: in ase that the vetorsystem (p, w) is positively oriented (i.e. they inlude an angle γ ∈ (0, π)) thesame is true for the pre-images di =
(

∇i
ΣW

)−1
p and e so that

Σ0 + di = Σ0 −
(

∇i
ΣW

)−1
∇zW∆z ∈ D1, i = 1, 2.Consequently, Σlin = Σ0+ d1. Conversely, if the oriented angle between (p, w)is negative, the predition direts into D2 with Σlin = Σ0 + d2.



The shooting approah in analyzing bang-bang extremals 321For the example of the data hosen above it ould be further observed that thematries ∇zW are regular so that for almost all diretions ∆z the predition iswell-determined. The omparison to values found via bakward solution of (13)�(15), (17) shows suitability of diretional linearization. Moreover, the resultson�rm the possibility of non-di�erentiable behavior of the shooting mappingin ase of simultaneous ontrol swithing.For r < 1.5 we have hosen z-values from Z1 leading to the ase t1s < t2s (= tds),whereas for r > 1.5 the test values for z are taken from Z2. Results are shownin Table 3. Table 3. Swithing points vs. �rst-order preditions
r 1.3 1.4 1.5 1.6 1.7
z1 -0.4000 -0.4500 -0.4839 -0.5400 -0.6000
z2 0.5200 0.6300 0.7258 0.8640 1.0200
t
1

s 1.0299 1.0520 1.0600 1.1369 1.2109
t
1

lin 1.0324 1.0523 1.1419 1.2326
t
2

s 1.1626 1.1106 1.0600 0.9069 0.7128
t
2

lin 1.1427 1.1065 0.9124 0.7383Appendix 1: Partial derivatives of mapping FConsider the funtion F = (V, W )T from (18) mapping some neighborhood of
(Σ0, z0, 0) into Rn+L. Aording to (16), (17) and the smoothness properties of
σ, F is Lipshitz ontinuous and its generalized partial Jaobian,

∂(Σ,z)F =

(

∇ΣV ∇zV
∂ΣW ∇zW

) (28)an be onstruted as convν {∇
νF} following the sheme from Sholtes (1994),see (11).In a �rst step, expliit formulas for the derivatives of V and W are ob-tained. To this aim, we introdue partial derivative funtions ηz = ∂x/∂z,

ρz = ∂p/∂z, and ηα = ∂x/∂tα, ρα = ∂p/∂tα, respetively, whih an be foundfrom linearization of the state-adjoint system (14), (15). Di�erentiation of theanonial system w.r.t. z yields
η̇z = Aηz , ηz(1) = I,

ρ̇z(t) = −AT ρz − C ηz, ρz(1) = ∇2
xk(z)

(29)with C = C(·, Σ, z, h) = ∇2
x(pT f) = ∇2

xH and A = A(·, Σ, z, h) = ∇x(f + g u)evaluated along x = x(t, Σ, z, h), p = p(t, Σ, z, h). The solutions are matrixfuntions whih are ontinuously di�erentiable in time.If the system is di�erentiated w.r.t. swithing time parameter tα, the followingmulti-point boundary value problem is obtained:
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η̇α = Aηα, ηα(1) = 0, [ ηα]

s
= − [∇pH ]

α
,

ρ̇α = −ATρα − C ηα, ρα(1) = 0, [ ρα]
s

= [∇xH ]
α

.
(30)The solutions are pieewise ontinuous, and di�erentiable w.r.t. t on ontinuityintervals. For α = (j, s), the swithing terms at tα are given by

[∇pH ]
α

= gj[tα]
[

u0
j

]s
, [∇xH ]

α
= ∇xgj [tα]T p(tα)

[

u0
j

]s
. (31)If tα is a simple swith for u, then we have [∇H ]α = [∇H ]s � the full jump of

∇H at tα. This is not true for ase of multiple swithes.Using the above expressions, one an �nd the following partial derivatives of
F (respetively V , W ):

∇zV (Σ, z, h) = ΦT (1, Σ, z, h),

∇zWα(Σ, z, h) =
[

u0
j

]s [

pT∇xgj ηz + gT
j ρz

]∣

∣

τα
, α = (j, s) ∈ IΣ, (32)

∂

∂tα
V (Σ, z, h) = ηα(0) = Φ[τα]T [∇pH ]

αwhih are ontinuous funtions of their arguments in a neighborhood of (Σ0, z0, 0).In the representation, the fundamental matrix solutions Φ = Φ(·, Σ, z, h) from(21) are used as auxiliary funtions.In order to �nd generalized derivatives ∂ΣW , we will �rst restrit Wα tosuh set of parameters Σ where Σj ∩ Σi =Ø for i 6= j. Di�erentiation of (17)gives
−

1
[

u0
j

]s

∂

∂tβ
Wα(Σ, z, h) = δαβ

d

dt
(σj)|τα

+
[

pT∇xgjηβ + gT
j ρβ

]
∣

∣

τα
(33)(where the fator δ stands for the Kroneker symbol). By (30) we see that

∂Wα/∂tβ vanishes for τα > τβ , and ∂Wα/∂tα redues to σ̇(τα) for eah simpleswithing point t = τα: Indeed, the terms in squared brakets anel out in thelimit at (τα − 0) by (31).Similarly, we �nd the following limit values for a double swith τα = τβ with
α = (j, s), β = (i, r) and j 6= i:

lim
τβ−τα→+0

∂

∂tβ
Wα(Σ, z, h) = −

[

u0
j

]s
(

pT∇xgj [∇pH ]
β
− gT

j [∇xH ]
β
)

= −
[

u0
j

]s [

u0
i

]r (

pT [gj , gi]
)∣

∣

τα
, (34)

lim
τβ−τα→−0

∂

∂tβ
Wα(Σ, z, h) = 0, (35)and analogously,

∂

∂tα
Wα(Σ, z, h) →

{

−
[

u0
j

]s
σ̇j(τα − 0) for τβ − τα → +0

−
[

u0
j

]s
σ̇j(τα + 0) for τβ − τα → −0

. (36)



The shooting approah in analyzing bang-bang extremals 323For simpliity assume that all entry points of Σ0 are monotonially orderedin the whole (what an be always done by suitable index permutation). Then,by (34) � (36), important strutural information on ∂ΣW is attainable: if allswithing points are simple, ∂ΣW = ∇ΣW is a singleton with matrix elementsgiven in (33). Obviously, the matrix is upper triangular.In ase of double swithes, ∂ΣW is determined as
∂Σ(W (Σ′, z, h)) = conv{ ∇ν

ΣW (Σ, z, h)|Σ=Σ′ , ν = 1, . . . , 2k},

∇ν
ΣW (Σ, z, h)|Σ=Σ′ = lim

Σ∈Dν ,Σ→Σ′

∇ΣW (Σ, z, h),(see (11) for notations), and elements are given by formulas (34) � (36). Thematries ∇ν
ΣW are now blo-triangular. In partiular, eah simple swithingpoint τγ orresponds to a nonzero diagonal element σ̇j(τγ) whereas for doubleswithes τα = τβ in the diagonal a (2, 2)-blo ours, whih is either upper orlower triangular. From (34) and (35) the following entries are obtained:

∇ν
(τα,τβ)W(α,β) =



















(

µ−
j δij

0 µ+
i

) if τβ > τα in Dν ,

(

µ+
j 0

δji µ−
i

) if τβ < τα in Dν ,

(37)with δij =
[

u0
i

]r [

u0
j

]s (

pT [gi, gj]
)
∣

∣

τα
, µ±

j = −
[

u0
j

]s
σ̇j(τα ± 0) et.The derivative information above allows for proving the statements of Lemma 2:Proof. Consider the (blo-)triangular matries Mν related to Dν by

Mν = ∇ν
ΣW ∈ ∂ΣW, ν = 1, . . . , 2k.Due to the maximum priniple and Assumption 2a, their diagonal elements

mν
αα = µ±

j = −
[

u0
j

]s
σ̇j(τα ± 0)are always positive. Thus, in ase when only simple swithes are present, thematrix M = Mν , ν = 1, . . . , 2k, has positive determinant and ∇ΣW is regular.Now assume that the vetor Σ0 ontains double swith pairs, e.g. τα = τβfor α = (j, s), β = (i, r), and i 6= j. Again, the diagonal elements in Mν arepositive. Nondiagonal elements related to a double-swith blo are found by(37) as

mν
αβ ∈ {0, δij}, mν

βα ∈ {0,−δij} (38)where δij = µ+
j − µ−

j = µ−
i − µ+

i , see (6).It is easy to see that all matries Mν have positive determinants. If we onsiderarbitrary onvex ombinations of these blo triangular matries then, in diag-onal blos, we �nd onvex ombinations of two alternative forms whih againhave positive determinants: indeed, all diagonal elements are positive whereas



324 U. FELGENHAUERnondiagonal elements will have di�erent signs, see (38).Thus, all onvex ombinations of matries from {Mν , ν = 1, . . . , 2k} assemblingthe set ∂ΣW are regular.To omplete the proof of the lemma, notie that the regularity of ∇zV =
ΦT (1) in (32) follows diretly from properties of fundamental matrix solutions.Appendix 2: Parameter examplesMonotoniity of swithing funtions from (26). For ǫ ∈ (0, 1) and appro-priately hosen terminal parameters z ∈ R2, the funtion σ1 = ǫ p1(ǫx2 +x1 +1)as a funtion of time is monotone dereasing, and σ2 = p2 is monotone inreas-ing:Let z satisfy the onditions z1 ∈ (−1, 0), z2 > ǫ together with

z2 − T + 2δ > ǫ, −z2/z1 <
1 + ǫ2

ǫ

(

eǫT − 1
) (39)where δ is given by

1 + ǫ2

ǫ

(

eǫδ − 1
)

= −
z2

z1
. (40)Then, both σ1 and σ2 are stritly monotone funtions of time.Proof. Notie �rst that, due to the seond part of ondition (39), δ belongs to

(0, T ) .Consider the time derivatives σ̇: from the anonial system we get
σ̇1 = ǫ p1(ǫu2 + x2), σ̇2 = − p1(1 + ǫ2u1).From (26) and z1 < 0 it follows that p1 < 0 all over [0, T ] and thus, σ2 = p2is stritly monotone inreasing. Sine the funtion annot hange its sign morethan one on R, e.g. at point t2s, from the state equation we �nd
x2(t) ≥

{

min{z2, z2 + 2(T − t2s) − T } if ∃ t2s ∈ (0, T )
z2 if u2 ≡ u2(T ) = −1

.Finally, one an estimate t2s using δ: indeed, from the adjoint equation and
z1 < 0 we see that, independently of swithes of u1, we always have u1 ≤ 1 andthus,

p1(t) ≥ z1e
ǫ(T−t), ṗ2(t) ≤ −z1(1 + ǫ2) eǫ(T−t). (41)Consequently,

p2(t) = z2 −

∫ T

t

ṗ2(s)ds ≥ z2 + z1
1 + ǫ2

ǫ

(

eǫ(T−t) − 1
)

.



The shooting approah in analyzing bang-bang extremals 325where equality holds at t < T i� u1 ≡ +1 on [t, T ]. In partiular, p2(T − δ) ≥ 0so that t2s ≤ T − δ < T follows. Using again (39) we onlude that x2(t) ≥
min{z2, z2 + 2δ − T } > ǫ, or

σ̇1(t) < 0, σ̇2(t) > 0 a.e. on [0, T ]. (42)Remark 1 An example of parameters satisfying assumptions (39) is given by
ǫ = 0.5, T = 2, z= (−0.4, 0.6) with orresponding δ=2ln 1.6≈0.94.Bakward Solution Method for �rst-order optimality system for (Ph(ǫ)).In the ase that the bakward shooting system (25), (26) has a solution suhthat the ontrol funtion u = u(·, z) is bang-bang and satis�es Assumptions 1,2a, the solution an be alulated by a predition-orretion algorithm:step 1: For z ∈ Z �nd u(T ) = −sign σ(T, z, ǫ)step 2: Solve bakwards the state-adjoint system with u ≡ u(T ),

x(T ) = p(T ) = z on [0, T ]. Set k = 0, θ0 = T .step 3: Find σ = σ(·, z, ǫ) from (26).For i = 1, 2:if σi hanges sign on (0, θk) �nd t̂is = max{t ∈ (0, θk) : σi(t) = 0, σ̇i(t) 6= 0}.Set k = k + 1 and θk = maxi{t̂
i
s}.step 4: Resolve state-adjoint equations on [0, θk] with u ≡ −sign σ(θk − 0).step 5: Repeat steps 3�4 until struture of u is �xed.Notie that, under monotoniity of σ1,2, the solution is determined within atmost two iteration steps. In our example, zeros of σ2 in step 3 are found ana-lytially whereas zeros of σ1 are approximated by bisetion.The set C of double-swith parameters. As mentioned above, the esti-mates for p1 and p2 turn into equalities as far as t1s ≤ t2s where the latter thenwill oinide with (T −δ). Consider now σ1: the funtion will vanish at t = T −δif and only if

D(ǫ, z1, z2) := ( ǫ x2 + x1 + 1)|t=T−δ = 0.The values for x1, x2 are found by bakward solving the state system with
u ≡ u(T ) = (+1,−1)T what an be done analytially, e.g. with symbolialgebra tools. Inserting them into D yields

D = ǫ(z2 + δ) −
1 + ǫ2

ǫ2
(

e−ǫδ − 1 + ǫδ
)

+ z2
1 + ǫ2

ǫ

(

e−ǫδ − 1
)

+ (z1 + 1)e−ǫδ

=: a(ǫ, r) z1 + b(ǫ, r), r = −z2/z1. (43)The struture of the above expression allows (e.g. for ǫ = 0.5 and r varyingin the range (0.7, 1.2)) to �nd double-swith parameters zd
1 = zd

1(r) and zd
2 =
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zd
2(r) = −r zd

1 by solving D = 0. The points (zd
1 , zd

2) form the urve C ⊂ Zwhih is smoothly parameterized by r. Asymptoti expansion for a shows that
a(ǫ, r) = O(1 + r2) > 0 for ǫ → 0,and the positivity for (ǫ, r)-values onsidered above was on�rmed numerially.Thus, for points lying to the right from urve C (i.e. (z1, z

d
2) with z1 > zd

1) weget D > 0, and D < 0 for points to the left. In the �rst ase, t1s < t2s = T − δfollows immediately. The seond ase tells us that the predition for σ1(T − δ)with u ≡ u(T ) is positive, i.e. t2s ≤ T − δ < t1s must hold true. The resultobtained is also on�rmed by Tables 1�2, Setion 5:
C = {(zd

1 , zd
2) : D(ǫ, zd

1 , zd
2) = 0}, (44)
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