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330 V.Y. GLIZEROne of the important issues, arising in ontrol theory, is optimization of aontrolled system with respet to a given performane index. The rih literatureis devoted to studying this issue for singularly perturbed undelayed systems withunonstrained ontrols (see e.g. Kokotovi, Khalil and O'Reilly, 1999; Gaji andLim, 2001, and referenes therein) and onstrained ontrols (see e.g. Donthev,1983; Donthev and Zolezzi, 1993, and referenes therein) by using the oneptof separation of time sales and the order redution approah. For the analysisof optimal ontrol problems with singularly perturbed undelayed dynamis, notallowing for appliation of the order redution approah, the method, based onthe notion of limit distributions of ontrol and fast state variable on the fasttime sale, was developed in a number of works (see e.g. Artstein, 2005, andreferenes therein).Optimal ontrol problems for singularly perturbed systems with delays werestudied only in several works. The problems with unonstrained ontrols wereonsidered in Fridman (1990), Glizer (1998, 2000, 2007), Reddy and Sannuti(1974) (the ase of small delay) and in Glizer (2005, 2006) (the ase of nons-mall delay). To our best knowledge, optimal ontrol problems with onstrainedontrols for singularly perturbed delayed systems were not studied in literature.In this paper, we onsider an optimal ontrol problem with a presribedduration for a singularly perturbed time-dependent system with the generaltype of delay in state variables. The system is linear with respet to the states.The initial onditions for this system are given. The ontrol is onstrained. Theost funtional is a funtion of the terminal value of the slow state variable. Thedelay is small of order of the small parameter ε > 0 multiplying a part of thederivatives in the system.Singularly perturbed systems with small delays of order of the small mul-tiplier for a part of the derivatives are highly signi�ant for the domain offuntional-di�erential equations (see e.g. Artstein and Slemrod, 2001; Fridman,1996; Glizer, 2003; Halanay, 1966; Mitropol'skii, Fodhuk and Klevhuk, 1986,and referenes therein), in ontrol theory (see e.g. Fridman, 1990, 2006; Glizer,1998, 2000, 2004, 2007; Reddy and Sannuti, 1974, and referenes therein), andin various appliations (see e.g. Lange and Miura, 1994; Lizana, 1999; Reddyand Sannuti, 1975, and referenes therein). Singularly perturbed systems withnonsmall delays also have a onsiderable importane in theory and appliations(see e.g. Cooke and Meyer, 1966; Donhev and Slavov, 1995, 1997; Glizer, 2005,2006; Hale and Tanaka, 2000; Kopeikina, 1989; Magalhaes, 1984; Mallet-Paretand Nussbaum, 1989, and referenes therein). It should be noted that the meth-ods of analysis of singularly perturbed systems with small and nonsmall delaysessentially di�er.For the problem onsidered in the paper, an asymptoti behavior (as ε → +0)of the optimal value of the ost funtional is studied. This study is arried outby an extension of the order redution approah to suh a lass of problems.Namely, �rst, a simpler ε-free optimal ontrol problem (the redued one) is as-soiated with the original problem. Seond, it is shown that the optimal value of



Corretness of a onstrained ontrol Mayer's problem 331the ost funtional of the latter onverges to the optimal value of the ost fun-tional of the former, while ε → +0. Suh a onvergene means the orretness ofthe singularly perturbed optimal ontrol problem onsidered in the paper. Anestimate of the di�erene between the optimal values of the ost funtional inthe original and redued problems also is obtained. As a onsequene of theseresults, it is shown that the optimal ontrol of the redued problem an serveas a suboptimal ontrol in the original problem for all su�iently small valuesof ε, i.e., robustly with respet to this parameter.The paper is organized as follows. In the next setion, the problem is formu-lated rigorously. Setion 3 is devoted to some preliminary results. Main resultsare presented in Setion 4. An illustrative example is onsidered in Setion 5.In Setion 6, some extensions of the main results are disussed. Setions 7 and8 are devoted to proofs of the lemmas presented in Setion 3.The following notations are applied in the paper:1. En is the n-dimensional real Eulidean spae.2. The Eulidean norm of either a matrix or a vetor is denoted as ‖ · ‖.3. In denotes the n-dimensional identity matrix.4. The prime, as an upper index, denotes the transposition either of a matrix
A, (A′

) or of a vetor x, (x′ ).5. ol(x, y), where x ∈ En, y ∈ Em, denotes the olumn blok-vetor ofthe dimension n + m with the upper blok x and the lower blok y, i.e.,ol(x, y) = (x
′

, y
′

)
′ .2. Problem formulation and main assumptions2.1. Original problemConsider the following system

dx(t)/dt =

∫ 0

−h

[

dηA1(t, η)
]

x(t + εη) +

∫ 0

−h

[

dηA2(t, η)
]

y(t + εη)

+ B1(t, u(t)), t ∈ [0, T ], (1)
εdy(t)/dt =

∫ 0

−h

[

dηA3(t, η)
]

x(t + εη) +

∫ 0

−h

[

dηA4(t, η)
]

y(t + εη)

+ B2(t, u(t)), t ∈ [0, T ], (2)where x(t) ∈ En, y(t) ∈ Em, u(t) ∈ Er (u is a ontrol); ε > 0 is a smallparameter; A1(t, η), A2(t, η), A3(t, η) and A4(t, η) are matries of orrespondingdimensions; B1(t, u) and B2(t, u) are vetors of orresponding dimensions; h > 0is a given onstant and T > 0 is a given time instant, both independent of ε.Note that x(·) and y(·) are alled the slow and fast state variables, respe-tively, of the system (1)-(2).In the sequel, we assume:



332 V.Y. GLIZERA1. The matrix-valued funtions Ai(t, η), (i = 1, ..., 4) are given for (t, η) ∈
[0, T ]× (−∞, +∞) and satisfy the onditions:
(a) Ai(t, η) = 0, (i = 1, ..., 4), ∀(t, η) ∈ [0, T ]× [0, +∞);
(b) Ai(t, η) = Ai(t,−h), (i = 1, ..., 4), ∀(t, η) ∈ [0, T ]× (−∞,−h];
() Ak(t, η), (k = 1, 2), are ontinuously di�erentiable with respet to t ∈ [0, T ]uniformly in η ∈ (−∞, +∞);
(d) Al(t, η), (l = 3, 4), are twie ontinuously di�erentiable with respet to
t ∈ [0, T ] uniformly in η ∈ (−∞, +∞);
(e) for eah t ∈ [0, T ], Ai(t, η), (i = 1, ..., 4), are ontinuous from the left withrespet to η ∈ (−h, 0);
(f) Ai(t, η) and ∂Ai(t, η)/∂t, (i = 1, ..., 4), have bounded variations with respetto η on the interval [−h, 0] uniformly in t ∈ [0, T ];
(g) ∂2Al(t, η)/∂t2, (l = 3, 4), have bounded variations with respet to η on theinterval [−h, 0] uniformly in t ∈ [0, T ].A2. The vetor-valued funtions Bj(t, u), (j = 1, 2), are de�ned for (t, u) ∈
[0, T ]× DB, where DB ⊆ Er is a given set.For (1)-(2), the initial onditions are given as

x(τ) = ϕx(τ), y(τ) = ϕy(τ), τ ∈ [−εh, 0), (3)
x(0) = x0, y(0) = y0, (4)where ϕx(τ) and ϕy(τ) are given vetor-valued funtions; x0 and y0 are givenvetors. In the sequel, we assume:A3. There exists a positive onstant ε0, suh that the vetor-valued funtions

ϕx(τ) and ϕy(τ) are ontinuously di�erentiable for τ ∈ [−ε0h, 0].The admissible ontrols are measurable funtions for t ∈ [0, T ] satisfying theinlusion
u(t) ∈ Du, t ∈ [0, T ], (5)where Du ⊆ DB is a given set. The set of all admissible ontrols u(t) is denotedby U . The performane index, evaluating the ontrol proess, is
J(u(t))

△
= F

(

x(T )
)

→ min
u(t)∈U

, (6)where F (x) is a given salar funtion de�ned for x ∈ En.In the sequel, we assume:A4. ‖Bj(t, u)‖ ≤ cB ∀(t, u) ∈ [0, T ] × Du, (j = 1, 2), where cB > 0 is someonstant.A5. The funtion F (x) is ontinuous and has ontinuous �rst-order partialderivatives for x ∈ En.The problem (1)-(6) is alled the Original Optimal Control Problem (OOCP).



Corretness of a onstrained ontrol Mayer's problem 3332.2. Redued problemSetting formally ε = 0 in (1)-(2), and redenoting x by x̄, y by ȳ and u by ū, weobtain the system
dx̄(t)/dt = Ā1(t)x̄(t) + Ā2(t)ȳ(t) + B1(t, ū(t)), (7)
0 = Ā3(t)x̄(t) + Ā4(t)ȳ(t) + B2(t, ū(t)), (8)where
Āi(t) =

∫ 0

−h

dηA(t, η), i = 1, ..., 4. (9)Consider the following matrix depending on t and a omplex parameter λ

W (t, λ) =

∫ 0

−h

exp(λη)dηA4(t, η). (10)In the sequel, we assume:A6. All roots λ of the equation det[W (t, λ) − λIm] = 0 lie inside the left-handhalf-plane for all t ∈ [0, T ].Due to (9) and (10), W (t, 0) = Ā4(t) ∀t ∈ [0, T ] yielding, by using theassumption A6,
det Ā4(t) 6= 0 ∀t ∈ [0, T ]. (11)Thus, by using (11), we an eliminate y from (7)-(8), whih yields the fol-lowing system
dx̄(t)/dt = Ā0(t)x̄(t) + B̄0(t, ū(t)), t ∈ [0, T ], (12)where
Ā0(t) = Ā1(t) − Ā2(t)Ā

−1
4 (t)Ā3(t), (13)

B̄0(t, ū) = B1(t, ū) − Ā2(t)Ā
−1
4 (t)B2(t, ū). (14)For (12), the initial ondition and the performane index are, respetively,

x̄(0) = x0, (15)
J̄(ū(t))

△
= F

(

x̄(T )
)

→ min
ū(t)∈U

. (16)The problem (12)-(16) is alled the Redued Optimal Control Problem (ROCP).It an be seen that the ROCP is muh simpler than the OOCP. The ROCP isof a lower dimension, it is delay-free and it is ε-free.



334 V.Y. GLIZER2.3. Objetives of the paperThe objetives of the paper are the following:(1) to establish the onvergene of the optimal value of the ost funtional inthe OOCP to the optimal value of the ost funtional in the ROCP for ε → +0,i.e., to establish the orretness of the OOCP;(2) to estimate the di�erene between the optimal values of the ost funtionalin the OOCP and ROCP;(3) to establish the suboptimality of the ROCP optimal ontrol in the OOCPfor all su�iently small ε > 0, i.e., robustly with respet to this parameter.3. Preliminary resultsConsider the blok matrix
A(t, η, ε) =

(

A1(t, η) A2(t, η)
(1/ε)A3(t, η) (1/ε)A4(t, η)

)

. (17)Let, for a given ε > 0, the ((n + m) × (n + m)
)-matrix Ψ(t, s, ε) be thesolution of the problem

∂Ψ(t, s, ε)/∂t =

∫ 0

−h

[

dηA(t, η, ε)
]

Ψ(t + εη, s, ε), 0 ≤ s < t ≤ T, (18)
Ψ(t, s, ε) = 0, t < s; Ψ(s, s, ε) = In+m. (19)It is lear that Ψ(t, s, ε) is the fundamental matrix solution of the homogeneousversion (Bj(t, u) ≡ 0, (j = 1, 2)) of the system (1)-(2).Let the n × n-matrix Ψ̄(t, s) be the solution of the problem
∂Ψ̄(t, s)/∂t = Ā0(t)Ψ̄(t, s), 0 ≤ s < t ≤ T, (20)
Ψ̄(s, s) = In. (21)The matrix Ψ̄(t, s) is the fundamental matrix solution of the homogeneous ver-sion (B̄0(t, ū) ≡ 0) of the system (12).Let the m × m-matrix Ψ̃(ξ, s) be the solution of the problem
∂Ψ̃(ξ, s)/∂ξ =

∫ 0

−h

[

dηA4(s, η)
]

Ψ̃(ξ + η, s), 0 ≤ s ≤ T, ξ > 0, (22)
Ψ̃(ξ, s) = 0, ξ < 0; Ψ̃(0, s) = Im, 0 ≤ s ≤ T. (23)Due to the assumption A6 and results of Hale and Lunel (1993), the matrix

Ψ̃(ξ, s) satis�es the inequality
‖Ψ̃(ξ, s)‖ ≤ a exp(−βξ), 0 ≤ s ≤ T, ξ ≥ 0. (24)



Corretness of a onstrained ontrol Mayer's problem 335Remark 1 In (24) and in the sequel, a and β denote some positive onstantsindependent of ε.Lemma 1 Let Ψ1(t, s, ε), Ψ2(t, s, ε), Ψ3(t, s, ε) and Ψ4(t, s, ε) be the upper left-hand, upper right-hand, lower left-hand and lower right-hand bloks of the matrix
Ψ(t, s, ε) of the dimensions n×n, n×m, m×n and m×m, respetively. Then,under the assumptions A1 and A6, there exists a number ε1 > 0, suh that thesebloks satisfy the following inequalities for all ε ∈ (0, ε1] and 0 ≤ s ≤ t ≤ T :

‖Ψ1(t, s, ε) − Ψ̄(t, s)‖ ≤ aε, (25)
‖Ψ2(t, s, ε) + εΨ̄(t, s)Ā2(s)Ā

−1
4 (s)‖ ≤ aε

[

ε + exp
(

− β(t − s)/ε
)]

, (26)
‖Ψ3(t, s, ε) + Ā−1

4 (t)Ā3(t)Ψ̄(t, s)‖ ≤ a
[

ε + exp
(

− β(t − s)/ε
)]

, (27)
∥

∥

∥
Ψ4(t, s, ε) − Ψ̃

(

(t − s)/ε, s
)∥

∥

∥
≤ aε. (28)The proof of the lemma is presented in Setion 7Let for any ε ∈ (0, ε0], z(t, ε) = ol(x(t, ε), y(t, ε)

), t ∈ [0, T ] be the solutionof the original singularly perturbed system (1)-(2) with a given u(t) ∈ U , andthe initial onditions (3)-(4). Due to the assumption A4, the de�nition of theset U of ontrol funtions and results of Hale and Lunel (1993), this solutionexists and is unique. Let for the same u(t) as in z(t, ε), x̄(t), t ∈ [0, T ] be thesolution of the redued system (12) with ū(t), replaed by u(t), and the initialondition (15). This solution also exists and is unique.Lemma 2 Under the assumptions A1-A4 and A6, the following inequalities aresatis�ed for all ε ∈ (0, ε2], (ε2 ≤ min{ε0, ε1}), and all u(t) ∈ U :
‖x(t, ε)‖ ≤ a, ‖y(t, ε)‖ ≤ a, t ∈ [0, T ], (29)
‖x̄(t)‖ ≤ a, t ∈ [0, T ], (30)
‖x(t, ε) − x̄(t)‖ ≤ aε, t ∈ [0, T ], (31)where a > 0 is some onstant independent of both ε and u(t).The proof of the lemma is presented in Setion 8.4. Main resultsDenote in the OOCP, for a given ε ∈ (0, ε0],
J∗

ε
△
= inf

u(t)∈U
J(u(t)), (32)and in the ROCP

J̄∗ △
= inf

ū(t)∈U
J̄(ū(t)). (33)



336 V.Y. GLIZERTheorem 1 Let the assumptions A1-A6 be valid. Then,
|J∗

ε − J̄∗| ≤ aε ∀ε ∈ (0, ε2], (34)where the positive onstant ε2 is de�ned in Lemma 2.Proof. First of all, let us note that, by Lemma 2 and the assumption A5,
J∗

ε > −∞ ∀ε ∈ (0, ε2], (35)
J̄∗ > −∞. (36)Due to (32) and (35), for a given ε ∈ (0, ε2], there exist sequenes {up(t)},

(up(t) ∈ U, p = 1, 2, ...), and {δp}, (δp ≥ 0, p = 1, 2, ...),
lim

p→+∞
δp = 0, (37)suh that in the OOCP

J(up(t)) = J∗
ε + δp, p = 1, 2, ... . (38)Similarly, due to (33) and (36), there exist sequenes {ūp(t)}, (ūp(t) ∈ U, p =

1, 2, ...), and {δ̄p}, (δ̄p ≥ 0, p=1, 2, ...),
lim

p→+∞
δ̄p = 0, (39)suh that in the ROCP

J̄(ūp(t)) = J̄∗ + δ̄p, p = 1, 2, ... . (40)Let us �x any ε ∈ (0, ε2] and any p ∈ {1, 2, ...}. Then, using Lemma 2, theequations (6) and (16), and the assumption A5, one has diretly
|J(up(t)) − J̄(up(t))| ≤ aε, |J(ūp(t)) − J̄(ūp(t))| ≤ aε, (41)where a > 0 is some onstant independent of both ε ∈ (0, ε2] and p ∈ {1, 2, ...}.Substitution of (38) and (40) into (41) yields, after a simple algebra
−aε− δp ≤ J∗

ε − J̄(up(t)) ≤ aε − δp, (42)
−aε + δ̄p ≤ −J̄∗ + J(ūp(t)) ≤ aε + δ̄p. (43)By virtue of (32) and (33), we have the inequalities
J∗

ε − J(ūp(t)) ≤ 0, (44)
0 ≤ −J̄∗ + J̄(up(t)). (45)By adding the left-hand inequality in (42) and the inequality (45) we get
−aε− δp ≤ J∗

ε − J̄∗. (46)



Corretness of a onstrained ontrol Mayer's problem 337Similarly, by adding the right-hand inequality in (43) and inequality (44) we get
J∗

ε − J̄∗ ≤ aε + δ̄p. (47)The inequalities (46) and (47) diretly lead to the inequality
|J∗

ε − J̄∗| ≤ aε + νp, νp = max{δp, δ̄p}. (48)The inequality (48) is valid for any ε ∈ (0, ε2] and p ∈ {1, 2, ...}, while theonstant a is independent of these ε and p. Moreover, due to (37) and (39),
limp→+∞ νp = 0. The latter, along with (48), leads to the hypothesis of thetheorem.Following the de�nition of orretness of optimal ontrol problems with sin-gularly perturbed undelayed dynamis (see Donthev, 1983), we say that theOOCP is posed orretly if limε→+0 J∗

ε = J̄∗. As a diret onsequene of The-orem 1, we have the following orollary.Corollary 1 Under the assumptions A1-A6, the OOCP is posed orretly.In the sequel of this setion, we assume:A7. The ROCP has a solution, and ū∗(t) is its optimal ontrol.Under the assumption A7, we obtain that in the ROCP
J̄∗ = J̄(ū∗(t)). (49)Let Jε(ū

∗(t)) be the value of the ost funtional in the OOCP for u(t) = ū∗(t).Theorem 2 Let the assumptions A1-A7 be valid. Then,
0 ≤ Jε(ū

∗(t)) − J∗
ε ≤ aε ∀ε ∈ (0, ε2], (50)where the positive onstant ε2 is the same as in Lemma 2 and Theorem 1.Proof. From Lemma 2, the equations (6),(16),(49) and the assumption A5, oneobtains the following inequality for all ε ∈ (0, ε2]: |Jε(ū

∗(t)) − J̄∗| ≤ aε. Thisinequality, along with (34), yields for all ε ∈ (0, ε2]: |Jε(ū
∗(t)) − J∗

ε | ≤ aε. Thelatter and the inequality J∗
ε ≤ Jε(ū

∗(t)) lead to the statement of theorem.Remark 2 Theorem 2 implies that the ontrol u(t) = ū∗(t) is asymptotiallysuboptimal in the OOCP, i.e., it is suboptimal for all su�iently small ε > 0.Remark 3 The proofs of Theorems 1 and 2 are based neither on neessary noron su�ient optimality onditions for both the OOCP and the ROCP. Moreover,these proofs do not use any assumption on the OOCP solution existene.



338 V.Y. GLIZER5. ExampleConsider the following partiular ase of the OOCP with salar slow and faststate variables, and with a salar ontrol:
dx(t)/dt = −x(t)− 3x(t− ε)+ 2y(t)+ y(t− ε)+ (t− 5)u(t), t ∈ [0, 2], (51)
εdy(t)/dt = 3x(t)− x(t− ε)− 4y(t)+ 2y(t− ε)+ (t +2)u(t), t ∈ [0, 2], (52)
x(τ) = τ, y(τ) = τ2, τ ∈ [−ε, 0), (53)
x(0) = 1, y(0) = 2, (54)
|u(t)| ≤ 1, t ∈ [0, 2], (55)
J(u(t))

△
= −x(2) → min

u(t):|u(t)|≤1
. (56)Comparing (51)-(52) with (1)-(2), one obtains that for (51)-(52) the matrix-valued funtions Ai(t, η), (i = 1, ..., 4) beome salar ones independent of t, i.e.,

Ai(t, η) ≡ Ai(η), t ∈ [0, 2], (i = 1, ..., 4), and these funtions have the form
A1(η) =







2, −∞ < η ≤ −1,
−1, −1 < η < 0,
0, η ≥ 0,

A2(η) =







1, −∞ < η ≤ −1,
2, −1 < η < 0,
0, η ≥ 0,

(57)
A3(η) =







4, −∞ < η ≤ −1,
3, −1 < η < 0,
0, η ≥ 0,

A4(η) =







−6, −∞ < η ≤ −1,
−4, −1 < η < 0,

0, η ≥ 0.
(58)The ROCP, assoiated with the OOCP (51)-(56) has the form

dx̄(t)/dt = −x̄(t) + (2.5t − 2)ū(t), t ∈ [0, 2]; x̄(0) = 1, (59)
|ū(t)| ≤ 1, t ∈ [0, 2], (60)
J̄(ū(t))

△
= −x̄(2) → min

ū(t):|ū(t)|≤1
. (61)It is obtained diretly that the ROCP has the unique solution. The optimalontrol and the optimal value of the ost funtional are ū∗(t) = sign(2.5t − 2)and J̄∗ = J̄(ū∗(t)) = −1.532. The OOCP also has the unique solution. InTable 1, the optimal value J∗

ε of the ost funtional (56) in the OOCP, as wellas the ratio ∆J∗
ε = |J∗

ε − J̄∗|/ε, are presented for various values of ε. Itis seen that, for dereasing ε, the ratio ∆J∗
ε inreases. However, this inreaseslows down. Numerial alulations have shown that maxε∈(0,0.1] ∆J∗

ε = 1.987,meaning that in this example, ε2 = 0.1 and a = 2 provide for the ful�llment ofTheorem 1. In Table 2, the value of Jε(ū
∗(t)), as well as the ratio ∆Jε(ū

∗(t)) =
(Jε(ū

∗(t)) − J∗
ε )/ε, are presented for various values of ε. It an be seen that,for dereasing ε, the ratio ∆Jε(ū

∗(t)) dereases. Numerial alulations haveshown that maxε∈(0,0.1] ∆Jε(ū
∗(t)) = 4.104, whih means that in this example,

ε2 = 0.1 and a = 4.11 provide for the ful�llment of Theorem 2. The results ofboth tables also show that in this example, J̄∗ is a better approximation of J∗
εthan Jε(ū

∗(t)).



Corretness of a onstrained ontrol Mayer's problem 339Table 1. Values of J∗
ε and ∆J∗

ε

ε 0.1 0.08 0.06 0.04 0.02
J∗

ε - 1.427 - 1.429 - 1.440 - 1.462 - 1.493
∆J∗

ε 1.050 1.294 1.536 1.768 1.959Table 2. Values of Jε(ū
∗(t)) and ∆Jε(ū

∗(t))
ε 0.1 0.08 0.06 0.04 0.02

Jε(ū
∗(t)) - 1.017 - 1.111 - 1.210 - 1.314 - 1.422

∆Jε(ū
∗(t)) 4.104 3.975 3.833 3.686 3.5716. Some extensionsIn this setion, we onsider some extensions of the results of Setion 4.6.1. Mayer's problem with an intermediary ost funtionalConsider the optimal ontrol problem onsisting of the dynamis equations (1)-(2), initial onditions (3)-(4), ontrol onstraint (5) and the performane index

JI(u(t))
△
= G

(

x(t1), x(t2), ..., x(tN )
)

→ min
u(t)∈U

, (62)where G(x1, x2, ..., xN ) is a given salar funtion for x1 ∈ En, x2 ∈ En, ...,
xN ∈ En; 0 < t1 < t2 < ... < tN = T are given time instants; U is the set ofadmissible ontrols de�ned in Setion 2.1. Similarly to Setion 2.1, this problemis alled original.Remark 4 A ost funtional of type (62) is alled intermediary (see e.g. Bern-hard, 1979). Optimal ontrol problems and di�erential games with intermediaryost funtionals were studied in a number of works (see e.g. Bernhard, 1979; Ha-genaars, Imura and Nijmeijer, 2004; Lukoyanov and Reshetova, 1998; Turetsky,1999).In the sequel, we assume:A8. The funtion G(x1, x2, ..., xN ) is ontinuous and has ontinuous partialderivatives for x1 ∈ En, x2 ∈ En, ..., xN ∈ En.Setting formally ε = 0 in the original problem (1)-(5),(62), one obtains,similarly to Setion 2.2, the optimal ontrol problem onsisting of the dynamisequation (12), initial ondition (15) and the performane index

J̄I(ū(t))
△
= G

(

x̄(t1), x̄(t2), ..., x̄(tN )
)

→ min
ū(t)∈U

. (63)Similarly to Setion 2.2, this problem is alled redued.



340 V.Y. GLIZERDenote in the original problem (1)-(5),(62), for a given ε ∈ (0, ε0],
J∗

I,ε
△
= inf

u(t)∈U
JI(u(t)), (64)and in the redued problem (12),(15),(63)

J̄∗
I

△
= inf

ū(t)∈U
J̄I(ū(t)). (65)Theorem 3 Let the assumptions A1-A4,A6,A8 be valid. Then,

|J∗
I,ε − J̄∗

I | ≤ aε ∀ε ∈ (0, ε2], (66)where the positive onstant ε2 is de�ned in Lemma 2.Proof. The theorem is proved similarly to Theorem 1.Like in Setion 4, one obtains the orretness of the problem (1)-(5),(62).Now, we assume:A9. The redued problem (12),(15),(63) has a solution, and ū∗
I(t) is its optimalontrol.Let JI,ε(ū

∗
I(t)) be the value of the ost funtional in the original problem(1)-(5),(62) for u(t) = ū∗

I(t).Theorem 4 Let the assumptions A1-A4,A6,A8,A9 be valid. Then,
0 ≤ JI,ε(ū

∗
I(t)) − J∗

I,ε ≤ aε ∀ε ∈ (0, ε2], (67)where the positive onstant ε2 is the same as in Lemma 2 and Theorem 3.Proof. The theorem is proved similarly to Theorem 2.Note that Theorem 4 implies the asymptoti suboptimality of the ontrol
ū∗

I(t) in the original problem (1)-(5),(62).6.2. Bolza's problem with an intermediary ost funtionalConsider the optimal ontrol problem onsisting of the dynamis equations (1)-(2), initial onditions (3)-(4), ontrol onstraint (5) and the performane index
JBI(u(t))

△
= G

(

x(t1), x(t2), ..., x(tN )
)

+

∫ T

0

(

f
′

(t)x(t) + g
′

(t)y(t) + h(t, u(t))
)

dt → min
u(t)∈U

, (68)where f(t) and g(t) are given vetor-valued funtions; h(t, u) is a given salarfuntion. Like in Setion 6.1, this problem is alled original.



Corretness of a onstrained ontrol Mayer's problem 341In the sequel, we assume:A10. The vetor-valued funtions f(t) and g(t) are ontinuously di�erentiablefor t ∈ [0, T ].A11. The funtion h(t, u) is de�ned and bounded for (t, u) ∈ [0, T ]×Du, wherethe set Du is introdued in Setion 2.1 (see (5)).Let us introdue the new state variable
v(t) =

∫ t

0

(

f
′

(t)x(t) + g
′

(t)y(t) + h(t, u(t))
)

dt, t ∈ [0, T ]. (69)This state variable satis�es the di�erential equation
dv(t)/dt = f

′

(t)x(t) + g
′

(t)y(t) + h(t, u(t)), t ∈ [0, T ] (70)and the initial ondition
v(0) = 0. (71)Note that the equation (70) an be rewritten in the equivalent form
dv(t)/dt =

∫ 0

−h

[

dηf
′

1(t, η)
]

x(t + εη)

+

∫ 0

−h

[

dηg
′

1(t, η)
]

y(t + εη) + h(t, u(t)), (72)where f1(t, η) = f(t)θ(η), g1(t, η) = g(t)θ(η), (t, η) ∈ [0, T ]× (−∞, +∞), and
θ(η) =

{

1, −∞ < η < 0,
0, η ≥ 0.

(73)Thus, by using (69),(71) and (72), one an transform the optimal ontrolproblem (1)-(5),(68) to an equivalent one. This new optimal ontrol problemonsists of the dynamis equations (1)-(2) and (72), the initial onditions (3)-(4)and (71), the ontrol onstraint (5) and the performane index
JI(u(t))

△
= G

(

x(t1), x(t2), ..., x(tN )
)

+ v(tN ) → min
u(t)∈U

. (74)It an be seen diretly that the problem (1)-(5),(71),(72),(74) is the Mayer'sproblem with an intermediary ost funtional and singularly perturbed dynam-is, i.e., it is of the type onsidered in Setion 6.1.Setting formally ε = 0 in the problem (1)-(5),(68) yields a redued problem,assoiated with (1)-(5),(68). This redued problem onsists of the dynamisequation (12), initial ondition (15) and the following performane index
J̄BI

△
= G

(

x̄(t1), x̄(t2), ..., x̄(tN )
)

+

∫ T

0

(

f
′

0(t)x̄(t) + h0(t, ū(t))
)

dt → min
ū(t)∈U

, (75)



342 V.Y. GLIZERwhere f0(t) = f(t)−Ā
′

3(t)
(

Ā−1
4 (t)

)
′

g(t), h0(t, ū) = h(t, ū)−g′(t)Ā−1
4 (t)B2(t, ū).Similarly, by setting formally ε = 0 in the problem (1)-(5),(71),(72),(74), oneobtains a redued problem, assoiated with (1)-(5),(71),(72),(74). This reduedproblem onsists of the dynamis equations (12) and

dv̄(t)/dt = f
′

0(t)x̄(t) + h0(t, ū(t)), t ∈ [0, T ], (76)the initial onditions (15) and
v̄(0) = 0, (77)and the performane index
J̄I(ū(t))

△
= G

(

x̄(t1), x̄(t2), ..., x̄(tN )
)

+ v̄(tN ) → min
ū(t)∈U

. (78)By introduing the new state variable
v̄(t) =

∫ t

0

(

f
′

0(t)x̄(t) + h0(t, ū(t))
)

dt, t ∈ [0, T ], (79)we obtain the equivalene of the problems (12),(15),(75) and (12),(15),(76)-(78).Denote in the original problem (1)-(5),(68), for a given ε ∈ (0, ε0],
J∗

BI,ε
△
= inf

u(t)∈U
JBI(u(t)), (80)and in the redued problem (12),(15),(75)

J̄∗
BI

△
= inf

ū(t)∈U
J̄BI(ū(t)). (81)Theorem 5 Let the assumptions A1-A4,A6,A8,A10,A11 be valid. Then,

|J∗
BI,ε − J̄∗

BI | ≤ aε ∀ε ∈ (0, ε2], (82)where the positive onstant ε2 is de�ned in Lemma 2.Proof. The statement of the theorem follows diretly from the equivalene of theproblems (1)-(5),(68) and (1)-(5),(71),(72),(74), the equivalene of the reduedproblems (12),(15),(75) and (12),(15),(76)-(78), and Theorem 3.Theorem 5 implies that the original problem (1)-(5),(68) is posed orretly.Now, we assume:A12. The redued problem (12),(15),(75) has a solution, and ū∗
BI(t) is itsoptimal ontrol.Let JBI,ε(ū

∗
BI(t)) be the value of the ost funtional in the original problem(1)-(5),(68) for u(t) = ū∗

BI(t). Similarly to Theorems 2 and 4, we obtain thefollowing theorem.



Corretness of a onstrained ontrol Mayer's problem 343Theorem 6 Let the assumptions A1-A4,A6,A8,A10-A12 be valid. Then,
0 ≤ JBI,ε(ū

∗
BI(t)) − J∗

BI,ε ≤ aε ∀ε ∈ (0, ε2], (83)where the positive onstant ε2 is the same as in Lemma 2 and Theorem 5.Theorem 6 implies the asymptoti suboptimality of the ontrol ū∗
BI(t) in theoriginal problem (1)-(5),(68).7. Proof of Lemma 1First, we prove the inequalities (25) and (27). By using the initial value problem(18)-(19) for the matrix Ψ(t, s, ε), as well as the blok form of this matrix andthe blok form (17) of the matrix A(t, η, ε), one an write down the initial valueproblem for the matries Ψ1(t, s, ε) and Ψ3(t, s, ε) as follows

ε(k−1)/2∂Ψk(t, s, ε)/∂t =

∫ 0

−h

[

dηAk(t, η)
]

Ψ1(t + εη, s, ε)

+

∫ 0

−h

[

dηAk+1(t, η)
]

Ψ3(t + εη, s, ε), k = 1, 3, 0 ≤ s < t ≤ T, (84)
Ψ1(t, s, ε) = 0, Ψ3(t, s, ε) = 0, t < s, (85)
Ψ1(s, s, ε) = In, Ψ3(s, s, ε) = 0. (86)Sine ε is a small positive parameter, (84)-(86) is an initial value problem fora singularly perturbed di�erential system with the general type of delay. Thedelay is small of order of the small multiplier ε for a part of the derivatives inthe system. A problem, limited to (84)-(86), was onsidered in Glizer (2003)where its asymptoti solution has been onstruted and justi�ed. The di�erenebetween the problem in Glizer (2003) and (84)-(86) is that the initial onditionsof the former are ontinuous, while the initial onditions of the latter have abreak at t = s. Nevertheless, the results of Glizer (2003) are diretly extendedto (84)-(86). By virtue of these results, there exists a positive onstant ε11 suhthat ∀ε ∈ (0, ε11], the matries Ψk(t, s, ε), (k = 1, 3) an be represented as
Ψk(t, s, ε) = Ψ̄k0(t, s) + Ψb

k0(ξs, s) + Ok(t, s, ε), 0 ≤ s ≤ t ≤ T, (87)where ξs = (t − s)/ε; the matries Ψ̄10(t, s) and Ψ̄30(t, s) have the form
Ψ̄10(t, s) = Ψ̄(t, s), Ψ̄30(t, s) = −Ā−1

4 (t)Ā3(t)Ψ̄(t, s), 0 ≤ s ≤ t ≤ T, (88)the matrix Ψb
10(ξs, s) ≡ 0, ξs ≥ 0, 0 ≤ s ≤ t ≤ T , while the matrix Ψb

30(ξs, s),for 0 ≤ s ≤ t ≤ T , satis�es the initial value problem
∂Ψb

30(ξs, s)/∂ξs =

∫ 0

−h

[

dηA4(s, η)
]

Ψb
30(ξs + η, s), ξs > 0, (89)

Ψb
30(ξs, s) = −Ψ̄30(s, s), ξs ≤ 0; (90)



344 V.Y. GLIZER
Ok(t, s, ε), (k = 1, 3), are known matries satisfying the inequalities

‖Ok(t, s, ε)‖ ≤ aε, 0 ≤ s ≤ t ≤ T. (91)By virtue of the assumption A6 and results of Hale and Lunel (1993), oneobtains that the solution of (89)-(90) exists, is unique and satis�es the inequality
‖Ψb

30(ξs, s)‖ ≤ a exp(−βξs), 0 ≤ s ≤ t ≤ T, ξs ≥ 0. (92)Finally, the equations (87) and (88), and the inequalities (91) and (92) yielddiretly the inequalities (25) and (27) for all ε ∈ (0, ε11].Now, let proeed to the proof of the inequalities (26) and (28). Similarly to(84)-(86), we have the initial value problem for the matries Ψl(t, s, ε), (l = 2, 4)

ε(l−2)/2∂Ψl(t, s, ε)/∂t =

∫ 0

−h

[

dηAl−1(t, η)
]

Ψ2(t + εη, s, ε)

+

∫ 0

−h

[

dηAl(t, η)
]

Ψ4(t + εη, s, ε), l = 2, 4, 0 ≤ s < t ≤ T, (93)
Ψ2(t, s, ε) = 0, Ψ4(t, s, ε) = 0, t < s, (94)
Ψ2(s, s, ε) = 0, Ψ4(s, s, ε) = Im. (95)Similarly to (87), one an obtain the following representations of the matries

Ψl(t, s, ε), (l = 2, 4) for all ε ∈ (0, ε12] with some positive ε12:
Ψl(t, s, ε) = Ψb

l0(ξs, s) + ε
(

Ψ̄l1(t, s) + Ψb
l1(ξs, s)

)

+ Ol(t, s, ε), (96)where 0 ≤ s ≤ t ≤ T ; the matries Ψb
l0(ξs, s), (l = 1, 2) have the form

Ψb
20(ξs, s) = 0, Ψb

40(ξs, s) = Ψ̃(ξs, s), 0 ≤ s ≤ t ≤ T, ξs ≥ 0; (97)the matries Ψ̄21(t, s) and Ψ̄41(t, s) satisfy the system
∂Ψ̄21(t, s)/∂t = Ā1(t)Ψ̄21(t, s) + Ā2(t)Ψ̄41(t, s), 0 ≤ s < t ≤ T, (98)
Ψ̄21(s, s) =

∫ +∞

0

[
∫ 0

−h

[

dηA2(s, η)
]

Ψ̃(σ + η)

]

dσ, (99)
0 = Ā3(t)Ψ̄21(t, s) + Ā4(t)Ψ̄41(t, s), 0 ≤ s ≤ t ≤ T ; (100)the matrix Ψb

21(ξs, s), for 0 ≤ s ≤ t ≤ T , satis�es the initial value problem
∂Ψb

21(ξs, s)/∂ξs =

∫ 0

−h

[

dηA2(s, η)
]

Ψ̃(ξs + η, s), ξs > 0, (101)
Ψb

21(0, s) = −

∫ +∞

0

[
∫ 0

−h

[

dηA2(s, η)
]

Ψ̃(σ + η)

]

dσ; (102)



Corretness of a onstrained ontrol Mayer's problem 345the matrix Ψb
41(ξs, s), for 0 ≤ s ≤ t ≤ T , satis�es the initial value problem

∂Ψb
41(ξs, s)/∂ξs =

∫ 0

−h

[

dηA3(s, η)
]

Ψb
21(ξs + η) +

∫ 0

−h

[

dηA4(s, η)
]

Ψb
41(ξs + η)

+ ξs

∫ 0

−h

[

dη

(

∂A4(s, η)/∂s
)]

Ψ̃(ξs + η), ξs > 0, (103)
Ψb

41(ξs, s) = −Ψ̄41(s, s), ξs ≤ 0; (104)
Ol(t, s, ε), (l = 2, 4), are known matries satisfying the inequalities

‖Ol(t, s, ε)‖ ≤ aε2, 0 ≤ s ≤ t ≤ T. (105)Consider the system (98)-(100). Note that, due to (24) and (97), the integralin (99) onverges. Now, using (11),(13) and (20)-(21) we get for 0 ≤ s ≤ t ≤ T

Ψ̄21(t, s) = Ψ̄(t, s)Ψ̄21(s, s), Ψ̄41(t, s) = −Ā−1
4 (t)Ā3(t)Ψ̄21(t, s), (106)meaning the boundedness of Ψ̄41(t, s) for 0 ≤ s ≤ t ≤ T .Proeed to the problem (101)-(102). For 0 ≤ s ≤ t ≤ T , this problem hasthe unique solution

Ψb
21(ξs, s) = −

∫ +∞

ξs

[
∫ 0

−h

[

dηA2(s, η)
]

Ψ̃(σ + η, s)

]

dσ, ξs ≥ 0, (107)yielding, by using (24) and (97), the estimate
‖Ψb

21(ξs, s)‖ ≤ a exp(−βξs), 0 ≤ s ≤ t ≤ T, ξs ≥ 0. (108)By virtue of the assumption A6, the equation (97), the inequalities (24),(108)and the results of Hale and Lunel (1993), there exists a unique solution of theproblem (103)-(104), and this solution satis�es the inequality
‖Ψb

41(ξs, s)‖ ≤ a exp(−βξs), 0 ≤ s ≤ t ≤ T, ξs ≥ 0. (109)Now, using the expression ξs = (t − s)/ε, the equations (96) for l = 4 and(97), the inequalities (105) for l = 4 and (109), as well as the boundedness of
Ψ̄41(t, s), we obtain diretly the inequality (28) for all ε ∈ (0, ε12]. Similarly,by using the expression for ξs, the equations (96) for l = 2 and (106), theinequalities (105) for l = 2 and (108), as well as the fat that Ψb

20(ξs, s) ≡ 0, weobtain the following inequality for all ε ∈ (0, ε12] and 0 ≤ s ≤ t ≤ T :
‖Ψ2(t, s, ε) − εΨ̄(t, s)Ψ̄21(s, s)‖ ≤ aε

[

ε + exp
(

− β(t − s)/ε
)]

. (110)To omplete the proof of (26), we transform equivalently the matrix Ψ̄21(s, s)given by (99). For this purpose, we transform the equation (22). Its integrationwith respet to ξ on the interval [0, +∞), and using (23),(24) and (97), yield
−Im =

∫ +∞

0

[
∫ 0

−h

[

dηA4(s, η)
]

Ψ̃(ξ + η, s)

]

dξ. (111)



346 V.Y. GLIZERDue to (24) and (97), the integral in (111) onverges absolutely. Hene, by theFubini Theorem, we an hange the order of integration in this integral. Thus,
−Im =

∫ 0

−h

[

dηA4(s, η)
]

∫ +∞

0

Ψ̃(ξ + η, s)dξ. (112)The transformation of variables ξ = σ − η in the improper integral leads to
−Im =

∫ 0

−h

[

dηA4(s, η)
]

∫ +∞

η

Ψ̃(σ, s)dσ. (113)Now, (23) and the fat that η ∈ [−h, 0] imply
−Im =

∫ 0

−h

[

dηA4(s, η)
]

∫ +∞

0

Ψ̃(σ, s)dσ, (114)yielding, by virtue of (9) and (11),
∫ +∞

0

Ψ̃(σ, s)dσ = −Ā−1
4 (s). (115)Similarly to the transformation of the right-hand side in (111) to the right-hand side in (114), one an transform the expression (99) for Ψ̄21(s, s) as follows

Ψ̄21(s, s) = Ā2(s)

∫ +∞

0

Ψ̃(σ, s)dσ. (116)Finally, substitution of (115) into (116), and then of the resulting expressioninto (110) yields diretly the inequality (26) for all ε ∈ (0, ε12]. Setting ε1 =
min{ε11, ε12} ompletes the proof of the lemma.8. Proof of Lemma 2We begin with the proof of (29). We introdue the blok vetors

B(t, u) =

(

B1(t, u)
B2(t, u)

)

, ϕ(τ) =

(

ϕx(τ)
ϕy(τ)

)

, z0 =

(

x0

y0

)

, (117)and blok matries
Eε =

(

In 0
0 (1/ε)Im

)

, A(t, η) =

(

A1(t, η) A2(t, η)
A3(t, η) A4(t, η)

)

. (118)Then, using the variation of onstant formula (see Hale and Lunel, 1993) we get
z(t, ε) = Ψ(t, 0, ε)z0 +

∫ εh

0

Ψ(t, ω, ε)Eε

(

∫ −ω/ε

−h

[

dηA(ω, η)
]

ϕ(ω + εη)

)

dω

+

∫ t

0

Ψ(t, s, ε)EεB(s, u(s))ds, t ∈ [0, T ]. (119)



Corretness of a onstrained ontrol Mayer's problem 347Using the blok form of Ψ(t, s, ε) and (117)-(119), one an write down thebloks x(t, ε) and y(t, ε) of the vetor z(t, ε) as follows
x(t, ε) = Ψ1(t, 0, ε)x0 + Ψ2(t, 0, ε)y0

+

∫ εh

0

{

Ψ1(t, ω, ε)

(

∫ −ω/ε

−h

[

dηA1(ω, η)
]

ϕx(ω + εη)

+

∫ −ω/ε

−h

[

dηA2(ω, η)
]

ϕy(ω + εη)

)

+ (1/ε)Ψ2(t, ω, ε)

(

∫ −ω/ε

−h

[

dηA3(ω, η)
]

ϕx(ω + εη)

+

∫ −ω/ε

−h

[

dηA4(ω, η)
]

ϕy(ω + εη)

)}

dω

+

∫ t

0

(

Ψ1(t, s, ε)B1(s, u(s)) + (1/ε)Ψ2(t, s, ε)B2(s, u(s))
)

ds, (120)
y(t, ε) = Ψ3(t, 0, ε)x0 + Ψ4(t, 0, ε)y0

+

∫ εh

0

{

Ψ3(t, ω, ε)

(

∫ −ω/ε

−h

[

dηA1(ω, η)
]

ϕx(ω + εη)

+

∫ −ω/ε

−h

[

dηA2(ω, η)
]

ϕy(ω + εη)

)

+ (1/ε)Ψ4(t, ω, ε)

(

∫ −ω/ε

−h

[

dηA3(ω, η)
]

ϕx(ω + εη)

+

∫ −ω/ε

−h

[

dηA4(ω, η)
]

ϕy(ω + εη)

)}

dω

+

∫ t

0

(

Ψ3(t, s, ε)B1(s, u(s)) + (1/ε)Ψ4(t, s, ε)B2(s, u(s))
)

ds. (121)The inequalities (24) and (25)-(28) yield the following estimates of the ma-tries Ψi(t, s, ε), (i = 1, ..., 4) for all ε ∈ (0, ε1] and 0 ≤ s ≤ t ≤ T :
‖Ψk(t, s, ε)‖ ≤ a, k = 1, 3, (122)
‖Ψ2(t, s, ε)‖ ≤ aε, ‖Ψ4(t, s, ε)‖ ≤ a

[

ε + exp
(

− β(t − s)/ε
)]

. (123)Now, using the assumptions A1-A4, the de�nition of the set U , the equations(85) and (94), and the inequalities (122) and (123) we obtain the inequalities(29). The inequality (30) is proved similarly by using the following expression
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x̄(t) = Ψ̄(t, 0)x0 +

∫ t

0

Ψ̄(t, s)B̄0(s, u(s))ds, t ∈ [0, T ]. (124)We proeed to the proof of (31), based on some analysis of (120). First,note that, for ω ∈ [0, εh], the term ω/ε varies from 0 to h. For ω ∈ [0, εh] and
η ∈ [−h,−ω/ε], the term ω + εη varies in the interval [−h, 0]. Hene, due to theassumptions A1 and A3, the following inequalities hold for all ε ∈ (0, ε0]:

∥

∥

∥

∥

∥

∫ −ω/ε

−h

[

dηAk(ω, η)
]

ϕx(ω + εη)

∥

∥

∥

∥

∥

≤ a, k = 1, 3, ω ∈ [0, εh], (125)
∥

∥

∥

∥

∥

∫ −ω/ε

−h

[

dηAl(ω, η)
]

ϕy(ω + εη)

∥

∥

∥

∥

∥

≤ a, l = 2, 4, ω ∈ [0, εh]. (126)Using the inequality (25), the �rst inequalities in (122),(123) and the in-equalities (125),(126), we obtain the following inequalities for all ε ∈ (0, ε2]:
∥

∥

∥
Ψ1(t, 0, ε)x0 − Ψ̄(t, 0)x0

∥

∥

∥
≤ aε,

∥

∥

∥
Ψ2(t, 0, ε)y0

∥

∥

∥
≤ aε, t ∈ [0, T ], (127)

∥

∥

∥

∥

∥

∫ εh

0

Ψ1(t, ω, ε)

(

∫ −ω/ε

−h

[

dηA1(ω, η)
]

ϕx(ω + εη)

+

∫ −ω/ε

−h

[

dηA2(ω, η)
]

ϕy(ω + εη)

)

dω

∥

∥

∥

∥

∥

≤ aε, t ∈ [0, T ], (128)
∥

∥

∥

∥

∥

∫ εh

0

(1/ε)Ψ2(t, ω, ε)

(

∫ −ω/ε

−h

[

dηA3(ω, η)
]

ϕx(ω + εη)

+

∫ −ω/ε

−h

[

dηA4(ω, η)
]

ϕy(ω + εη)

)

dω

∥

∥

∥

∥

∥

≤ aε, t ∈ [0, T ]. (129)Now, we analyze the last integral term in (120). By subtrating the integralpart in the expression (124) for x̄(t) from this term and using (14), we obtain
G(t, ε)

△
=

∫ t

0

(

Ψ1(t, s, ε)B1(s, u(s)) + (1/ε)Ψ2(t, s, ε)B2(s, u(s))
)

ds

−

∫ t

0

Ψ̄(t, s)B̄0(s, u(s))ds =

∫ t

0

(

Ψ1(t, s, ε) − Ψ̄(t, s)
)

B1(s, u(s))ds

+

∫ t

0

(

(1/ε)Ψ2(t, s, ε) + Ψ̄(t, s)Ā2(s)Ā
−1
4 (s)

)

B2(s, u(s))ds. (130)
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