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vol. 37 (2008) No. 2Curvature of optimal ontrol:Deformation of salar-input planar systems∗ †byMatthias Kawski and Parnell Ted MaxwellDepartment of Mathematis and StatistisArizona State UniversityTempe, AZ 85287, USAAbstrat: The Pontryagin Maximum Priniple and high-orderopen-mapping theorems generalize elementary �rst-derivative teststo nonlinear optimal ontrol. They provide neessary onditions fora trajetory-ontrol-pair to be optimal, or su�ient onditions forloal ontrollability. Su�ient onditions for optimality (and ne-essary onditions for nonlinear ontrollability) are harder to obtain.Like the Legendre-Clebsh ondition, they generally take the formof tests for de�niteness of seond order derivatives.Reently, Agrahev introdued an attrative alternative by devel-oping a notion of urvature of optimal ontrol that generalizes las-sial Gauss (and Rii) urvatures. This theory naturally applies tosystems whose ontrols take values on a irle or sphere. In this arti-le we present initial studies of how this notion of urvature providesinsight into the limiting ase when the irles beome degenerate el-lipses in the form of losed intervals. Of partiular interest are wellstudied aessible, but unontrollable, nonlinear systems, and sys-tems that exhibit onjugate points, in whih the ontrol takes valuesin a losed interval u = (u1, u2) ∈ [−1, 1] × {0} ⊆ R
2. We fous onsystems that are well-known models for the analysis of small-timeloal ontrollability and time-optimal ontrol.Keywords: optimal ontrol, urvature.1. IntrodutionConsider the problem of deiding whether a trajetory pair (u∗, x∗) : [0, T ] 7→

U × Mn of a generally nonlinear system ẋ = F (x, u), x ∈ Mn, u ∈ U ⊆ R
m, isa time-optimal solution onneting given endpoints x(0) = x0 and x(T ) = xTlying in an n-dimensional smooth manifold Mn, or whether the system is loally
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354 M. KAWSKI, P. MAXWELLontrollable about this trajetory. The basi approah is to analyze whether theendpoint map u 7→ x(T ; u) (for �xed T , and x0) from a set of admissible ontrols
U to R

n, is loally an open map at the referene ontrol u∗ ∈ U . A typial hoieis U = L1([0, T ], U) with U ⊆ R
m onvex and ompat.The primary tools are derivatives of this map that are based on ontrolvariations and that have desired onvexity properties together with orrespond-ing open mapping theorems, ompare e. g. Bianhini and Kawski (2003), andSussmann (2002, 2004) for seleted reent innovations. Conditions suh as thePontryagin Maximum Priniple and its improvements are basially sophistiatedgeneralizations of the elementary �rst-derivative test for ritial points. As suhthey generally provide neessary onditions for a referene ontrol u∗ to be anextremal (i. e., a ritial point of the endpoint map). The ontrapositives of suhstatements serve as su�ient onditions for nonlinear loal ontrollability aboutthe referene trajetory (x∗, u∗): if the derivative has full rank, then the end-point map is loally open at the referene trajetory, and the system is loallyontrollable about this trajetory.Su�ient onditions for optimality (and, orrespondingly, neessary ondi-tions for nonlinear ontrollability) are onsiderably harder to obtain. Like thelassial Legendre-Clebsh ondition, these typially generalize tests for de�nite-ness of seond order derivatives. Other, more geometri arguments that extendthe lassial alulus of variations theory of envelopes to optimal ontrol settingsmay be found in Sussmann (1986, 1989) and the referenes therein.Reently, Agrahev introdued an attrative alternative by developing no-tions of urvature of optimal ontrol that generalize lassial Gauss and Riiurvatures (see Agrahev and Sahkov, 2004, and Agrahev, Chtherbakova,and Zelenko, 2005). These notions preserve a lassial theorem of di�erentialgeometry whih asserts that if the urvature is negative along an extremal,then the extremal is loally optimal. This aptures the pitorial notion thatin spaes of negative urvature geodesis move away from eah other. In otherwords, distint geodesis emanating from one point an interset again only ifthe urvature is su�iently positive along the urve segment. Thus, in priniple,in order to onlude loal optimality, one only needs to ompute the urvaturealong an extremal and verify that it is nonnegative (or �not too positive�). Inother words this approah yields su�ient onditions for (loal) optimality.While several general theoretial results utilizing this urvature have beenforthoming (see Agrahev, Chtherbakova, and Zelenko, 2005, Agrahev, andShherbakova, 2005, and Serres, 2006), the size and omplexity of the formulasfor the urvature in loal oordinates have so far severely limited explorationsof this objet for spei� lasses of systems. A signi�ant ompliation of suhalulations is due to the nature of the urvature being a (salar) funtion onthe irle-subbundle (or sphere-subbundle) of the otangent bundle of the state-spae. In other words, unlike Gaussian urvature whih, in the two-dimensionalase, is a salar funtion on the state-spae, this urvature of optimal ontrolmay at every point have di�erent values in di�erent diretions.



Curvature of optimal ontrol: Deformation of salar-input planar systems 355The �rst notable expliit �ndings for spei� lasses of systems were obtainedby Serres (2006) who studied Zermelo's navigation problem. In pratial terms,this is the problem of �nding time-optimal ontrols for a boat with steeringontrol and with an engine providing relative unit speed but whih is subjet toa drift due to urrents or wind. Formally onsider systems in the plane of theform
{

ẋ1 = f1(x1, x2) + u1 subjet to
ẋ2 = f2(x1, x2) + u2 u2

1
+ u2

2
= 1.

(1)One beautiful result of Serres (2006) is that if the matrix (aij) ∈ R
2×2 is self-adjoint, then extremals of the system with linear drift fi(x) = ai1x1 + ai2x2 areloally optimal.For the purpose of visualizing the urvature in this problem we developedinterative tools that require sizeable omputations in the omputer algebrasystem MAPLE and the numerial engine of MATLAB to obtain intriguingimages that overlaid families of geodesis, geodesi spheres, and olor-odedviews of the urvature, seleted stati images are posted on-line (see Gehrig andKawski, 2004). These tools allow one to experiment with various systems andniely demonstrate the intriay of the dependene of the urvature at any pointin the state spae on the diretion in �bre, and its role in fousing geodesis.Indeed, one ommonly observes multiple hanges of sign in the urvature as theo-state rotates one about the zero-setion.Closely related work by Chitour and Sigalotti (2005) and Sigalotti and Chi-tour (2006), that in some sense is omplementary, studies the �Dubins' ar� onurved surfaes. This system is very similar to the boat, but instead of an ex-ternal drift vetor �eld (wind or urrent) and veloity ontrols (steering angle),the ontrol is the rate of hange of the steering angle. The drift term is dueto the additional integration. In this ase the urvature of the state spae isthe given starting point, and the authors investigate the struture of optimaltrajetories.After this general introdution, the subsequent setions review key de�ni-tions and aspets of Agrahev's urvature, and present an overview of the natureof the alulations when the ontrol set is deformed from a irle to an intervalvia a family of ellipses.2. Elements of Agrahev's theory of urvature of optimalontrolThis setion reviews some elementary de�nitions, tehniques, and results ofAgrahev's theory. We follow losely the notation and language of Agrahevand Sahkov (2004). While more reent work by Agrahev, Chtherbakova,and Zelenko (2005) extends the theory to higher dimensional settings, we here



356 M. KAWSKI, P. MAXWELLrestrit our attention to a speial ase of systems of the form (1) on a twodimensional state spae.Under mild regularity and onvexity onditions, one may assume that (lo-ally in x) the intersetion Hx of the level set H = H−1(1) of the maximizedHamiltonian H with eah �bre T ∗
x R

2 is a simple losed onvex urve that doesnot ontain the origin. A key step is to ompute a vertial vetor �eld v on
T ∗

R
2 that satis�es the identity
L2

vs = −s + bLvs (2)where s = p1dx1 + p2dx2 is the tautologial one-form on T ∗
R

2 restrited to
H, and Lv denotes the Lie derivative in the diretion of the vetor �eld v.The key requirement is the (negative) unit oe�ient of the �rst term on theright hand side of (2). This identity uniquely determines a vetor �eld v up tomultipliation by −1.The vetor �eld v may be omputed expliitly as follows. Start by introdu-ing polar oordinates (p1, p2) = (r cosϕ, r sin ϕ) on the �bres of T ∗

R
2. Withthese, the level sets Hx are parameterized by the angle ϕ (using that Hx doesnot pass through the origin and that it is onvex), and we write p = p(ϕ).Di�erentiating twie, and using the linear independene of p and p′, deomposethe seond derivative with respet to ϕ as a linear ombination

p′′(ϕ) = a1(ϕ)p(ϕ) + a2(ϕ)p′(ϕ). (3)Next perform a hange of parameters θ = θ(ϕ) so that
a1(ϕ) ·

(

dθ
dϕ

)2

= −1. (4)Up to translation and orientation this ondition uniquely determines the newparameter θ, whih, abusing notation, is suh that
p′′(θ) = −p(θ) + a2(θ)p

′(θ). (5)Consequently, with either hoie of sign, v = ∂
∂θ

= ±1√
−a1

∂
∂ϕ

is the desiredvertial �eld. Next ombine this �eld with the Hamiltonian �eld ~h and their Liebraket to obtain a moving frame
V1 = v, V2 = [v,~h], V3 = ~h (6)on the level surfae H−1(1) ⊆ T ∗

R
2. It is straightforward to verify their inde-pendene at all points on H. One also readily veri�es that the Lie derivatives ofthe �elds in this frame in the diretion of the Hamiltonian vetor �eld ~h satisfy

[~h, V1] = −V2, [~h, V2] = κV1, [~h, V3] = 0 (7)where κ is a salar funtion onH and is alled the urvature of the ontrol system(1). This frame is partiularly onvenient for writing the Jaobi equation alongan extremal (xt, pt) on H. More spei�ally, in this moving frame the matrix



Curvature of optimal ontrol: Deformation of salar-input planar systems 357representation Γ(t) of the operator et ad~h satis�es the linear di�erential equation
Γ̇(t) = Γ(t) · A(t) (8)with initial ondition Γ(0) = I3×3 where the oe�ient matrix is given by
A(t) =





0 κ(xt, pt) 0
−1 0 0
0 0 0



 . (9)A time tc > 0 is, by de�nition, a onjugate time for an extremal (xt, pt) if the in-tersetion of the vertial subspae Π0 = Tp0
(T ∗

x0
R

2) with its image Btc
Π0 underthe �ow Bt de�ned by the Jaobi equation is stritly larger than the subspaeof onstant solutions of the Jaobi equation. Suh an instant tc orresponds toa nontrivial solution of the salar boundary value problem

ÿ + κty = 0, y(0) = y(tc) = 0. (10)It is lear from elementary di�erential equations that nontrivial solutions do notexist when κ ≤ 0 for all times along an extremal (xt, pt). Moreover, in the aseof not neessarily negative urvature, standard integral estimates yield lowerbounds on the �rst positive onjugate time tc.Summarizing, in order to apply this su�ieny riterion for loal optimality,i. e., for the absene of onjugate points, the main steps in the alulation are
• �nd the hange of parameters θ = θ(ϕ) so that (4) holds,
• alulate the urvature from [~h, [~h, v]] = −κv, and
• verify that κ ≤ 0 along an extremal, or �nd bounds for the integral of κalong the extremal if κ ≥ 0 for some t.As simple as these foregoing alulations appear, they quikly lead to largeformulas, even for very simple system data f1 and f2. The ase of a linear�eld f1

∂
∂x1

+ f2
∂

∂x2

= (a11x1 + a12x2)
∂

∂x1

+ (a21x1 + a22x2)
∂

∂x2

with onstant
aij ∈ R was analyzed in detail by Serres (2006), while our simulations and visu-alization e�orts onentrated on quadrati and globally bounded �elds suh ase. g. (f1, f2) = (0, sechx) (Gehrig and Kawski, 2004). Aside from the expetedappearane of various produts of derivatives of the drift (f1, f2), impressive isthe ompliated nature of the ombination of higher harmonis cos jθ and sin jθfor j = 1, 2, 3, 4 in the formulas for the urvature κ whih routinely allows theurvature at one point in the base to hange sign a large number of times as thediretion varies.3. Deformations of the ontrol setThe main fous of this artile is the investigation of how urvature and onju-gate points hange when the set of ontrolled veloities {(u1, εu2) : u2

1
+u2

2
= 1}is ontinuously deformed into the interval I = [−1, 1]. For omputational onve-niene we implement this by adding the parameter ε into the ontrolled vetor



358 M. KAWSKI, P. MAXWELL�eld as follows, leaving the set of ontrol values U = S1 the same, and onsidersystems of the form
{

ẋ1 = f1(x1, x2) + u1 subjet to
ẋ2 = f2(x1, x2) + εu2 u2

1
+ u2

2
= 1.

(11)Of partiular interest are deformations of the systems
{

ẋ1 = u1

ẋ2 = xm
1

+ εu2

(12)and
{

ẋ1 = −x2 + u1

ẋ2 = x1 + εu2

(13)whih are well understood in the limiting single-input ase of ε = 0. We areinterested in how their properties arise as limits of deformations of the or-responding systems of the form (11). The �rst family of systems is small-timeloally ontrollable if and only if m is odd. If m is even, the reahable sets exhibitwell-known fold-overs (see Hermes, 1967) with onsequent appearane of on-jugate points (ompare Sussmann, 1989). The seond system is the ontrolledharmoni osillator whose swithing urves onsisting of two in�nite families ofsemiirles are standard examples in textbooks on optimal ontrol.Due to the ontinuity of the map from ontrols u(·) ∈ U ⊆ L1([0, T ], S1)to trajetories x(·; u) ∈ C([0, T ], R2), it is lear that as ε varies from 1 to 0the orresponding trajetories vary ontinuously. Given the absene of nontri-vial singular extremals in the systems (12) and (13), the bang-bang extremalsof these systems are approximated by ontinuously (in time) varying optimalontrols. One expets, and this is on�rmed in simulations, that these optimalontrols hange from omparatively slowly varying to rapid transitions as εdereases from one to near zero. Fig. 1 shows the typial evolution of the o-state in polar oordinates. In this �gure, the angle ϕ is not yet the geometriobjet θ identi�ed in the urvature formula, yet the urves still niely exhibitthe qualitative evolution of the diretion of the o-state.This work was motivated by the possibility of using the well-de�ned urva-ture for determining onjugate points and optimal extremals for systems withsmall-values of ε > 0, and by passing to the limit to onlude respetive prop-erties of the limiting systems whose ontrol sets are ompat intervals. Relyingon suitable ontinuity and strutural stability arguments, this an be justi�edrigorously under suitable hypotheses (e. g. isolated swithing times). For a de-tailed disussion of onjugate points for bang-bang extremals for systems whoseontrol set is a line-segment, or more generally, a ube (see Shättler, 1990, andSussmann, 1986). Evidently, without further tehnial hypotheses one annotonlude that the existene or non-existene of onjugate points is preserved by
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Figure 1. Time evolution of angle ϕ for (12) with m = 2, ε = 0.2, T = 3.5.the limit as ε −→ 0. However, for spei� systems of interest suh onlusionsmay be warranted. In this partiular work the main thrust is not the generalabstrat theorem, but to atually test the omputational feasibility of this ap-proah by analyzing deformations of spei� systems, in partiular deformationsof the well-understood ones listed above, and explore what information an beextrated from these. In some sense the main result is a negative one as the sizeof the ensuing formulas for the urvature of the deformed systems far exeedsall expetations. This observation leads one to onlude that for typial systemssimilar to those of form (12) or (13) (with more ompliated right hand sides)this approah via deformations might not be pratial as ompared to a diretanalysis of the limiting system. This, of ourse, does not rule out onlusionsabout the properties of the limiting system obtained from general properties ofthe deformed systems.Nonetheless, the urvature alulations are feasible with the use of a om-puter algebra system, and aside from using these to visualize the interplay ofurvature, extremal trajetories, and geodesi spheres (see Gehrig and Kawski,2004), these also were the basis for numerial simulation of the rotation of thevertial �eld along extremal trajetories, ompare Fig. 2. Due to inherent limita-tions of this hard-opy speial issue artile, we will in the sequel only summarizethe initial alulations whih suggest the resulting size of the formulas for theurvature (but also their expeted manageability using omputer algebra) andprovide still-images taken from the omputed animations. Samples of both the
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Figure 2. The urvature and its primitive as funtions of time along extremalof system (12) with m = 2, ε = 1, p(0) = (0.94,
√

0.34)full omputations and live animations of the deformations of the strutures ofextremal trajetories will be made available online at the �rst author's WWW-site.We begin our alulations for the general system (11), and speialize laterto the deformed power integrator (12) and the deformed ontrolled harmoniosillator (13). Following the general approah outlined in Setion 2, we form theHamiltonian and ompute the maximizing ontrols. We suppress dependeniessuh as f1(x1, x2) and simply write f1 et. when it will not ause onfusion.The ontrol dependent Hamiltonian Hu is
Hu(x, p) = p1(u1 + f1) + p2(εu2 + f2). (14)Subjet to the onstraint u2

1
+u2

2
= 1, at eah point (x, p) ∈ T ∗

R
2 with p 6= 0 thisontrol dependent Hamiltonian Hu is maximized by the uniquely determinedontrol values

u∗
1

=
p1

√

p2
1
+ ε2p2

2

and u∗
2

=
εp2

√

p2
1

+ ε2p2
2

. (15)Upon introdution of polar oordinates (p1, p2) = (r cosϕ, r sin ϕ) in the�bres, the maximized Hamiltonian beomes:
H∗(x, r cosϕ, r sin ϕ) = f1r cosϕ + f2r sin ϕ + r

√

cos2 ϕ + ε2 sin2 ϕ . (16)



Curvature of optimal ontrol: Deformation of salar-input planar systems 361Note that in the speial ase of ε = 1 (no deformation, studied in detail ine. g. Serres, 2006) the last term is onstant equal to one, whih muh simpli�esall subsequent alulations.In the general ase of ε ∈ [0, 1] the Hamiltonian vetor �eld in polar oordi-nates is
~h =

(

f1 +
cosϕ

√

cos2 ϕ + ε2 sin2 ϕ

)

∂

∂x1

+

(

f2 +
ε2 sin ϕ

√

cos2 ϕ + ε2 sin2 ϕ

)

∂

∂x2

−
(

cos2 ϕ
∂f1

∂x1

+ sin2 ϕ
∂f2

∂x2

+ cosϕ sin ϕ

(

∂f2

∂x1

+
∂f1

∂x2

))

r
∂

∂r

+

(

sin2 ϕ
∂f2

∂x1

− cos2 ϕ
∂f1

∂x2

+ cosϕ sin ϕ

(

∂f1

∂x1

− ∂f2

∂x2

))

∂

∂ϕ
.Note that there is some redundany in this formula as the Hamiltonian vetor�eld is tangent to the three dimensional level surfaes of the Hamiltonian, andone ould express the radial omponent as a funtion of the angle ϕ. However,in the formula stated here, the diretion ∂

∂ϕ
is interpreted in terms of polaroordinates on the entire �bre TxR

2. This format is onvenient for subsequentalulations of the double Lie braket for the urvature using a omputer algebrasystem.Not to be onfused with the above, also use the angle ϕ to parameterize theintersetion of the level sets H−1(1) of the Hamiltonian with the �bres. (Ofourse, to this orresponds a di�erent meaning of the symbol ∂
∂ϕ

.) To avoidpossible misinterpretations, write this urve as p(ϕ) = (̺(ϕ) cosϕ, ̺(ϕ) sin ϕ).From the equation H(x, ̺(ϕ) cosϕ, ̺(ϕ) sin ϕ) ≡ 1 one obtains the expliitformula̺
(ϕ) =

1

f1 cosϕ + f2 sin ϕ +
√

cos2 ϕ + ε2 sin2 ϕ
. (17)To determine the hange of parameters to the distinguished angular variable θ,alulate the oe�ient a1 = −

(

dϕ
dθ

)2 in the linear ombination of the seondderivative p′′(ϕ) = a1p(ϕ) + a2p
′(ϕ). A simple alulation yields

a1 =
̺′′

̺
− 2

(

̺′

̺

)2

− 1. (18)In the previously studied undeformed ase ε = 1 the square root evaluates toone, muh simplifying all subsequent work, and from
̺′ = ̺2(f1 sin ϕ − f2 cosϕ) (19)
̺′′ = 2̺̺′(f1 sin ϕ − f2 cosϕ) + ̺2(f1 cosϕ + f2 sin ϕ) (20)



362 M. KAWSKI, P. MAXWELLstraightforward simpli�ations yield a1 = −̺. Hene in the undeformed ase
ε = 1, from the ondition a1

(

dθ
dϕ

)2

= −1, the desired vertial vetor �eld is
v = ∂

∂θ
=

1√
1 + f1 cosϕ + f2 sin ϕ

∂
∂ϕ

. (21)In the general ase with deformations 0 < ε < 1 analogous alulationsare readily performed using a omputer algebra system, and the details of theintermediate formulas are of little interest by themselves. After simpli�ationsone obtains
∂
∂θ

=
ε

√

∆3(∆ + f1 cosϕ + f2 sin ϕ)
· ∂

∂ϕ
(22)where ∆ =

√

cos2 ϕ + ε2 sin2 ϕ.The next step in the alulation is to ompute the urvature κ from someomponent of the double braket identity
[~h, [~h, v]] = −κv. (23)In the undeformed ase ε = 1 this is a umbersome alulation by hand butquite straightforward using a reent version of a omputer algebra system. Wenote that just a few years ago, MAPLE release 8 ould not simplify the resultingrational expression in the omponents f1, f2, their �rst two partial derivatives,and trigonometri terms involving cos jϕ and sin jϕ with j taking values from 0to 4. Newer releases, relying espeially on improved Gróbner bases tools reduethe quotient of originally 782 terms and 23 terms in numerator and denominator,respetively, to the polynomial expression that was given by Serres (2006). Forpartiular systems suh as the undeformed systems (12) and (13) in the ase of

ε = 1 these redue muh further to expressions that are amenable to detailedanalysis.However, for the general parameter-dependent ase of 0 < ε < 1 even thenewest release 12 of MAPLE does not yield simpli�ations that provide muhstrutural insight, nor are suitable for reprodution here. Nonetheless, the ex-pressions are still useful for qualitative studies and for simulations of, e. g., theevolution (rotation) of the 3-frame on the surfae H−1(1), i. e., in the time-varying seond order di�erential equation (10). Compare Fig. 1 for a loselyrelated plot of the time evolution of the angle of the o-state for system (12)with m = 2 due to the urvature. The plots of the speial variable θ alongextremals are qualitatively similar, ompare Fig. 2.We now onentrate on spei� systems, and present seleted formulas andgraphial results of some simulations. First onsider deformations of the unon-trollable quadrati planar system
Σε :

{

ẋ1 = u1

ẋ2 = x2
1 + εu2 .

(24)



Curvature of optimal ontrol: Deformation of salar-input planar systems 363In this ase, the Hamiltonian and distinguished vertial vetor �elds redueto
~h =

cosϕ
√

cosϕ2 + ε2 sin2 ϕ
· ∂

∂x1

(25)
+

(

x2

1
+ ε · ε sinϕ

√

cosϕ2 + ε2 sin2 ϕ

)

· ∂
∂x2

−x1r sin 2ϕ · ∂
∂r

− x1(1 − cos 2ϕ) · ∂
∂ϕand

∂
∂θ

=
ε

√

∆3(∆ + x2 sinϕ)
· ∂

∂ϕ
where, ∆ =

√

cos2 ϕ + ε2 sin2 ϕ. (26)For the iterated Lie brakets and for the urvature κ we have not been ableto ahieve signi�ant simpli�ations, and the formulas remain basially onlyamenable to numerial studies, very unlike the ase of ε = 1 whih allowsanalyti approahes, ruling out the existene of onjugate points or �nding lowerbounds for the time of the �rst onjugate point. In that speial ase of nodeformation ε = 1, the urvature is given by the simple formula
κ = −9

4
sin(ϕ)− 1

4
sin(3ϕ)−x2

1(
21

8
−3 cos(2ϕ)+ 3

8
cos(4ϕ)). (27)Fig. 2 provides a typial piture for the urvature and its integral as funtionsof time along an extremal, showing the times when the image Btc

Π0 of thedistinguished vertial subspae Π0 = Tp0
(T ∗

x0
R

2) has rotated by π, yieldinga nontrivial intersetion and thus a onjugate point. Numerial simulationsindiate that as ε −→ 0, as expeted, the peaks of κ(t) beome narrower andsharper, and orrespondingly its primitive onverging pointwise to a pieewiseontinuous funtion (ompare Agrahev and Sahkov, 2004).The orresponding typial portraits of families of projetions of extremalsinto the state-spae and the geodesi spheres are presented in Figs. 3 and 4. Forsmall �nal times T and ε ≈ 1, the reahable sets are almost perfet spheres. Astime T inreases, or the deformation parameter ε dereases, the reahable setsand struture of the extremals approah the familiar image of the reahable set ofsystem (24) that is haraterized by a sequene of fold-overs and orrespondingemergene of onjugate points beyond whih the extremals are no longer optimal(ompare Hermes, 1967).Fig. 3 illustrates the e�et of the drift for larger times whih breaks the sym-metry of the perfet sphere of the driftless ase. Fig. 4 illustrates the emergeneof the �rst fold-overs.Note that systems of form (12) possess symmetries in the form of homogene-ity with respet to families of dilations. Consequently, the reahable sets re�etthese symmetry properties for orresponding times and deformations. Morespei�ally, one may �x a time T and vary only the deformation parameter ε, orvie versa. Exept for the limiting ase of ε = 0 and resaling of the state-spae,the orresponding reahable sets and families of extremals will exhibit the same
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–2

2

–2 2

Figure 3. Reahable set at T = 2 of system (12) with m = 2, ε = 1

Figure 4. Reahable set at T = 2 of system (12) with m = 2, ε = 0.2qualitative properties. The hoie of pairs (T, ε) suh as in Fig. 1 is thus mainlyguided by aestheti reasons, with main fous on an aspet ratio that is suitablefor observing the strutural properties suh as folds and onjugate points.
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∆δ(x1, x2) = (δx1, δ

2x2), and (28)
(u1, u2)

δ,ε(t) = (δu1(δt), εδu2(δt)) . (29)One easily veri�es that the orresponding trajetories xε(· ; u) of system Σε in(24) satisfy
x1(δT ; uδ,ε) = ∆δ(x

ε(T ; u)) . (30)

Figure 5. Reahable set at T = 5

2
π of system (13) with ε = 0.5For the deformed, ontrolled harmoni osillator (13) there are no onjugatepoints for any value of ε ∈ (0, 1]. For ε = 1 all extremals remain uniformlyspaed with o-state uniformly rotating around the irle. For ε = 0 one hasthe familiar piture of swithing surfaes made up of families of semi-irles.For values of 0 < ε < 1 one an niely observe the emergene of zones of moredensely paked extremals whih uniformly onverge to the well-known swithingurves as ε −→ 0, ompare Fig. 5.4. Summary and onlusionWe initiated the study of how the theory of urvature of optimal ontrol, whihwas originally formulated for ontrol sets that are spheres, may be used togain insight into the struture of optimal ontrols, and, in partiular, absene
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