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Minimize J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Γ)subjet to −△ y + y = 0 in Ω
∂ny = u on Γ

ua ≤ u(x) ≤ ub a.e. on Γ
y(x) ≥ yc(x) a.e. in Ω′,where Ω ⊂ R

2 is bounded domain with C1,1 boundary and Ω′ ⊂⊂ Ω is aninner subdomain with dist{Ω′,Γ} > 0. Furthermore, yd ∈ L2(Ω) and yc ∈
C0,α(Ω′), 0 < α < 1 are given funtions and ua ≤ ub, ν > 0 are real numbers.We use the abbreviation a.e. for "almost everywhere".
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370 K. KRUMBIEGEL, A. RÖSCHInstead of problem (P), we will investigate a family of regularized optimalontrol problems:
(Pε)













minimize Jε(y, u, v) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Γ) +
ψ(ε)

2
‖v‖2

L2(Ω)subjet to −△ y + y = φ(ε)v in Ω
∂ny = u on Γ

ua ≤ u(x) ≤ ub a.e. on Γ
y(x) ≥ yc(x) − ξ(ε)v(x) a.e. in Ω′,with a regularization parameter ε > 0 and Ω, ν, yd, yc, ua and ub as de�nedabove. The funtions ψ, φ and ξ are positive real valued funtions dependingon the regularization parameter ε respetively.At a �rst glane, regularization of problem (P) seems not to be neessarysine the problem is well-posed. Nevertheless, there are several arguments thata regularization is reasonable. We omment on Casas (1993), where one an seethat the Lagrange multipliers assoiated to the state onstraints are in generalonly Borel measures. Of ourse, this auses low regularity of the dual vari-ables and of the optimal ontrol. Due to the struture of the optimality, theoptimal ontrol ū, the optimal state ȳ and the adjoint state p̄ at the boundaryare unique. However, if the state onstraints are ative on an open set, thenthe Lagrange multiplier and the adjoint state are not unique. Therefore, di�er-ent regularization onepts have been developed in the last years. In a reentpaper of Tröltzsh and Yousept (2006) a soure representation was introdued.Moreover, an alternative penalty onept was used by Hintermüller and Kunish(2006). Furthermore, we mention that the regularization tehniques allow foran e�ient numerial solution of the ontrol problem.The onept of virtual ontrol was introdued in Krumbiegel and Rösh(2006). However, we will not assume additional ontrol onstraints onerningthe virtual ontrol. In Krumbiegel and Rösh (2006) this requirement was essen-tial to derive error estimates, sine the L∞-bound of the virtual ontrol ours inall estimates. The main advantage of this approah without additional ontrolonstraints for the virtual ontrol is that it dereases the numerial di�ultiesessentially. If onstraints are given, it may happen that the di�erent onstraintsare ative simultaneously. This leads to non-uniqueness of the adjoint variables.Consequently, singular matries may our in di�erent numerial shemes. Theseparation of ative sets is given by onstrution in our new approah. Hene,numerial methods for solving optimal ontrol problems are diretly appliable,for instane the interior point method (see, e.g., Meyer, Prüfert and Tröltzsh,2005; Shiela and Weiser, 2004); and the Primal-dual ative set strategy (see,e.g., Bergounioux, Ito and Kunish, 1999; Hintermüller, Ito and Kunish, 2003;Kunish and Rösh, 2002).Let us mention that for the speial hoie φ(ε) ≡ 0 the proposed oneptis very lose to the approah disussed by Hintermüller and Kunish (2006).



Regularization of state onstrained Neumann ontrol problems 371The virtual ontrol v plays there the part of the penalization funtion in theaugmented objetive.This paper is organized as follows. In Setion 2 optimality onditions andregularity results for the optimal solutions are established. The feasibility ofsolutions is disussed in Setion 3. Furthermore, regularization estimates arederived. In Setion 4 the appliation of the Primal-dual ative set strategy andnumerial tests illustrating the theory are presented.2. Optimality onditions and regularityIn this setion we will establish �rst order optimality onditions for both prob-lems (P) and (Pε). Furthermore, we will reall regularity results of the solutions.Considering the state equation of problem (Pε), we split this equation in twoseparate ones. First we onsider the boundary value problem:
−△ y1 + y1 = 0 in Ω

∂ny1 = u on Γ.
(1)Equation (1) admits for all u ∈ L2(Γ) a unique solution y1 ∈ H1(Ω) ∩ C(Ω̄)(see, for instane, Tröltzsh, 2005). If we onsider the state y1 as a funtion in

L2(Ω), we an introdue the ontrol-to-state operator S1 : L2(Γ) → L2(Ω), thatassigns u to y1. The seond part of the state equation is given by:
−△ y2 + y2 = φ(ε)v in Ω

∂ny2 = 0 on Γ.
(2)Referring also to Tröltzsh (2005), (2) admits for every v ∈ L2(Ω) a uniquesolution y2 ∈ H1(Ω) ∩ C(Ω̄). Hene, we introdue the linear and ontinuoussolution operator S2 : L2(Ω) → L2(Ω), y2 = S2φ(ε)v. Therefore, the weaksolutions of the state equations of problem (P) and (Pε) are given by:

y = S1u+S2(φ(ε)0) = S1u for (P); yε = S1uε+S2(φ(ε)vε) for (Pε), (3)where we set v ≡ 0 for the problem (P).Furthermore, we de�ne the admissible sets for both problems
Uad = {u ∈ L2(Γ)|ua ≤ u ≤ ub a.e. on Γ; S1u ≥ yc a.e. in Ω′} for (P)and
V εad = {(u, v) ∈ L2(Γ) × L2(Ω)|ua ≤ u ≤ ub a.e. on Γ;

S1u+ S2φ(ε)v ≥ yc − ξ(ε)v a.e. in Ω′} for (Pε),respetively. Note that the state onstraints and the mixed ontrol-state on-straints are inluded in the admissible sets respetively. The admissible sets areonvex and losed. In the next setion we guarantee the existene of feasible



372 K. KRUMBIEGEL, A. RÖSCHpoints suh that the admissible sets are nonempty. For this purpose, we assumethe existene of an inner point aording to the pure state onstraints. Sine theobjetive funtional is stritly onvex and radially unbounded in both problemsand the admissible sets are nonempty, the existene and uniqueness of optimalsolutions is obtained by standard methods for both problems (P) and (Pε).In order to formulate the optimality onditions, we introdue the adjointstate for both problems. Note that all inequality onstraints are handled byadmissible sets. Consequently, there ours no Lagrangemultiplier in the adjointproblem. Furthermore, the adjoint problem is equal for both problems (P) and(Pε). By standard methods one obtains
−△ p+ p = y − yd in Ω

∂np = 0 on Γ.
(4)The optimality onditions are formulated in the following lemma.Lemma 1 Let (ū, ȳ) be the optimal solution of problem (P). The neessary andsu�ient optimality ondition is given by

(p̄|Γ + νū, u− ū)L2(Γ) ≥ 0 ∀u ∈ Uad, (5)where the assoiated adjoint state p̄ is the solution of (4).Moreover, let (ūε, v̄ε, ȳε) be the optimal solution of problem (Pε). The optimalityondition is given by
(p̄ε|Γ+νūε, u−ūε)L2(Γ)+(φ(ε)p̄ε+ψ(ε)v̄ε, v− v̄ε)L2(Ω) ≥ 0 ∀(u, v) ∈ V εad, (6)where the assoiated adjoint state p̄ε is the solution of (4).In the sequel we introdue the optimality onditions of problem (Pε) for a�xed regularization parameter ε > 0 using the lassial approah with a La-grange multiplier assoiated with the mixed onstraint. In the ase of point-wise ontrol-state-onstraints the existene of regular Lagrange multipliers wasproved in Rösh and Tröltzsh (2006). Further on, the ontrol onstraints aretreated by an admissible set

Uad := {u ∈ L2(Γ) : ua ≤ u ≤ ub a.e. on Γ}.By introduing a Lagrange multiplier µ orresponding to the state-ontrol-onstraint, we obtain the following optimality system:
−△ ȳε + ȳε = φ(ε)v̄ε

∂nȳε = ūε

−△ p̃ε + p̃ε = ȳε − yd − µ

∂np̃ε = 0
(7)

(p̃ε|Γ + νūε, u− ūε)L2(Γ) ≥ 0, ∀u ∈ Uad (8)
φ(ε)p̃ε + ψ(ε)vε − ξ(ε)µ = 0 a.e. in Ω (9)
(µ, yc − ȳε − ξ(ε)v̄ε)L2(Ω′) = 0, µ ≥ 0, ȳε ≥ yc − ξ(ε)v̄ε a.e. in Ω′.(10)



Regularization of state onstrained Neumann ontrol problems 373To keep the notation simple, we extend the Lagrange multiplier in (7) and (9)by zero on the whole domain Ω. Sine the Lagrange multiplier ats in the righthand side of the adjoint equation, the optimal adjoint state is denoted di�erentfrom the adjoint state in the optimality ondition (6). Now, we onsider theadjoint equation in (7). From Grisvard (1985) we obtain the following regularityresult.Theorem 1 Let Ω be a bounded domain with C1,1 boundary. Then for every
ȳε ∈ L2(Ω) and µ ∈ L2(Ω) the adjoint equation in (6) admits a unique solution
p̃ε ∈ H2(Ω).This result ensures that the boundary values of the adjoint state are at leastof H1(Γ)-regularity. In order to derive the regularity of the optimal ontrol, wereplae the optimality ondition (9) by the equivalent and pointwise projetionformulā

uε = Π[ua,ub]

(

−1

ν
p̃ε|Γ

)

. (11)Due to the fat that the projetion operator in (11) provides for H1-regularity,the optimal ontrol ūε belongs to H1(Γ). For the state equation we will useanother result from Grisvard (1985).Theorem 2 Let Ω be a bounded domain with C1,1 boundary. Then the stateequation in problem (6) admits for every v̄ε ∈ L2(Ω) and ūε ∈ H1/2(Γ) a uniquesolution ȳε ∈ H2(Ω).Later, we will be interested in a L∞-estimate of the virtual ontrol v̄ε. There-fore, we state the following lemma.Lemma 2 Let (ūε, v̄ε, ȳε) satisfy the optimality system (7)-(10) with assoiatedadjoint state p̃ε and Lagrange multiplier µ. Then the following projetion for-mula
ξ(ε)µ = max

{

0,
ψ(ε)

ξ(ε)
(yc − ȳε) + φ(ε)p̃ε

} (12)is valid on Ω′. Moreover, v̄ε and µ belong to L∞(Ω).Proof. We begin by splitting the domain Ω′ into two disjoint subsets Ω′ =
Ω1 ∪ Ω2, where we de�ne

Ω1 := {x ∈ Ω′ : µ(x) > 0}
Ω2 := {x ∈ Ω′ : µ(x) = 0}.First, we onsider Ω1. The omplementary slakness ondition (10) yields
v̄ε =

1

ξ(ε)
(yc − ȳε).



374 K. KRUMBIEGEL, A. RÖSCHThus, we obtain by (9)
ξ(ε)µ =

ψ(ε)

ξ(ε)
(yc − ȳε) + φ(ε)p̃εand the projetion formula (12) is valid.Considering Ω2, we have µ = 0. Therefore, equations (9) and (10) imply

0 = φ(ε)p̃ε + ψ(ε)vε ≥
ψ(ε)

ξ(ε)
(yc − ȳε) + φ(ε)p̃ε.Hene, the projetion formula is also satis�ed.Due to Theorems 1 and 2, we have H2-regularity for ȳε and p̃ε respetively.Hene, the funtion inside the max-funtion belong to L∞(Ω) sine the spae

H2(Ω) is embedded in L∞(Ω). Consequently, the Lagrange multiplier is from
L∞(Ω) and with the help of (9) we obtain v̄ε ∈ L∞(Ω).Later, we want to observe the regularization error of the optimal solution
ūε onerning the optimal solution of the original problem. Therefore, we needuniform boundedness of the state y1 = S1ūε in the spae C0,α(Ω) for all ε.Due to the original problem, we have to deal with less regularity in the ontrol.However, we an onsider u ∈ L∞(Ω) in (1) sine the ontrol is bounded by theonstraints. The following result is obtained from Mateos (2000).Theorem 3 Let Ω be a bounded domain with C1,1 boundary. Then for every
ūε ∈ Lp(Γ), p ≥ 1 the partial di�erential equation (1) admits a unique solution
y1 ∈W 1,p(Ω).Further, we obtain from the Sobolev embedding theorem, thatW 1,p(Ω), p >
2 is embedded in the spae C0,α(Ω) for α ≤ 1 − 2/p. Hene, we obtain withTheorem 3 the following a-priori bound for y1 = S1ūε in C0,α(Ω):

‖y1‖C0,α(Ω) ≤ C‖y1‖W 1,p(Ω) ≤ C‖ūε‖Lp(Γ) ≤ Cmax{|ua|, |ub|}. (13)3. New regularization error estimateIn this setion we will derive an error estimate between the solution of theoriginal problem (P) and the regularized problem (Pε). Furthermore, we willpoint out the relationships between the di�erent parameter funtions.3.1. Auxiliary results and feasibilityNow, we will onstrut feasible solutions for eah problem based on the solutionsof the other problem. However, we have to assume the existene of an innerpoint onerning the state onstraint:



Regularization of state onstrained Neumann ontrol problems 375Assumption 1 There exists a funtion û ∈ L2(Γ) with ua ≤ û(x) ≤ ub a.e. on
Γ and ŷ(x) ≥ yc + τ a.e. in Ω′ with τ > 0, where ŷ is the weak solution of thestate equation in problem (P) for û.The following lemma ensures the feasibility of the solution (ū, ȳ) of the prob-lem (P) for the regularized problem.Lemma 3 For every ε > 0 the ontrol (ū, 0) is feasible for (Pε).Proof. Sine ū is feasible for (P),

ξ(ε)0 + ȳ = ȳ ≥ yc a.e. in Ω′holds true for all ε > 0. Therefore, (ū, 0) also ful�lls the onstraints of (Pε).Next, we will derive an auxiliary result, whih is needed later.Lemma 4 Let E ⊂ R
d be open and bounded and the funtion f in C0,α(E) forsome 0 < α ≤ 1 with ‖f‖C0,α(E) ≤ σ. Then there exists a onstant C > 0, suhthat the estimate

‖f‖L∞(E) ≤ Cσ
d

2α+d ‖f‖
2α

2α+d

L2(E) (14)is satis�ed.Proof. Let x̄ ∈ E be the point, where we obtain
M := |f(x̄)| = max

x∈E
{|f(x)|} .Moreover, let Uδ(x̄) be a ball with enter x̄ and su�iently small radius δ suhthat

|f(x) − f(x̄)| ≤ M

2
, ∀x ∈ Uδ(x̄)is satis�ed. The de�nition of Hölder-ontinuous funtions and ‖f‖C0,α(E) ≤ σyields

|f(x) − f(x̄)| ≤ σδα, ∀x ∈ Uδ(x̄).By hoosing δ as follows
δ :=

(

σ−1M

2

)1/α

,we ensure the validity of the �rst inequality. Hene, we guarantee
|f(x)| ≥ M

2
, ∀x ∈ Uδ(x̄).



376 K. KRUMBIEGEL, A. RÖSCHNow, we will estimate the L2-norm from below.
‖f‖2

L2(E) =

∫

E

f2dx ≥
∫

Uδ(x̄)

f2dx ≥
(

M

2

)2 ∫

Uδ(x̄)

dx

=

(

M

2

)2

Cδd = Cσ−d/αM2+d/α = Cσ−d/α‖f‖
2α+d

α

L∞(E).This estimate implies the assertion.In the next step, we onstrut a feasible solution for the original problem(P). Therefore, we onsider the violation of the optimal regularized ontrol ūεof problem (Pε) with respet to the pure state onstraints of problem (P). Wede�ne the violation funtion by
d[ūε, (P )] := (yc − S1ūε)+ = max{0, yc − S1ūε}. (15)Furthermore, the L∞(Ω′)-norm of this funtion is alled maximal violation of

ūε to problem (P).Lemma 5 The maximal violation ‖d[ūε, (P )]‖L∞(Ω′) of ūε to (P) an be esti-mated by
‖d[ūε, (P )]‖L∞(Ω′) ≤ C(ξ(ε) + φ(ε))

α
α+1 ‖v̄ε‖

α
α+1

L2(Ω), (16)where C is a positive onstant independent of ε.Proof. Sine y1 = S1ūε, yc ∈ C0,α(Ω′) and the max-funtion is ontinuous,the funtion d[S1ūε, (P )] belongs also to the spae C0,α(Ω′). Furthermore, weobtain
‖d[ūε, (P )]‖C0,α(Ω′) = ‖(yc−S1ūε)+‖C0,α(Ω′) ≤ ‖yc‖C0,α(Ω′) +‖S1ūε‖C0,α(Ω′).Using (13), we obtain an upper bound k independent of ε for d[ūε, (P )]. ByLemma 4 with E = Ω′ ⊂ R

2 and some further estimates we obtain
‖d[ūε, (P )]‖L∞(Ω′) ≤ C‖d[ūε, (P )]‖

α
α+1

L2(Ω′)

≤ C‖(yc − S1ūε)+‖
α

α+1

L2(Ω)

= C‖(yc − S1ūε − S2φ(ε)v̄ε + S2φ(ε)v̄ε)+‖
α

α+1

L2(Ω)

≤ C‖(yc − ȳε)+ + (S2φ(ε)v̄ε)+‖
α

α+1

L2(Ω)

≤ C
(

‖(ξ(ε)v̄ε)+‖L2(Ω) + ‖S2φ(ε)v̄ε‖L2(Ω)

)
α

α+1

≤ C(ξ(ε) + φ(ε))
α

α+1 ‖v̄ε‖
α

α+1

L2(Ω).



Regularization of state onstrained Neumann ontrol problems 377In the next Lemma, we will onstrut a feasible solution uδ for the problem(P) depending on the inner point û and the optimal regularized ontrol ūε.Lemma 6 Let the Assumption 1 be satis�ed. Then for every ε > 0 there existsa δε ∈ (0, 1), suh that uδ := (1− δ)ūε + δû is feasible for (P) for all δ ∈ [δε, 1].Proof. Sine the ontrol onstraints of the problems (P) and (Pε) are equal, theonvex ombination
uδ := (1 − δ)ūε + δû (17)ful�lls the onstraints
ua ≤ û ≤ ub, a.e. in Γ.Furthermore, we know for the orresponding state
yδ = S1uδ + S2φ(ε)vδ .Hene, we have to set vδ ≡ 0, suh that the pair (uδ, yδ) beomes feasible forproblem (P). We ontinue by
yδ = S1uδ = (1 − δ)S1ūε + δS1û

yδ − yc = (1 − δ)(S1ūε − yc) + δ(ŷ − yc)

≥ −(1 − δ)d[ūε, (P )] + δτ

≥ −(1 − δ)‖d[ūε, (P )]‖L∞(Ω′) + δτ.One an easily see that δτ − (1− δ)‖d[ūε, (P )]‖L∞(Ω′) ≥ 0 implies the feasibilityof uδ for problem (P). Hene, we set
δε :=

‖d[ūε, (P )]‖L∞(Ω′)

‖d[ūε, (P )]‖L∞(Ω′) + τ
∈ (0, 1) ∀ε > 0, (18)and uδ is feasible for all δ ∈ [δε, 1].3.2. Error estimatesIn this setion we will derive the main result. The next result provides a pre-liminary error estimate of the optimal solutions of problem (P) with respet tothe optimal regularized one of problem (Pε).Theorem 4 Let (ū, ȳ) and (ūε, v̄ε, ȳε) be the optimal solutions of (P) and (Pε),respetively. Then, there exist positive onstants C1 and C2 independent of ε,suh that

ν‖ū− ūε‖2
L2(Γ) + ‖ȳ − ȳε‖2

L2(Ω) +
ψ(ε)

2
‖v̄ε‖2

L2(Ω) ≤

C1(ξ(ε) + φ(ε))
α

α+1 ‖v̄ε‖
α

α+1

L2(Ω) + C2
(|φ(ε)|)2
ψ(ε)

. (19)



378 K. KRUMBIEGEL, A. RÖSCHProof. First, we introdue the weak formulations of the state equations in bothproblems (P) and (Pε). The weak formulations are given by:
a(ȳ, z) =

∫

Γ

ūzds, ∀z ∈ H1(Ω) (20)and
a(ȳε, z) =

∫

Γ

ūεzds+

∫

Ω

φ(ε)v̄εzdx, ∀z ∈ H1(Ω), (21)respetively. The bilinear form a(·, ·) is de�ned by
a(y, z) :=

∫

Ω

∇y · ∇zdx+

∫

Ω

yzdx.Due to handling of all inequality onstraints in admissible sets, the weak for-mulation for the adjoint equation is equal:
a(z, p) = (z, y − yd)L2(Ω) ∀z ∈ H1(Ω). (22)We onsider the optimality onditions of both problems, where we use (ū, 0) asa feasible test funtion in (6). Aording to Lemma 6, the ontrol uδ is usefulas a test funtion in (5). Adding these two inequalities with the spei� testfuntions, we obtain

(p̄ε+νūε, ū− ūε)L2(Γ)+(φ(ε)p̄ε+ψ(ε)v̄ε,−v̄ε)L2(Ω)+(p̄+νū, uδ− ū)L2(Γ) ≥ 0.Next, we rewrite the previous inequality in a suitable form
(p̄− p̄ε, ūε − ū)L2(Γ) + ν(ū − ūε, ūε − ū)L2(Γ)

+ (p̄+ νū, uδ − ūε)L2(Γ) + (φ(ε)p̄ε + ψ(ε)v̄ε,−v̄ε)L2(Ω) ≥ 0. (23)Considering the �rst term in (23), we obtain with the help of (20) and (21)
(p̄− p̄ε, ūε − ū)L2(Γ) = a(ȳε − ȳ, p̄− p̄ε) − (φ(ε)v̄ε, p̄− p̄ε)L2(Ω).Due to the weak formulation (22) of the adjoint equation of (P) and (Pε), weget also
a(ȳε − ȳ, p̄− p̄ε) = (ȳε − ȳ, ȳ − ȳε)L2(Ω) = −‖ȳ − ȳε‖2

L2(Ω).In view of (23), we arrive at
‖ȳ − ȳε‖2

L2(Ω) + ν‖ū− ūε‖2
L2(Γ) ≤ (p̄+ νū, uδ − ūε)L2(Γ) − ψ(ε)‖v̄ε‖2

L2(Ω)

− φ(ε)(p̄, v̄ε)L2(Ω).



Regularization of state onstrained Neumann ontrol problems 379Inserting the de�nition (17) of uδ and using the ontrol onstraints for û and
ūε, we �nd

‖ȳ − ȳε‖2
L2(Ω) + ν‖ū− ūε‖2

L2(Γ) ≤ ‖p̄+ νū‖L2(Γ)‖uδ
−ūε‖L2(Γ) − ψ(ε)‖v̄ε‖2

L2(Ω) − φ(ε)(p̄, v̄ε)L2(Ω)

= ‖p̄+ νū‖L2(Γ)‖δ(û− ūε)‖L2(Γ) − ψ(ε)‖v̄ε‖2
L2(Ω) − φ(ε)(p̄, v̄ε)L2(Ω)

≤ ‖p̄+ νū‖L2(Γ)δ|ub − ua||Γ|1/2 − ψ(ε)‖v̄ε‖2
L2(Ω) + |φ(ε)||(p̄, v̄ε)L2(Ω)|.Furthermore, the term |(p̄, v̄ε)L2(Ω)| an be estimated as follows:

|(p̄, v̄ε)L2(Ω)| ≤
|φ(ε)|
2ψ(ε)

‖p̄‖2
L2(Ω) +

ψ(ε)

2|φ(ε)| ‖v̄ε‖
2
L2(Ω).Aording to Lemma 3 we hoose the spei� parameter

δε =
‖d[ūε, (P )]‖L∞(Ω′)

‖d[ūε, (P )]‖L∞(Ω′) + τ
.Without loss of generality, we note that there is a positive onstant C > 0 suhthat

δε ≤ C‖d[ūε, (P )]‖L∞(Ω′)is satis�ed for all su�iently small regularization parameters ε > 0. Thus, withthe help of (16) in Lemma 5 the estimate
ν‖ū− ūε‖2

L2(Γ) + ‖ȳ − ȳε‖2
L2(Ω) +

ψ(ε)

2
‖v̄ε‖2

L2(Ω) ≤

C1(ξ(ε) + φ(ε))
α

α+1 ‖v̄ε‖
α

α+1

L2(Ω) + C2
(φ(ε))2

ψ(ε)is obtained with
C1 = C|ub − ua||Γ|1/2‖p̄+ νū‖L2(Γ), C2 =

1

2
‖p̄‖2

L2(Ω).Let us mention that both onstants an also be limited by expressions ontainingonly the data of the problem.In view of (19) φ(ε)√
ψ(ε)

has to beome small for ε→ 0. Therefore, the followingassumption is reasonable.Assumption 2 For su�iently small ε > 0 we assume that
φ(ε)
√

ψ(ε)
< 1. (24)



380 K. KRUMBIEGEL, A. RÖSCHSine v̄ε is the optimal virtual ontrol of problem (Pε), one an easily see that
‖v̄ε‖L2(Ω) is bounded by the objetive funtional as follows

‖v̄ε‖L2(Ω) ≤
C

√

ψ(ε)
, C > 0.However, we are able to improve this estimate with the help of the error estimate(19) in Theorem 4.Corollary 1 Let the assumptions of Theorem 4 and Assumption 2 be ful�lled.Then for su�iently small ε > 0 the estimate

‖v̄ε‖L2(Ω) ≤ C
1

√

ψ(ε)

(

ξ(ε) + φ(ε)
√

ψ(ε)

)
α

α+2 (25)is satis�ed with some onstant C > 0.Proof. Considering the error estimate (19), we have the estimate:
ψ(ε)

2
‖v̄ε‖2

L2(Ω) ≤ C1(ξ(ε) + φ(ε))
α

α+1 ‖v̄ε‖
α

α+1

L2(Ω) + C2
(|φ(ε)|)2
ψ(ε)

.Moreover, this estimate implies
‖v̄ε‖2

L2(Ω) ≤
C

ψ(ε)
max

{

(ξ(ε) + φ(ε))
α

α+1 ‖v̄ε‖
α

α+1

L2(Ω),
(|φ(ε)|)2
ψ(ε)

}

,where C = 2 max{C1, C2}. Now, we onsider the two ases where the maximumwill be attained.Case 1: First, we assume that the maximum in the right hand side of theprevious inequality is attained by the seond term. We note that the onstant
C is now generi. Hene, we obtain the following upper bound:

‖v̄ε‖L2(Ω) ≤ C
φ(ε)

ψ(ε)
.Case 2: Next, we onsider the other ase. We derive the following estimate:

‖v̄ε‖2
L2(Ω) ≤

C

ψ(ε)
(ξ(ε) + φ(ε))

α
α+1 ‖v̄ε‖

α
α+1

L2(Ω)

‖v̄ε‖
α+2

α+1

L2(Ω) ≤
C

ψ(ε)
(ξ(ε) + φ(ε))

α
α+1

‖v̄ε‖L2(Ω) ≤C
(

(ψ(ε))−(α+1)(ξ(ε) + φ(ε))α
)

1
α+2

.
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‖v̄ε‖L2(Ω) ≤ C max

{

(

(ψ(ε))−(α+1)(ξ(ε) + φ(ε))α
)

1
α+2

,
φ(ε)

ψ(ε)

}

=
C

√

ψ(ε)
max

{

√

ψ(ε)
(

(ψ(ε))−(α+1)(ξ(ε) + φ(ε))α
)

1
α+2

,
φ(ε)
√

ψ(ε)

}

=
C

√

ψ(ε)
max

{

(

(ξ(ε) + φ(ε))α

(ψ(ε))α/2

)
1

α+2

,
φ(ε)
√

ψ(ε)

}

=
C

√

ψ(ε)
max







(

ξ(ε) + φ(ε)
√

ψ(ε)

)
α

α+2

,
φ(ε)
√

ψ(ε)





Due to (24) of Assumption 2 the maximum is attained by the �rst term insidethe max-funtion, whih is the assertion.Now we will provide the �nal error estimate of the optimal solutions ofproblem (P) onerning the optimal regularized one of problem (Pε).Corollary 2 Let (ū, ȳ) and (ūε, v̄ε, ȳε) be the optimal solution of (P) and (Pε),respetively. Then, there exists a positive onstant C independent of ε, suh that
ν‖ū− ūε‖2

L2(Γ) + ‖ȳ − ȳε‖2
L2(Ω) ≤ C

(

(ξ(ε) + φ(ε))2

ψ(ε)

)
α

α+2

. (26)The error estimate (26) results diretly from Theorem 4 and Corollary 1.In pratial appliations one is interested in feasible ontrols, suh that theinfeasibility of the regularized ontrol ūε might be a problem. Therefore, westate the following remark, where we derive the same approximation propertiesfor the feasible ontrol as for the optimal regularized one ūε. For a proof werefer to Krumbiegel and Rösh (2006).Remark 1 Let uδ be the ontrol introdued in Lemma 6 with δ ∼ δε. Thenthere exists a onstant C > 0 independent of ε suh that
ν‖ū− ūδ‖2

L2(Γ) + ‖ȳ − ȳδ‖2
L2(Ω) ≤ C

(

(ξ(ε) + φ(ε))2

ψ(ε)

)
α

α+2 (27)is satis�ed.One an easily see in the estimates (26) and (27) that an appropriate hoieof the parameter funtions ψ(ε), φ(ε) and ξ(ε) should satisfy the following on-ditions:
lim
ε→0

φ(ε)
√

ψ(ε)
= 0, lim

ε→0

ξ(ε)
√

ψ(ε)
= 0. (28)



382 K. KRUMBIEGEL, A. RÖSCH3.3. Results in the 3D-aseWe mention that we an also derive a regularization error estimate for Ω ⊂ R
3,sine the regularity result given in Theorem 3 is also valid in 3D. Moreover,by Sobolov embedding theorem W 1,p(Ω), p > 3 is embedded in the spae ofHölder-ontinuous funtion C0,α(Ω) for α ≤ 1 − 3/p.Analogously to Lemma 5, the estimate of the maximal violation of the opti-mal regularized ontrol ūε to problem (P) is now given in the next orollary.Corollary 3 The maximal violation ‖d[ūε, (P )]‖L∞(Ω′) of ūε to (P) an beestimated by

‖d[ūε, (P )]‖L∞(Ω′) ≤ C(ξ(ε) + φ(ε))
2α

2α+3 ‖v̄ε‖
2α

2α+3

L2(Ω), (29)where C is a positive onstant independent of ε.Further, the onstrution of a feasible ontrol uδ is equivalent to Lemma 6.Then the preliminary error estimate of the optimal solution of problem (P)aording to the regularized one is provided in the next Corollary.Corollary 4 Let (ū, ȳ) and (ūε, v̄ε, ȳε) be the optimal solution of (P) and (Pε),respetively. Then, there exist positive onstants C1 and C2 independent of ε,suh that
ν‖ū− ūε‖2

L2(Γ) + ‖ȳ − ȳε‖2
L2(Ω) +

ψ(ε)

2
‖v̄ε‖2

L2(Ω) ≤

C1(ξ(ε) + φ(ε))
2α

2α+3 ‖v̄ε‖
2α

2α+3

L2(Ω) + C2
(|φ(ε)|)2
ψ(ε)

. (30)With the help of Corollary 3 the proof an be done along the same lines asin Theorem 4. Deriving a similar estimate for ‖v̄ε‖L2(Ω) as in Corollary 1, the�nal estimate for 3D-domains is given by:Corollary 5 Let (ū, ȳ) and (ūε, v̄ε, ȳε) be the optimal solution of (P) and (Pε),respetively. Then, there exists a positive onstant C independent of ε, suh that
ν‖ū− ūε‖2

L2(Γ) + ‖ȳ − ȳε‖2
L2(Ω) ≤ C

(

(ξ(ε) + φ(ε))
8α+6

2α+3

ψ(ε)

)
α

3α+3

. (31)4. Numerial testsThe optimal ontrol problem (Pε) an be solved by several numerial methods,for instane an interior point method (see e.g. Meyer, Prüfert and Tröltzsh,2005; Shiela and Weiser, 2004) or an ative set strategy. For our purposewe want to apply a Primal-dual ative set strategy, see e.g. Bergounioux, Itoand Kunish (1999), Hintermüller, Ito and Kunish (2003), Kunish and Rösh



Regularization of state onstrained Neumann ontrol problems 383(2002). In order to realize this method, we have two possibilities. One antransform the problem (Pε) to a ompletely ontrol onstrained problem byintroduing new ontrol
wε := ȳε + ξ(ε)v̄ε.Thus, one an apply the standard algorithm that is presribed, for instane, inBergounioux, Ito and Kunish (1999). However, this transformation leads to asingular perturbed problem for ε ↓ 0. Consequently, one has to deal with thespei� di�ulties of this problems.The seond strategy is foused on diretly solving the optimality system(7)-(10), where a Lagrange multiplier orresponding to the mixed ontrol-stateonstraints was introdued. Therefore, we will use a Primal-dual ative setstrategy. Deriving this method, we need the pointwise formulation of the om-plementary slakness ondition (10) that is given by:
∫

Ω

µ(x)(yc(x) − ȳε(x) − ξ(ε)v̄ε(x))dx = 0.Due to µ(x) ≥ 0 and yc(x) ≤ ȳε(x) + ξ(ε)v̄ε(x), this implies
µ(x)(yc(x) − ȳε(x) − ξ(ε)v̄ε(x)) = 0, a.e. in Ω.Given the optimal solution (ūε, ȳε, p̃ε, v̄ε) for (Pε), we will de�ne the ative andinative sets. First we onsider the ontrol onstraints ating at the boundary

Γ. The ative and inative sets an be de�ned by
AΓ

− := {x ∈ Γ | ūε(x) = ua}
AΓ

+ := {x ∈ Γ | ūε(x) = ub}
IΓ := Γ \ {AΓ

− ∪ AΓ
+}.With the help of these sets, the variational inequality (8) in the optimalitysystem an be replaed by the following expliit expression:

ūε(x) =



















ua , x ∈ AΓ
−

ub , x ∈ AΓ
+

− p̃ε(x)|Γ
ν

, x ∈ IΓ.The ative and inative sets onerning the mixed ontrol-state onstraints arede�ned up to sets of measure zero as follows:
AΩ := {x ∈ Ω′ | ξ(ε)v̄ε(x) + ȳε(x) − µ(x) < yc(x)}
IΩ := Ω \ AΩ.



384 K. KRUMBIEGEL, A. RÖSCHHene, the inequalities in (10) an be replaed by assoiated equalities on thesets AΩ and IΩ:
ξ(ε)v̄ε(x) + ȳε(x) = yc(x), a.e. on AΩ

µ(x) = 0, a.e. on IΩ.Thus, the optimality system (7)-(10) an be transformed into
−△ ȳε + ȳε = φ(ε)v̄ε

∂nȳε = ūε

−△ p̃ε + p̃ε = ȳε − yd − µ

∂np̃ε = 0

ūε(x) =



















ua , x ∈ AΓ
−

ub , x ∈ AΓ
+

− p̃ε(x)|Γ
ν

, x ∈ IΓ.

φ(ε)p̃ε + ψ(ε)v̄ε − ξ(ε)µ = 0 a.e. in Ω

ξ(ε)v̄ε(x) + ȳε(x) = yc(x), a.e. on AΩ

µ(x) = 0, a.e. on IΩ.







































































(32)
The Primal-dual ative set strategy proeeds as follows.ALGORITHM:1. De�ne initial sets AΓ,(0)

− , AΓ,(0)
+ and AΩ,(0). Set IΓ,(0) = Γ \ {AΓ,(0)

− ∪
AΓ,(0)

+ }, IΩ,(0) = Ω \ AΩ,(0) and k = 0.2. Determine the solution (ukε , y
k
ε , p

k
ε , v

k
ε , µ

k) of the optimality system (32)on the urrent ative and inative sets.3. Determine the new ative and inative sets by
AΓ,(k+1)

− =
{

x ∈ Γ : ukε(x) − pε
k(x) − νukε(x) < ua

}

AΓ,(k+1)
+ =

{

x ∈ Γ : ukε(x) − pε
k(x) − νukε(x) > ub

}

IΓ,(k+1) = Γ \
{

AΓ,(k+1)
− ∪ AΓ,(k+1)

+

}

AΩ,(k+1) = {x ∈ Ω′ : ξ(ε)vkε (x) + ykε (x) − µk(x) < yc(x)}
IΩ,(k+1) = Ω \ AΩ,(k+1).4. IfAΓ,(k+1)

− = AΓ,(k)
− , AΓ,(k+1)

+ = AΓ,(k)
+ andAΩ,(k+1) = AΩ,(k) then STOP,else:Set k := k + 1 and goto 2.The onvergene of the algorithm and the justi�ation of the terminationondition in step 4 is disussed in several papers. We refer to Bergounioux, Itoand Kunish (1999), Hintermüller, Ito and Kunish (2003), Kunish and Rösh(2002), and Rösh and Wahsmuth (submitted).



Regularization of state onstrained Neumann ontrol problems 3854.1. ExampleOur aim is to illustrate the in�uene of the parameter funtions on the regu-larization error. To this end we onstruted optimal solutions of the originaloptimal ontrol problem
(PT)



























minimize J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Γ)subjet to −△ y + y = f in Ω
∂ny = u+ g on Γ

ua ≤ u(x) ≤ ub a.e. on Γ
y(x) ≥ yc(x) a.e. in Ω′

,with Ω = B(0, 1) ⊂ R
2 denoting the unit irle. Furthermore, the funtions

yd, f ∈ L2(Ω), yc ∈ C0,α(Ω), α < 1 and g ∈ L2(Γ) are given. These funtionsand the assoiated optimal solutions are given in polar oordinates (r, ϕ). Inour examples we onsider boundary ontrol onstraints
ua ≤ u(x) ≤ ub a.e. on Γ,where ua, ub are real numbers. Furthermore, the lower state onstraints aregiven by
yc(x) ≤ y(x) a.e. in Ω′.The Lagrange multipliers µ assoiated with pointwise state onstraints are ingeneral regular Borel measures, see Bergounioux and Kunish (2002). In orderto onstrut an analytial solution (ū, ȳ, p̄), we have to satisfy the optimalitysystem
−△ ȳ + ȳ = f in Ω −△ p̄+ p̄ = ȳ − yd − µ in Ω

∂nȳ = ū+ g on Γ ∂np̄ = 0 on Γ
(p̄+ νū, u− ū)L2(Γ) ≥ 0 ∀u ∈ Uad
∫

Ω

(yc − y)dµ = 0

µ ≥ 0, yc(x) ≤ y(x) a.e. in Ω.



























(33)In this example, we onstrut µ suh that dµ = µ(x)dx with a nonnegativefuntion µ ∈ L∞(Ω). Choosing ȳ(r, ϕ) = r4 − 2r2 + 0.5r2 sin2 ϕ for the optimalstate, the state equation in (33) implies
f(r, ϕ) = r4 − 18r2 + 7 + 0.5r2 sin2 ϕ.In order to ful�ll the boundary ondition, we de�ne �rst
ũ(ϕ) := ∂nȳ(r, ϕ) = sin2 ϕ.Moreover, the optimal ontrol is given by the following pointwise projetion
ū(ϕ) = Π[ua,ub] (ũ(ϕ)) .



386 K. KRUMBIEGEL, A. RÖSCHWith the help of g = ũ − ū, the boundary ondition of the state equation issatis�ed. Furthermore, the lower state onstraint is given by
yc(r, ϕ) =

{

ȳ(r, ϕ) , ȳ(r, ϕ) > C
2ȳ(r, ϕ) − C , ȳ(r, ϕ) ≤ C,with C = −0.1. Further, with

µ(r, ϕ) =

{

ȳ(r, ϕ) − C , ȳ(r, ϕ) > C
0 , ȳ(r, ϕ) ≤ C,the omplementary slakness ondition in (33) is satis�ed. Moreover, we de�nethe adjoint state by

p̄(r, ϕ) = −r4 + 2r2 + 1 + ν(r4 − 2r2) sin2 ϕ.One an easily see that p̄ ful�lls the homogeneous Neumann boundary ondition.Sine p̄|Γ = p̄(r = 1, ϕ) = −ν sin2 ϕ, the optimality ondition
ū(ϕ) = Π[ua,ub]

(

− p̄|Γ
ν

)

= Π[ua,ub] (ũ(ϕ)) .in (33) is satis�ed.As desribed in Setion 1, we regularize state onstraints in problem (PT)by introduing a virtual ontrol as follows:
(PTε)













minimize Jε(y, u, v) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Γ) +
ψ(ε)

2
‖v‖2

L2(Ω)subjet to −△ y + y = g + φ(ε)v in Ω
∂ny = u+ g on Γ

ua ≤ u(x) ≤ ub a.e. on Γ
y(x) ≥ yc(x) − ξ(ε)v(x) a.e. in Ω′The regularized problem (PTε) was solved numerially by the Primal-dualative set strategy that we mentioned above. The method was implementedusing Matlab and its PDE-toolbox for generating a uniform �nite element meshof triangles. All funtions were disretized by pieewise linear funtions. In thefollowing, the numerial solutions of the regularized problem (PTε) are denotedby (·)ε and the optimal ontrol, optimal state, an the optimal adjoint state ofthe unregularized problem (PT) are ū, ȳ and p̄.For all omputations we set ν = 0.1. Furthermore, the lower and upperbound aording to the ontrol onstraints are hosen as ua = 0.05 and ub =

0.9. For the �rst numerial alulation we use the meshsize h = 0.04 andthe regularization parameter ε = 0.004 with the following hoie of parameterfuntions
ψ(ε) ≡ 1, φ(ε) =

√
ε, ξ(ε) =

√
ε.
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Figure 1. Control uε −1
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Figure 2. State yε
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Figure 3. Virtual ontrol vε −1
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Figure 4. Adjoint state pεFigs. 1-4 show the numerial solutions uε on the boundary for ϕ ∈ [0, 2π),the state yε, the virtual ontrol vε, and the adjoint state pε.Next, we will investigate the behavior of the error between the regularizedsolutions and the ℄ optimal solutions for ε→ 0. Moreover, we will onsider twodi�erent settings of the parameter funtions.First, we illustrate the dependene of the error on the parameter funtion
ξ(ε). Thus, we set

ψ(ε) ≡ 1, φ(ε) = ε2, ξ(ε) = εi/4 i = 1, 2. (34)In order to ensure a su�iently small disretization error, we set the meshsize h̃ = 0.005 for this alulation. The behavior of the error for this hoieis shown in Fig. 5, where the left diagram illustrates the error ‖ū − uε‖L2(Γ)
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Figure 5. Error behavior for di�erent settings in ξ(ε)and the right diagram the L2(Ω)-norm of the virtual ontrol vε, that tends to 0aording to Corollary 1.The urves illustrate the validity of the error estimate given in Corollary 1and Corollary 2. Furthermore, the desent rate of the error is inreasing if theexponent of the regularization parameter in the hoie of ξ(ε) inreases. Partiu-larly in the irle-marked urve for ξ(ε) = ε1/2 one an see that the disretizationerror dominates when the regularization parameter beomes smaller. Neverthe-less, for all hoies we obtain a better onvergene rate than we expeted by thetheory.For the ase i = 1 in (34) we determined the experimental order of on-vergene with respet to ε. Therefore, we de�ned for positive error funtionals
E(ε) with ε > 0 the value as follows: With two parameters ε1 6= ε2 let

rE :=
lnE(ε1) − lnE(ε2)

ln ε1 − ln ε2
. (35)It follows from this de�nition that if E(ε) = O(εβ) as ε ↓ 0, then rE ≈ β.Moreover, the error funtionals are given by

Eu(ε) = ‖ū− uε‖L2(Γ), Ev(ε) = ‖vε‖L2(Ω). (36)Table 1 shows the values of the regularization errors aording to the on-trol and the values of the L2(Ω)−norm of the virtual ontrol. Moreover, theexperimental order of onvergene with respet to ε is presented. Aording toCorollary 2 and the onsidered parameter funtions, we expeted for the error
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ε ‖ū − uε‖L2(Γ) rEu ‖vε‖L2(Ω) rEv

5e − 2 5.0748e − 3 − 4.1058e − 2 −

2.5e − 2 4.0931e − 3 0.31 2.0531e − 2 0.99

1.25e − 2 3.8476e − 3 0.09 1.0266e − 2 0.99

6.25e − 3 3.4497e − 3 0.16 5.4201e − 3 0.92

3.125e − 3 2.6179e − 3 0.39 3.5952e − 3 0.59

1.5625e − 3 2.0168e − 3 0.38 2.8381e − 3 0.34

7.8125e − 4 1.5540e − 3 0.38 2.4794e − 3 0.19

3.9063e − 4 1.1849e − 3 0.39 2.2362e − 3 0.15

1.9531e − 4 8.8834e − 4 0.42 2.0171e − 3 0.15

9.7656e − 5 6.5266e − 4 0.44 1.8012e − 3 0.16

4.8828e − 5 4.6926e − 4 0.48 1.5892e − 3 0.18Table 2. Errors and order of onvergene for i = 1 in (37)
ε ‖ū − uε‖L2(Γ) rEu ‖vε‖L2(Ω) rEv

1e − 1 1.0503e − 1 − 1.6255e − 1 −

5e − 2 5.5276e − 2 0.92 8.1696e − 2 0.99

2.5e − 2 2.9725e − 2 0.89 4.0955e − 2 1.00

1.25e − 2 1.6796e − 2 0.82 2.0505e − 2 0.99

6.25e − 3 1.0293e − 2 0.70 1.0259e − 2 0.99

3.125e − 3 7.0310e − 3 0.55 5.1312e − 3 1.00

1.5625e − 3 5.4015e − 3 0.38 2.5660e − 3 0.99

7.8125e − 4 3.5757e − 3 0.59 1.2879e − 3 0.99

3.9063e − 4 1.7991e − 3 0.99 6.4735e − 4 0.99

1.9531e − 4 8.7708e − 4 1.04 3.2458e − 4 0.99

9.7656e − 5 4.1381e − 4 1.08 1.6253e − 4 0.99

‖ū− uε‖L2(Γ) a onvergene rate of O(ε1/8). The experimental rates are muhbetter than the theoretial ones. Partiularly for smaller ε, the experimentalonvergene rate of the L2-norm of the virtual ontrol di�ers not so muh fromthe expeted one O(ε1/12).Moreover, we observed the dependene on ψ(ε) for the following settings
φ(ε) ≡ 1, ξ(ε) ≡ 1, ψ(ε) = ε−(i+1)/2, i = 1, 2. (37)The results are shown in Fig. 6. Again, the behavior of the di�erent urvesillustrate the error estimates of Corollary 1 and Corollary 2. Furthermore, onean see di�erent desent rates. Table 2 shows regularization error of the ontroland the L2(Ω)-norm of the virtual ontrol vε for i = 1 in (37). Similarly to the�rst setting, the experimental onvergene rates are better than the theoretialones.
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Figure 6. Error behavior for di�erent settings in ψ(ε)Let us summarize the numerial tests. We observed the onvergene ofthe optimal ontrol of problem (Pε) for di�erent hoies of parameter funtions.Moreover, behavior of the virtual ontrol was onsidered and the tests on�rmedthe estimates of Corollary 1. However, for all settings of parameter funtionsthe approximated rates were better than the expeted ones. We note that thepresented error estimates in Corollary 2 are the worst ase senarios. Moreover,in our numerial tests the regularization error is only one error. Of ourse, alsoa disretization error ours.Let us �nish the paper with some omments on the omputational e�ort.The omputation time is essentially determined by the number of PDEs whihhave to be solved. We note that the new virtual ontrol appears as a soure termin the state equation. Thus, the e�ort for one iterate of solving the onstrainedlinear quadrati optimization problem is hardly in�uened by the virtual ontrol.Furthermore, we omputed the numerial results by the following strategy: Westarted with a moderate regularization parameter ε. Only a small number ofiterations (< 10) of the Primal-dual ative set strategy was needed to get thesolution. The ative and inative sets of this solution were used for initializationto ompute the results for the next smaller ε (a nested approah). The nextsolution was obtained after a few additional iterations.AknowledgmentThis work is supported by the Austrian Siene Fund FWF under projet num-ber P18090-N12.
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