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Abstract: A linear elliptic optimal control problem with point-
wise state constraints in the interior of the domain is considered.
Furthermore, the control is given on the boundary with associated
constraints. An artificial distributed control is introduced in the cost
functional, in the state equation and in the state constraints. Since
there are no control constraints for the artificial control, efficient
numerical methods can be easily established. Based on a possible
violation of the pure pointwise state constraints, an error estimate
for the regularization error is derived. The theoretical results are
illustrated by numerical tests.
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1. Problem formulation

We are interested in an optimal control problem with constrained boundary
control and pointwise state constraints:

1 v
Minimize J(y,) = 5l = vl + Sl

subject to —Ny+y=0 in

( Oy =u onT
g < u(z) < up a.e.on

y(z) > yo(z) ace. in (2,

where 2 C R? is bounded domain with C''! boundary and Q' CC Q is an
inner subdomain with dist{Q’,I'} > 0. Furthermore, yq4 € L*(Q) and y. €
C%*(Q), 0 < a < 1 are given functions and u, < up, v > 0 are real numbers.
We use the abbreviation a.e. for "almost everywhere".
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Instead of problem (P), we will investigate a family of regularized optimal
control problems:

1 v €
minimize (v, u,0) == 1y~ vall3acey + 2l + Lol
subject to —ANy+y=deh in Q
(Pe) Oy =u onI
g < u(z) < up ae.onl
y(@) = ye(x) — E(e)v(2) a.e. in €',

with a regularization parameter ¢ > 0 and €, v, y4, Y¢, uq and up as defined
above. The functions v, ¢ and £ are positive real valued functions depending
on the regularization parameter ¢ respectively.

At a first glance, regularization of problem (P) seems not to be necessary
since the problem is well-posed. Nevertheless, there are several arguments that
a regularization is reasonable. We comment on Casas (1993), where one can see
that the Lagrange multipliers associated to the state constraints are in general
only Borel measures. Of course, this causes low regularity of the dual vari-
ables and of the optimal control. Due to the structure of the optimality, the
optimal control u, the optimal state ¥ and the adjoint state p at the boundary
are unique. However, if the state constraints are active on an open set, then
the Lagrange multiplier and the adjoint state are not unique. Therefore, differ-
ent regularization concepts have been developed in the last years. In a recent
paper of Troltzsch and Yousept (2006) a source representation was introduced.
Moreover, an alternative penalty concept was used by Hintermiiller and Kunisch
(2006). Furthermore, we mention that the regularization techniques allow for
an efficient numerical solution of the control problem.

The concept of virtual control was introduced in Krumbiegel and Rosch
(2006). However, we will not assume additional control constraints concerning
the virtual control. In Krumbiegel and Résch (2006) this requirement was essen-
tial to derive error estimates, since the L°°-bound of the virtual control occurs in
all estimates. The main advantage of this approach without additional control
constraints for the virtual control is that it decreases the numerical difficulties
essentially. If constraints are given, it may happen that the different constraints
are active simultaneously. This leads to non-uniqueness of the adjoint variables.
Consequently, singular matrices may occur in different numerical schemes. The
separation of active sets is given by construction in our new approach. Hence,
numerical methods for solving optimal control problems are directly applicable,
for instance the interior point method (see, e.g., Meyer, Priifert and Troltzsch,
2005; Schiela and Weiser, 2004); and the Primal-dual active set strategy (see,
e.g., Bergounioux, Ito and Kunisch, 1999; Hintermdiiller, Ito and Kunisch, 2003;
Kunisch and Résch, 2002).

Let us mention that for the special choice ¢(g) = 0 the proposed concept
is very close to the approach discussed by Hintermiiller and Kunisch (2006).
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The virtual control v plays there the part of the penalization function in the
augmented objective.

This paper is organized as follows. In Section 2 optimality conditions and
regularity results for the optimal solutions are established. The feasibility of
solutions is discussed in Section 3. Furthermore, regularization estimates are
derived. In Section 4 the application of the Primal-dual active set strategy and
numerical tests illustrating the theory are presented.

2. Optimality conditions and regularity

In this section we will establish first order optimality conditions for both prob-
lems (P) and (P.). Furthermore, we will recall regularity results of the solutions.
Considering the state equation of problem (P.), we split this equation in two
separate ones. First we consider the boundary value problem:

—Ay1+y1 =0 in
Onl1 = u onT.

(1)

Equation (1) admits for all v € L?(T") a unique solution y; € H*(Q) N C(Q)
(see, for instance, Troltzsch, 2005). If we consider the state y; as a function in
L?(Q), we can introduce the control-to-state operator Sy : L*(T') — L2(f2), that
assigns u to y1. The second part of the state equation is given by:

—Ays+y2 = P(e)v in Q @)
Ony2 =0 on .

Referring also to Troltzsch (2005), (2) admits for every v € L?(2) a unique
solution yo € H'(2) N C(Q). Hence, we introduce the linear and continuous
solution operator Sy : L*(Q) — L*(Q), y2 = Sa¢(e)v. Therefore, the weak
solutions of the state equations of problem (P) and (P.) are given by:

y = S1u+S2(4()0) = S1u  for (P); Ye = S1uc+S2(p(e)v:)  for (Pe), (3)

where we set v = 0 for the problem (P).
Furthermore, we define the admissible sets for both problems

Usg = {u € L*(T)| uq < u < up a.e. on I; Sju >y, a.e. in Q'} for (P)

and

Ve = {(u,v) € L*(T) x L?*(Q)|ug < u < up a.e. on T}
S1u+ Sap(e)v > y. — £(e)v a.e. in Q'} for (P.),

respectively. Note that the state constraints and the mixed control-state con-
straints are included in the admissible sets respectively. The admissible sets are
convex and closed. In the next section we guarantee the existence of feasible
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points such that the admissible sets are nonempty. For this purpose, we assume
the existence of an inner point according to the pure state constraints. Since the
objective functional is strictly convex and radially unbounded in both problems
and the admissible sets are nonempty, the existence and uniqueness of optimal
solutions is obtained by standard methods for both problems (P) and (P.).

In order to formulate the optimality conditions, we introduce the adjoint
state for both problems. Note that all inequality constraints are handled by
admissible sets. Consequently, there occurs no Lagrange multiplier in the adjoint
problem. Furthermore, the adjoint problem is equal for both problems (P) and
(P.). By standard methods one obtains

—Ap+p=y—1yq in Q (4)
Onp =0 onTI.

The optimality conditions are formulated in the following lemma.
LEMMA 1 Let (4,y) be the optimal solution of problem (P). The necessary and
sufficient optimality condition is given by

(Plr + v, u —w)pzry > 0 Vu € Uga, (5)

where the associated adjoint state p is the solution of (4).
Moreover, let (u., U.,J=) be the optimal solution of problem (P.). The optimality
condition is given by

(Pelr +vte, u—1c)L2(ry +(P(€)Pe +1(€)Ve, v—Te) L2(0) =2 0 V(u,v) € Vi, (6)
where the associated adjoint state p. is the solution of (4).

In the sequel we introduce the optimality conditions of problem (P.) for a
fixed regularization parameter ¢ > 0 using the classical approach with a La-
grange multiplier associated with the mixed constraint. In the case of point-
wise control-state-constraints the existence of regular Lagrange multipliers was
proved in Rosch and Troltzsch (2006). Further on, the control constraints are
treated by an admissible set

Upa i ={u € L*(T): w,<u<u ae onT}.

By introducing a Lagrange multiplier p corresponding to the state-control-
constraint, we obtain the following optimality system:

— A Ye + Y. = P(e)e —ApPetpe =Ye — Ya— W (7)
Onle = Ue Onpe =0

(Pelr + Vi, u — ﬁs)Lz(p) >0, YueUy (8)

d(e)pe +Y(e)ve —&(e)p =0 ae. in Q (9)

(1 Yo — Y — 5(5)5€)L2(Q’) =0, >0, ¥ >yc—E(E)v ae. in Q'
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To keep the notation simple, we extend the Lagrange multiplier in (7) and (9)
by zero on the whole domain 2. Since the Lagrange multiplier acts in the right
hand side of the adjoint equation, the optimal adjoint state is denoted different
from the adjoint state in the optimality condition (6). Now, we consider the
adjoint equation in (7). From Grisvard (1985) we obtain the following regularity
result.

THEOREM 1 Let Q be a bounded domain with CY' boundary. Then for every
Ue € L2(Q) and p € L*(Q) the adjoint equation in (6) admits a unique solution
Pe € H*(Q).

This result ensures that the boundary values of the adjoint state are at least
of H'(T')-regularity. In order to derive the regularity of the optimal control, we
replace the optimality condition (9) by the equivalent and pointwise projection
formula

_ 1.
Ue = H[ua)ub] <—;ps|p) . (].].)

Due to the fact that the projection operator in (11) provides for H!-regularity,
the optimal control #. belongs to H!(T'). For the state equation we will use
another result from Grisvard (1985).

THEOREM 2 Let Q be a bounded domain with CY! boundary. Then the state
equation in problem (6) admits for every v. € L*(Q) and a. € HY*(T) a unique
solution y. € H*(12).

Later, we will be interested in a L°°-estimate of the virtual control v.. There-
fore, we state the following lemma.

LEMMA 2 Let (e, e, §e) satisfy the optimality system (7)-(10) with associated
adjoint state p. and Lagrange multiplier ;. Then the following projection for-
mula

£(e)y1 = max {o, %)@ )+ ¢<sm} (12)

is valid on Q. Moreover, T, and p belong to L>(2).

Proof. We begin by splitting the domain @’ into two disjoint subsets ' =
Q1 U s, where we define

O ={zeQ: px) >0}
Qo :={z€Q: u(x) =0}

First, we consider 1. The complementary slackness condition (10) yields

Ve = @(yc —Ye)-
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Thus, we obtain by (9)

(o) _ .
Ele)p = @(yc — Je) + &(e)Pe

and the projection formula (12) is valid.
Considering 5, we have u = 0. Therefore, equations (9) and (10) imply

0= 0(e)p. + V(e = Y e = 52) + ()
Hence, the projection formula is also satisfied.

Due to Theorems 1 and 2, we have H?-regularity for 9. and p. respectively.
Hence, the function inside the max-function belong to L°>°(f2) since the space
H?(Q) is embedded in L>°(Q). Consequently, the Lagrange multiplier is from
L>(9Q) and with the help of (9) we obtain @, € L>®(Q). m

Later, we want to observe the regularization error of the optimal solution
e concerning the optimal solution of the original problem. Therefore, we need
uniform boundedness of the state y; = Si@. in the space C%%(Q) for all e.
Due to the original problem, we have to deal with less regularity in the control.
However, we can consider u € L°(£2) in (1) since the control is bounded by the
constraints. The following result is obtained from Mateos (2000).

THEOREM 3 Let Q be a bounded domain with CY! boundary. Then for every

te € LP(T), p > 1 the partial differential equation (1) admits a unique solution
Y1 € Wl’p(Q).

Further, we obtain from the Sobolev embedding theorem, that W1?(Q), p >
2 is embedded in the space C%*(2) for a < 1 — 2/p. Hence, we obtain with
Theorem 3 the following a-priori bound for y; = Sy 1. in C%*(Q):

ly1llco.e ) < Cllyillwir) < Clltel|Lery < Cmax{|ual, [us|}- (13)

3. New regularization error estimate

In this section we will derive an error estimate between the solution of the
original problem (P) and the regularized problem (P.). Furthermore, we will
point out the relationships between the different parameter functions.

3.1. Auxiliary results and feasibility

Now, we will construct feasible solutions for each problem based on the solutions
of the other problem. However, we have to assume the existence of an inner
point concerning the state constraint:
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AssumpTION 1 There exists a function @ € L*(T") with u, < d(z) < up a.e. on
I' and §(z) > y. + 7 a.e. in ' with 7 > 0, where § is the weak solution of the
state equation in problem (P) for .

The following lemma ensures the feasibility of the solution (@, ) of the prob-
lem (P) for the regularized problem.

LEMMA 3 For every € > 0 the control (,0) is feasible for (Pg).
Proof. Since @ is feasible for (P),
£E)0+y=7>y. ae. in
holds true for all £ > 0. Therefore, (@, 0) also fulfills the constraints of (P.). =

Next, we will derive an auxiliary result, which is needed later.

LEMMA 4 Let E C R be open and bounded and the function f in CO%(E) for
some 0 < a <1 with || f|coagy < o. Then there exists a constant C > 0, such
that the estimate

d _2a
| £llz=() < Co=5a| £ T2, (14)

is satisfied.

Proof. Let € E be the point, where we obtain
M = |f(2)] = max {1/ ()]}

Moreover, let Us(Z) be a ball with center Z and sufficiently small radius ¢ such
that

M
9

|f(z) = f(2)] < V€ Us(T)

is satisfied. The definition of Holder-continuous functions and || f||co.«(g) < o
yields

|f(z) = f(@)| <00, V€ ls(T).

By choosing § as follows

M 1/«
— 1=
6:= (a 5 ) ,

we ensure the validity of the first inequality. Hence, we guarantee

) =Y

7, vV EZ/{[;(:E)
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Now, we will estimate the L?-norm from below.

o = [ P> | de:¢2<%)2 [
E

Us(z) Us(z)

M ? —a/a [e% —a/a 2atd
= <—> C6% = Co™ oM+ = Co™ || f|| L2 .

2
This estimate implies the assertion. [

In the next step, we construct a feasible solution for the original problem
(P). Therefore, we consider the violation of the optimal regularized control .
of problem (P.) with respect to the pure state constraints of problem (P). We
define the violation function by

d[te, (P)] := (yo — S1te)+ = max{0,y. — Syt }. (15)

Furthermore, the L>(Q')-norm of this function is called maximal violation of
Ue to problem (P).

LEMMA 5 The mazimal violation ||d[tc, (P)]| ) of e to (P) can be esti-
mated by

d[ae, (Pl ooy < C(E(e) + ¢(e)) 75 |5l 13 (e (16)
where C is a positive constant independent of ¢.

Proof. Since y; = Siiic, y. € C%*(£') and the max-function is continuous,
the function d[Siie, (P)] belongs also to the space C%®()’). Furthermore, we
obtain

|d[te, (P)lllco.eary = [[(ye = S1te)+ | co.ary < |Yellcoaary + [|S18e | co.a .-

Using (13), we obtain an upper bound % independent of ¢ for d[a., (P)]. By
Lemma 4 with E = Q' C R? and some further estimates we obtain

ldfae, (Pl sy < Cllde, (P)]l55ey,
< Cl(ye - Svae)s i)
= C||(ye — S11c — Sap(£)T: + Sz¢(a)ﬁa)+||£‘?€m
< Cll(ge — Ge)s + (S20(e)ve)+ I
< C (16E)8) 4 2 + 1526(): | 12() =
< C(Ee) + ¢(0) o H oI T
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In the next Lemma, we will construct a feasible solution us for the problem
(P) depending on the inner point % and the optimal regularized control ..

LEMMA 6 Let the Assumption 1 be satisfied. Then for every ¢ > 0 there exists
a d: € (0,1), such that us := (1 — )G + 04 is feasible for (P) for all § € [d,1].

Proof. Since the control constraints of the problems (P) and (P.) are equal, the
convex combination

us = (1 — 0)u. + éu (17)
fulfills the constraints

Ug < U < Up, a.e. inI'.
Furthermore, we know for the corresponding state

ys = S1us + S2¢(€)vs.
Hence, we have to set vs = 0, such that the pair (us, ys) becomes feasible for
problem (P). We continue by

ys = S1us = (1 — §)S1a. + 5514

Ys — Yo = (1 = 6)(S1te — ye) + 0(9 — ye)

(1 —d)d[ae, (P)] + 67
(1 = 0)lld[ac, (P)][| Lo (q) + 6T

One can easily see that 67 — (1 —0)||d[tc, (P)]|| Lo (o) > 0 implies the feasibility
of us for problem (P). Hence, we set

ldfite. (P)] | )
5= €(0,1) Ve>0, 18
T, (Pl +7 = OV (18)

and wu; is feasible for all § € [, 1]. L]

2_
Z_

3.2. Error estimates

In this section we will derive the main result. The next result provides a pre-
liminary error estimate of the optimal solutions of problem (P) with respect to
the optimal regularized one of problem (P.).

THEOREM 4 Let (4, y) and (U, Ve, Je) be the optimal solutions of (P) and (P.),
respectively. Then, there exist positive constants Cy and Cs independent of €,
such that

be) 3

v||a— ﬂa”%?(r‘) +lg - QEHQL?(Q) + 2 H@E”QLZ(Q) =

(6E)N)

C(E(e) + 9l el 2y + O 5

(19)
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Proof. First, we introduce the weak formulations of the state equations in both
problems (P) and (P.). The weak formulations are given by:

a(y,z) = /ﬁzds, vz e HY(Q) (20)
r
and
a(Pe,2) = [ Gezds + [ d(e)vezdx, Vze HY(Q), (21)
[reee]

respectively. The bilinear form a(,-) is defined by
a(y, z) :== /Vy - Vzdr + /yzd:c.
Q Q

Due to handling of all inequality constraints in admissible sets, the weak for-
mulation for the adjoint equation is equal:

a(z,p) = (2,9 —ya)r2@ ¥z € HY(Q). (22)

We consider the optimality conditions of both problems, where we use (@, 0) as
a feasible test function in (6). According to Lemma 6, the control us is useful
as a test function in (5). Adding these two inequalities with the specific test
functions, we obtain

(Pe +vie, U —te) 2 (r) + (P(€)Pe +10(€) Ve, —Ve) 12 () + (P+ 1, us — ) L2 (1) > 0.
Next, we rewrite the previous inequality in a suitable form
(P — Pey e — ) p2(r) + V(U — Ue, Ue — U) £2(T)
+ (P + v, us — ) p2(ry + (4(€)pe + Y(€)Ve, —0e)p2() = 0. (23)
Considering the first term in (23), we obtain with the help of (20) and (21)
(P = Pes e = W) z2(r) = a(fe = §,P = P=) = ($(€)0=, P — Pe) L2()-

Due to the weak formulation (22) of the adjoint equation of (P) and (P.), we
get also

a(fe = 5,0 —pe) = e = 4,0 — U=) 2@ = — 7 — Gl 720 -
In view of (23), we arrive at

19 = GellF20) + Vlla = acllFary < (0 + v, us — ae) 2y — $(e)]|ve ] 720

— ¢(e)(P, V=) L2(02)-
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Inserting the definition (17) of us and using the control constraints for 4 and
e, we find
19 = Gell T2y +vlla = elFary < 11D+ vall 2 llus
—tie| L2 (r) = Y (E)Tel 20y — $(€) (D, V) L2 ()
= ||p + vl 16(a — ac) || L2ry = Y(E)|velF20) — D(6) (P ) L2(0)
1P+ vaall L2y Slus — ual [C]'? = () |0:]172 (0 + [8()](P ) 2@

IN

Furthermore, the term |(p, ¥c)2(q)| can be estimated as follows:

o loE)l - Y(e)
|(P, Ve) 2oyl < 20:(2) ||p||%2(sz) + M||UE||%2(Q)'

According to Lemma 3 we choose the specific parameter

5 — l|d[tic, (P)]|| Lo~ )
° ld[a, (P)lpe @y + 7

Without loss of generality, we note that there is a positive constant C' > 0 such
that

de < Clldlite, (P)]ll Lo (o

is satisfied for all sufficiently small regularization parameters € > 0. Thus, with
the help of (16) in Lemma 5 the estimate

o - v(E), -
v|u— Us||%2(r) +ly — ys||%2(sz) + THUsH%mz) <

(6(e))?
¥(e)

C1(&(e) + 6(€) = |5 F3 gy + Co
is obtained with
_ 1,
Cy = Clup — ual[T[V?[|p+ vtl| L2y, Ca = §||p||2L2(Q)'

Let us mention that both constants can also be limited by expressions containing
only the data of the problem. [

In view of (19) j% has to become small for ¢ — 0. Therefore, the following

assumption is reasonable.
AssuMPTION 2 For sufficiently small € > 0 we assume that

¢(e)
¥(e)

< 1. (24)
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Since 7. is the optimal virtual control of problem (P.), one can easily see that
19| 2 () is bounded by the objective functional as follows

C
¥(e)

However, we are able to improve this estimate with the help of the error estimate
(19) in Theorem 4.

[0 L2y < , C>0.

COROLLARY 1 Let the assumptions of Theorem 4 and Assumption 2 be fulfilled.
Then for sufficiently small € > 0 the estimate

ol < € <5<5>+¢<s>>‘* (25)

¥(e) ¥(e)
is satisfied with some constant C' > 0.

Proof. Considering the error estimate (19), we have the estimate:

o 2
B o) < €l + 0N T ol iy + 2 LS
Moreover, this estimate implies
C I 2
ooy < oy manc{ ((e) + ote ¥ ol gy, (XL

where C' = 2max{C1, C2}. Now, we consider the two cases where the maximum
will be attained.

Case 1: First, we assume that the maximum in the right hand side of the
previous inequality is attained by the second term. We note that the constant
C is now generic. Hence, we obtain the following upper bound:

[0 L2y < C%-

Case 2: Next, we consider the other case. We derive the following estimate:

C o _a_

ol < 55 (606) + (N T el 2y
a2 o

||Ua||L2(Q) Sw(ﬁ(g) + ¢(5)) att

ez <C ()" () + 0(e))°)

_1
a+2
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Concluding, we obtain the following upper bound

1

ol < Cmax{ (0D 06 + 0(e)*) T 2 |

=%max{ 06 () ele) + o)) A }

_ (<§<a>+¢a>a)al+2 o(c)
V() (¥(e))o/? " V(e)

o <5<s>+¢><s>>°‘i2 o(e)
¥(e) ¥(e) V()

Due to (24) of Assumption 2 the maximum is attained by the first term inside
the max-function, which is the assertion. [

Now we will provide the final error estimate of the optimal solutions of
problem (P) concerning the optimal regularized one of problem (P.).

COROLLARY 2 Let (4,§) and (., Us, Je) be the optimal solution of (P) and (Pe),
respectively. Then, there exists a positive constant C' independent of €, such that

(€(e) + 6(e))>\ =7
e ) | (26)

The error estimate (26) results directly from Theorem 4 and Corollary 1.

v|a— ﬁsH%?(F) +ly — 235”%2(52) <C (

In practical applications one is interested in feasible controls, such that the
infeasibility of the regularized control @, might be a problem. Therefore, we
state the following remark, where we derive the same approximation properties
for the feasible control as for the optimal regularized one u.. For a proof we
refer to Krumbiegel and Rosch (2006).

REMARK 1 Let us be the control introduced in Lemma 6 with § ~ d.. Then
there exists a constant C' > 0 independent of € such that

2\ a1z
v = @l + 15 - ol < € (EELEED) 1)

is satisfied.

One can easily see in the estimates (26) and (27) that an appropriate choice
of the parameter functions ¢ (g), ¢(¢) and &(e) should satisfy the following con-
ditions:

im -2 o pm S8 g, (28)
==0 /1 (e) ==0 \/9(e)
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3.3. Results in the 3D-case

We mention that we can also derive a regularization error estimate for Q C R?,
since the regularity result given in Theorem 3 is also valid in 3D. Moreover,
by Sobolov embedding theorem W1P(Q), p > 3 is embedded in the space of
Hélder-continuous function C%%(Q) for o < 1 — 3/p.

Analogously to Lemma 5, the estimate of the maximal violation of the opti-
mal regularized control @. to problem (P) is now given in the next corollary.

COROLLARY 3 The mazimal violation ||d[u., (P)]||r~) of e to (P) can be
estimated by

_ 20 520
ld[tie, (P)]llL= (o) < C(§(e) + d(e)) >+ [|Ue] 15 (g, (29)
where C is a positive constant independent of €.

Further, the construction of a feasible control us is equivalent to Lemma 6.
Then the preliminary error estimate of the optimal solution of problem (P)
according to the regularized one is provided in the next Corollary.

COROLLARY 4 Let (4,§) and (e, Us, Je) be the optimal solution of (P) and (Pe),
respectively. Then, there exist positive constants C, and Cs independent of e,
such that

o . v(E), -
v|a — U5||%2(I‘) + 1|y — y5||2L2(Q) + THUEHQL2(Q) <

= i—a 3 2
Cr(ele) + o) + IS (@0)
With the help of Corollary 3 the proof can be done along the same lines as
in Theorem 4. Deriving a similar estimate for [|vc| z2(q) as in Corollary 1, the
final estimate for 3D-domains is given by:

COROLLARY 5 Let (4, §) and (e, Us, Je) be the optimal solution of (P) and (Pe),
respectively. Then, there exists a positive constant C independent of €, such that

(&@+¢@»$ﬁ>“%_ o

V@ — | Za ) + 17 = FellZz (o) < O( ¥(e)

4. Numerical tests

The optimal control problem (P.) can be solved by several numerical methods,
for instance an interior point method (see e.g. Meyer, Priifert and Troltzsch,
2005; Schiela and Weiser, 2004) or an active set strategy. For our purpose
we want to apply a Primal-dual active set strategy, see e.g. Bergounioux, Ito
and Kunisch (1999), Hintermiiller, Ito and Kunisch (2003), Kunisch and Résch
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(2002). In order to realize this method, we have two possibilities. One can
transform the problem (P.) to a completely control constrained problem by
introducing new control

We = Pe + £(€) e

Thus, one can apply the standard algorithm that is prescribed, for instance, in
Bergounioux, Ito and Kunisch (1999). However, this transformation leads to a
singular perturbed problem for € | 0. Consequently, one has to deal with the
specific difficulties of this problems.

The second strategy is focused on directly solving the optimality system
(7)-(10), where a Lagrange multiplier corresponding to the mixed control-state
constraints was introduced. Therefore, we will use a Primal-dual active set
strategy. Deriving this method, we need the pointwise formulation of the com-
plementary slackness condition (10) that is given by:

/ () (el(2) — e () — E(e)0e(2))dex = 0.

Q

Due to p(x) > 0 and y.(z) < g(x) 4+ £(¢)v-(x), this implies

() (ye(x) — Ge(z) — €(e)e(x)) =0, a.e. in Q.
Given the optimal solution (@, ge, Pe, T ) for (P:), we will define the active and
inactive sets. First we consider the control constraints acting at the boundary
I'. The active and inactive sets can be defined by

Al = {z eT|a.(z) = u,}

AL = {2 €T | uc(2) = up}

" =T\ {A" uAl}).

With the help of these sets, the variational inequality (8) in the optimality
system can be replaced by the following explicit expression:

ug , ze Al
’ﬁg(.’ﬂ) _ u, , T € AE
_p5($)|r, T ezr

14

The active and inactive sets concerning the mixed control-state constraints are
defined up to sets of measure zero as follows:

A= {z € V| €(e)v(2) + Ge(2) — p() < ye(w)}
7%=\ A%
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Hence, the inequalities in (10) can be replaced by associated equalities on the
sets A and Z%:

£(e)ve(x) + P () = ye(), a.e. on A9
0,

a.e. on Z%.

Thus, the optimality system (7)-(10) can be transformed into

_Ags‘i‘?ja:(b(g)@a —APe+De=Ye—Yd— I
OnYe = Ue Onpe =0
Ug , T E .AI:
ﬂ’E(I) = Up ) HARS AS,
Y 32
M7 T € IF' ( )
v
o(e)pe +¥(e)v. —&(e)p =0 a.e. in Q
£(e)ve(x) + Je(x) = yo(z), a.e. on A?
pw(z) =0, ae. onZ

The Primal-dual active set strategy proceeds as follows.

ALGORITHM:

1. Define initial sets A" AT and A2©). Set 700 = 1\ (A" U
ADO 720 — 0\ A% and k = 0.

2. Determine the solution (uf,y* pF vk, 1i*) of the optimality system (32)

on the current active and inactive sets.
3. Determine the new active and inactive sets by

A — fa e T ik (@) - pe(a) — vul(@) < ua )
AP = e e T s ub(e) - pet(a) — vubi(z) > up)
7T (k+1) 1—\\{ F(k+1)UA5_’(k+1)}

AP = (2 € 0 gk (@) + 4 () — i (e) < ela)}
79 0+1) Q\AQ (k41

4, T ATFFD = A0 qT D — g0 ang A2(+1) = A2(8) then STOP,
else:
Set k := k + 1 and goto 2.

The convergence of the algorithm and the justification of the termination
condition in step 4 is discussed in several papers. We refer to Bergounioux, Ito
and Kunisch (1999), Hintermiiller, Ito and Kunisch (2003), Kunisch and Résch
(2002), and Rosch and Wachsmuth (submitted).
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4.1. Example

Our aim is to illustrate the influence of the parameter functions on the regu-
larization error. To this end we constructed optimal solutions of the original
optimal control problem

C 1 v
minimize J(y,u) := §||y —Yall72(0) + §||U||2L2(r)

subject to —Ny+y=f in Q

(PT) Ohy=u+g onl -
g < ulz) < up a.e.on I’
y(x) > ye(x) a.e. in Q)

with Q = B(0,1) € R? denoting the unit circle. Furthermore, the functions
va, f € L2(Q), y. € C%*(Q), a < 1 and g € L?(T") are given. These functions
and the associated optimal solutions are given in polar coordinates (r, ). In
our examples we consider boundary control constraints

g < u(z) < uy a.e. on I,

where ug, up are real numbers. Furthermore, the lower state constraints are
given by

ye(z) < y(z) a.e. in .

The Lagrange multipliers p associated with pointwise state constraints are in
general regular Borel measures, see Bergounioux and Kunisch (2002). In order
to construct an analytical solution (@, g, D), we have to satisfy the optimality
system

—Ay+y=f inQ —Ap+p=y—ya—p inQ
ohy=u+g onl Onp =0 onT
(ﬁ"’ Vﬁvu - ﬁ)Lz(F) > 0 Yu € Uad (33)
f(yc—y)d,u:
Q
>0, ye(x) <ylx) ae. in .

In this example, we construct p such that du = p(z)dz with a nonnegative
function u € L>(Q). Choosing 7(r, ¢) = r* — 2r2 + 0.5r2 sin® ¢ for the optimal
state, the state equation in (33) implies

fryp) =7t —18r% + 7+ 0.5r? sin® .
In order to fulfill the boundary condition, we define first
W(p) = Ony(r, ) = sin® p.

Moreover, the optimal control is given by the following pointwise projection

ﬁ(‘/)) = H[ua,ub] (ﬁ(@) .
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With the help of ¢ = u — @, the boundary condition of the state equation is
satisfied. Furthermore, the lower state constraint is given by

_ y(r, ) ,y(r,p) > C
el ) = { 2y(r,0) = C ,y(r,p) < C,

with C' = —0.1. Further, with

e = { 102G

the complementary slackness condition in (33) is satisfied. Moreover, we define
the adjoint state by

pryp) = —r* +2r2 + 1+ v(r* — 2r?) sin? .
One can easily see that p fulfills the homogeneous Neumann boundary condition.

Since p|r = p(r = 1,¢) = —vsin® ¢, the optimality condition

_ plr -
9) = Ty (=225 ) = (i)
in (33) is satisfied.

As described in Section 1, we regularize state constraints in problem (PT)
by introducing a virtual control as follows:

1 v
minimize Je(y,u,v) == §||y —Yall72(0) + §||u||%2(r) + @Hvﬂiz(m
subject to —ANy+y=g+o) in Q
(PT.) Ony=u+g onT
g < ulz) < up a.e.on I’
y(z) > ye(x) — £(e)v(x) a.e. in

The regularized problem (PT.) was solved numerically by the Primal-dual
active set strategy that we mentioned above. The method was implemented
using Matlab and its PDE-toolbox for generating a uniform finite element mesh
of triangles. All functions were discretized by piecewise linear functions. In the
following, the numerical solutions of the regularized problem (PT.) are denoted
by (-)e and the optimal control, optimal state, an the optimal adjoint state of
the unregularized problem (PT) are @, § and p.

For all computations we set v = 0.1. Furthermore, the lower and upper
bound according to the control constraints are chosen as u, = 0.05 and w, =
0.9. For the first numerical calculation we use the meshsize h = 0.04 and
the regularization parameter ¢ = 0.004 with the following choice of parameter
functions

be) =1, dle) =ve, &) =ve



Regularization of state constrained Neumann control problems 387

Figure 1. Control u, Figure 2. State y.

Figure 3. Virtual control v, Figure 4. Adjoint state p.

Figs. 1-4 show the numerical solutions u. on the boundary for ¢ € [0, 27),
the state y., the virtual control v., and the adjoint state p..

Next, we will investigate the behavior of the error between the regularized
solutions and the | optimal solutions for € — 0. Moreover, we will consider two
different settings of the parameter functions.

First, we illustrate the dependence of the error on the parameter function
&(g). Thus, we set

YEe)=1, o¢le) =2 €e)=€Y* i=1,2. (34)

In order to ensure a sufficiently small discretization error, we set the mesh
size h = 0.005 for this calculation. The behavior of the error for this choice
is shown in Fig. 5, where the left diagram illustrates the error ||& — uc| z>(r)
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Figure 5. Error behavior for different settings in £()

and the right diagram the L?(2)-norm of the virtual control v., that tends to 0
according to Corollary 1.

The curves illustrate the validity of the error estimate given in Corollary 1
and Corollary 2. Furthermore, the descent rate of the error is increasing if the
exponent of the regularization parameter in the choice of {(¢) increases. Particu-
larly in the circle-marked curve for £(¢) = €'/ one can see that the discretization
error dominates when the regularization parameter becomes smaller. Neverthe-
less, for all choices we obtain a better convergence rate than we expected by the
theory.

For the case ¢ = 1 in (34) we determined the experimental order of con-
vergence with respect to €. Therefore, we defined for positive error functionals
E(e) with € > 0 the value as follows: With two parameters 1 # €2 let

_ InE(e1) — In E(e2)

1n51 —11152 ' (35)

rg
It follows from this definition that if F(¢) = O(¢P) as e | 0, then rg ~ f3.
Moreover, the error functionals are given by

Eu(e) = [|@ — ue| L2(r), Ey(e) = llvellz2()- (36)

Table 1 shows the values of the regularization errors according to the con-
trol and the values of the L?(2)—norm of the virtual control. Moreover, the
experimental order of convergence with respect to € is presented. According to
Corollary 2 and the considered parameter functions, we expected for the error
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Table 1. Errors and order of convergence for i =1 in (34)

| € | o —uellpzry | ren | lvellp2) [ re, ]
5e — 2 5.0748e — 3 — 4.1058e — 2 —
2.5e —2 4.0931e — 3 0.31 | 2.0531e —2 | 0.99
1.25e — 2 3.8476e — 3 0.09 | 1.0266e —2 | 0.99
6.25e — 3 3.4497e — 3 0.16 | 5.4201e —3 | 0.92
3.125e — 3 2.6179 — 3 0.39 | 3.5952e¢ —3 | 0.59
1.5625e — 3 2.0168e — 3 0.38 | 2.8381le — 3 | 0.34
7.8125e — 4 1.5540e — 3 0.38 | 2.4794e — 3 | 0.19
3.9063e — 4 1.1849¢ — 3 0.39 | 2.2362¢e — 3 | 0.15
1.9531e — 4 8.8834e — 4 0.42 | 2.0171le —3 | 0.15
9.7656e — 5 6.5266e — 4 0.44 | 1.8012¢e — 3 | 0.16
4.8828e — 5 4.6926e — 4 0.48 | 1.5892¢ — 3 | 0.18
Table 2. Errors and order of convergence for i = 1 in (37)
[ e Tli—ulon [ e | Tlew [ e ]
Te—1 1.0503c — 1 | — | 1.6255e — 1] -
e — 2 5.5276e —2 | 0.02 | 8.1696e — 2 | 0.99
2.5 — 2 2.9725¢ —2 | 0.89 | 4.0955¢ — 2 | 1.00
1.25¢ —2 | 1.6796e —2 | 0.82 | 2.0505¢ —2 | 0.99
6.25c —3 | 1.0203¢e —2 | 0.70 | 1.0259¢ — 2 | 0.99
3125¢ —3 | 7.0310e —3 | 0.55 | 5.1312¢ — 3 | 1.00
1.5625¢ — 3 | 5.4016c —3 | 0.38 | 2.5660c — 3 | 0.99
78125¢ —4 | 3.5757e —3 | 0.59 | 1.2879¢ — 3 | 0.99
3.9063¢ —4 | 1.7991e —3 | 0.99 | 6.4735¢ —4 | 0.99
1.0531lc —4 | 8.7708¢ —4 | 1.04 | 3.2458¢ —4 | 0.99
9.7656e — 5 | 4.1381e —4 | 1.08 | 1.6253¢ —4 | 0.99

& — uel|p2(ry a convergence rate of O(¢'/®). The experimental rates are much
better than the theoretical ones. Particularly for smaller ¢, the experimental
convergence rate of the L?-norm of the virtual control differs not so much from
the expected one O(/12),

Moreover, we observed the dependence on ¢(¢) for the following settings

— o~ (i+D)/2,

Ee)=1, (o) i=1,2. (37)
The results are shown in Fig. 6. Again, the behavior of the different curves
illustrate the error estimates of Corollary 1 and Corollary 2. Furthermore, one
can see different descent rates. Table 2 shows regularization error of the control
and the L?(Q)-norm of the virtual control v, for i = 1 in (37). Similarly to the
first setting, the experimental convergence rates are better than the theoretical

ones.
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Figure 6. Error behavior for different settings in ()

Let us summarize the numerical tests. We observed the convergence of
the optimal control of problem (P.) for different choices of parameter functions.
Moreover, behavior of the virtual control was considered and the tests confirmed
the estimates of Corollary 1. However, for all settings of parameter functions
the approximated rates were better than the expected ones. We note that the
presented error estimates in Corollary 2 are the worst case scenarios. Moreover,
in our numerical tests the regularization error is only one error. Of course, also
a discretization error occurs.

Let us finish the paper with some comments on the computational effort.
The computation time is essentially determined by the number of PDEs which
have to be solved. We note that the new virtual control appears as a source term
in the state equation. Thus, the effort for one iterate of solving the constrained
linear quadratic optimization problem is hardly influenced by the virtual control.
Furthermore, we computed the numerical results by the following strategy: We
started with a moderate regularization parameter €. Only a small number of
iterations (< 10) of the Primal-dual active set strategy was needed to get the
solution. The active and inactive sets of this solution were used for initialization
to compute the results for the next smaller £ (a nested approach). The next
solution was obtained after a few additional iterations.
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