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394 B. MORDUKHOVICH, D. WANG, L. WANG1. Introdution, problem formulation, and disussionsThe primary objetive of this paper is to study a general lass of optimal on-trol problems governed by onstrained delay-di�erential inlusions in in�nite-dimensional spaes. The main problem of our study is the generalized Bolzaproblem (P ) governed by delay-di�erential inlusions in in�nite dimensions withendpoint onstraints and multivalued initial onditions formulated as follows.Let X be a Banah state spae, let [a, b] ⊂ IR be a �xed time interval, and let
x : [a−∆, b] → X be a feasible trajetory/ar of the delay-di�erential inlusion

ẋ(t) ∈ F (x(t), x(t − ∆), t) a.e. t ∈ [a, b], (1.1)
x(t) ∈ C(t) a.e. t ∈ [a− ∆, a), (1.2)
(x(a), x(b)) ∈ Ω ⊂ X2 (1.3)with a given time delay ∆ > 0, where F : X × X × [a, b] →→ X and C : [a −

∆, a] →→ X are set-valued mappings de�ning the system dynamis and the initialstate onditions, respetively, and where the set Ω ⊂ X2 de�nes the endpointonstraints. By a feasible ar above we mean a mapping x : [a−∆, b] → X thatis summable on [a−∆, a], Fréhet di�erentiable for a.e. t ∈ [a, b], satisfying theNewton-Leibniz formula
x(t) = x(a) +

∫ t

a

ẋ(s) ds for all t ∈ [a, b] (1.4)and all the onstraints in (1.1)�(1.3), where the integral in (1.4) is taken in theBohner sense. It is well known that for X = IRn the a.e. Fréhet di�erentia-bility and Newton-Leibnitz requirements on x(t), a ≤ t ≤ b, an be equivalentlyreplaed by its absolute ontinuity in the standard sense. In fat, there is a fulldesription of Banah spaes, where this equivalene holds true: they are spaessatisfying the so-alled Radon-Nikodým property (RNP); see, e.g., Diestel andUhl (1977). The latter property is ful�lled, in partiular, in any re�exive spae.Given now the endpoint/Mayer ost funtion ϕ : X ×X → IR and the inte-grand/Lagrangian f : X×X ×X× [a, b] → IR, we onsider the Bolza funtional
J [x] := ϕ(x(a), x(b)) +

∫ b

a

f(x(t), x(t − ∆), ẋ(t), t) dt (1.5)and formulate the dynami optimization/optimal ontrol problem (P ) asminimize J [x] subjet to (1.1) − (1.3) (1.6)over feasible ars x : [a−∆, b] → X assuming that J [x] > −∞ for all the feasiblears and there is at least one feasible x(·) with J [x] <∞.Note that the generalized Bolza problem (P ) uni�es a number of partiularproblems of dynami optimization (of Mayer type, of Lagrange type, et.) and



Optimal ontrol of delay-di�erential inlusions in in�nite dimensions 395ontains onventional parameterized forms of optimal ontrol problems governedby ontrolled delay-di�erential equations of the type
ẋ(t) = g(x(t), x(t − ∆), u, t), u ∈ U, a.e. t ∈ [a, b]. (1.7)Besides other advantages and, of ourse, higher level of generality of model (1.1)in omparison with that of (1.7), the diret inlusion desription (1.1) allowsus to over the losed-loop ase U = U(x) in (1.7), whih is among the mosthallenging in ontrol theory and the most important for appliations. Notealso that the presene of the set-valued mapping C(·) de�ned on the initialtime interval [a−∆, a) in (1.2) is a spei� feature of delay-di�erential systemsproviding an additional soure for optimizing the ost funtional (1.5) by ahoie of the initial ondition x(t) ∈ C(t) on [a− ∆, a).The problem (P ) under onsideration has been studied by Mordukhovih andL. Wang (2003) in the ase of �nite-dimensional state spaes X = IRn; see alsothe referenes therein for previous developments on �nite-dimensional delay-di�erential inlusions as well as the books by Mordukhovih (2006b), Smirnov(2002), and Vinter (2000) for more disussions of various approahes and re-sults on nondelayed ounterparts of problem (P ) and related �nite-dimensionalontrol systems.We are not familiar with any results on neessary optimality onditions foroptimal ontrol problems governed by delay-di�erential inlusions and relatedontrol systems with in�nite-dimensional state spaes, even in the ase of �xedinitial onditions C(t) = {c(t)} in (1.2). On the other hand, there are reentdevelopments by Mordukhovih (2006b, 2007) on in�nite-dimensional ontrolsystems governed by nondelayed evolution/di�erential inlusions of type (1.1)with ∆ = 0. We also refer the reader to related (while di�erent) developments inMordukhovih and D. Wang (2005) onerning semilinear evolution inlusionsof the type
ẋ(t) ∈ Ax(t) + F (x(t), t), (1.8)where A : X → X is an unbounded generator of a C0-semigroup, and wheresolutions to (1.8) are understood in the mild sense. The main approah usedin this paper to derive neessary onditions for optimal solutions to the dy-nami optimization problem (P ) under onsideration is the method of disreteapproximations suggested and implemented by Mordukhovih (2005) in the aseof nondelayed di�erential inlusions in �nite-dimensional spaes. This methodwas extended in Mordukhovih and L. Wang (2003, 2004) to various lassesof hereditary funtional-di�erential inlusions in �nite dimensions and then inMordukhovih (2006b, 2007) and in Mordukhovih and D. Wang (2005) to non-delayed di�erential and evolution inlusions in in�nite-dimensional spaes. Theversion of the disrete approximation method developed in this paper for theproblem (P ) under onsideration onsists of the following three major parts eahof whih is ertainly of its own interest:(a) To onstrut a sequene of well-posed disrete approximations of the



396 B. MORDUKHOVICH, D. WANG, L. WANGgiven optimal solution to the original problem (P ) in suh a way that the ap-proximating disrete-time problems admit optimal solutions, whih strongly (a.e.pointwisely with respet to derivatives) onverge to the designated minimizer forthe original problem (P ). This part of our method is losely related to sensitivityanalysis of the ontinuous-type optimization problem (P ) for delay-di�erentialinlusions under onsideration with respet to disrete approximations, involvesnot only qualitative but also quantitative aspets of �nite-di�erene approxima-tions, and essentially relies on the possibility to strongly (and onstrutively)approximate any feasible trajetory to the delay-di�erential inlusion by feasibletrajetories to its �nite-di�erene ounterparts.(b) To derive neessary optimality onditions for approximating disrete-time problems arising in the well-posed disrete approximation proedure de-veloped in part (a). For any �xed step of approximation, the disrete-time ap-proximating problems an be redued to non-dynami problems of onstrainedmathematial programming formulated in in�nite-dimensional spaes, sine thestate spae in the original problem (P ) is in�nite-dimensional. A harateristifeature of eah of these mathematial programming problems is a spei� stru-ture of the involved onstraints that are generated by the dynami onstraintsof the original problem (P ) in the proess of disrete approximations. Due tothe essential in�nite-dimensional nature of the mathematial programs underonsideration and in order to avoid additional assumptions in the subsequentproedure of passing to the limit from disrete approximations, we onentrateon deriving fuzzy neessary optimality onditions in the obtained problems ofmathematial programming and their disrete-time ounterparts. This is doneon the basis of advaned tools of variational analysis and generalized di�erenti-ation in in�nite-dimensional spaes.() The �nal step in the method of disrete approximations is the passageto the limit from the obtained neessary optimality onditions in the approxi-mating problems to derive veri�able exat/pointbased neessary onditions forthe referene optimal solution to the original problem (P ). This step, besidesemploying and unifying the onvergene/stability results of part (a) and thefuzzy optimality onditions of part (b), requires the justi�ation of an appro-priate pointwise onvergene of adjoint trajetories. This is also done on thebasis of advaned tools of in�nite-dimensional variational analysis and robustgeneralized di�erentiation; see below for more details.The rest of the paper is organized as follows. In Setion 2 we formu-late and disuss the (fairly general) standing assumptions on the nononvexdelay-di�erential inlusion (1.1) and the initial ondition (1.2), then onstruta sequene of disrete approximations to (1.1) and (1.2) by delay-di�ereneinlusions and establish, in an arbitrary Banah spae setting, a prinipal re-sult on the strong W 1,1-approximation of any feasible trajetory to the delay-di�erential system (1.1) and (1.2) by a sequene of feasible trajetories to thedelay-di�erene inlusions onstruted above.



Optimal ontrol of delay-di�erential inlusions in in�nite dimensions 397Setion 3 onerns disrete approximations of the whole problem (P ) deal-ing not only with the underlying delay-di�erential inlusion, but also with theendpoint onstraints (1.2) and the ost funtional (1.5). Assuming a ertainrelaxation stability of the original problem and given the referene optimal solu-tion x̄(·) to (P ), we onstrut a well-posed sequene of disrete approximations
{(PN )}, N = 1, 2, . . ., to (P ) in suh a way, that eah (PN ) admits an optimalsolution x̄N (·), and the sequene {x̄N (t)}, naturally extended to the whole inter-val [a − ∆, b], W 1,1-strongly onverges to x̄(t) as N → ∞. This result requiresappropriate geometri assumptions on the Banah state spae X in questionthat hold, in partiular, when X is re�exive.In Setion 4 we brie�y overview the basi onstrutions of dual-spae gen-eralized di�erentiation (normals to sets, oderivatives of set-valued mappings,and subdi�erentials of extended-real-valued funtions) playing a fundamentalrole in the subsequent variational analysis and deriving neessary optimalityonditions in disrete-time and ontinuous-time optimization problems underonsideration, sine both lasses are intrinsially nonsmooth. We also de�neand disuss the so-alled sequential normal ompatness (SNC) property of sets,whih is automati in �nite dimensions while ours to be a ruial element ofvariational analysis in in�nite-dimensional spaes.Setion 5 is devoted to deriving neessary optimality onditions for the dis-rete approximation problems onstruted in Setion 3, whih are governedby delay-di�erene inlusions with endpoint onstraints in in�nite-dimensionalspaes. As mentioned above, we redue these problems to mathematial pro-grams in Banah spaes with spei� types of onstraints ontaining, in par-tiular, an inreasing number of set/geometri onstraints with possibly emptyinteriors generated by the disrete-time dynamis. The neessary optimalityonditions for suh mathematial programs and delay-di�erene inlusions areobtained in this setion in approximate/fuzzy forms, in ontrast to the ex-at/pointbased forms as in our earlier developments in �nite dimensions. Thefuzzy results obtained do not require restritive assumptions on the initial dataand are essentially more onvenient for the subsequent passage to the limit whilederiving the main results of the paper on neessary optimality onditions for theoriginal delay-di�erential problem (P ) in in�nite-dimensional spaes. The de-vie developed to establish these fuzzy neessary onditions for delay-di�ereneinlusions is rather involved in omparison, e.g., with the orresponding resultsin �nite dimensions and/or in the nondelayed ase. Our approah is based onusing advaned tools of generalized di�erential alulus, oderivative harater-izations of metri regularity, et.In Setions 6 and 7 we establish the main results of the paper on nees-sary optimality onditions of the extended Euler-Lagrange type for the originalgeneralized Bolza problem (P ) governed by the onstrained delay-di�erentialinlusions with in�nite-dimensional state spaes. The �nal results obtained inthese setions are given in the required exat/pointbased forms via the robustgeneralized di�erential onstrutions reviewed in Setion 4. These onditions



398 B. MORDUKHOVICH, D. WANG, L. WANGare derived by passing to the limit from the fuzzy optimality onditions for theapproximating delay-di�erene problems obtained in Setion 5 by using the on-vergene/stability results for disrete approximations established in Setions 2and 3. Along with these ingredients, the passage to the limit in the approxi-mating neessary optimality onditions requires a deliate variational analysison the appropriate onvergene of adjoint ars; this is mainly done on the ba-sis of generalized di�erential alulus and dual oderivative haraterizations ofLipshitzian stability.The major di�erene between the frameworks and results of Setion 6 andSetion 7 is that the former addresses the original problem (P ) with endpointonstraints of the general geometri type, while the latter/last setion dealswith the partiular (and more onventional in dynami optimization) version ofthe original problem, where endpoint onstraints are given expliitly by �nitelymany equalities and inequalities de�ned by Lipshitz ontinuous (in partiular,smooth) funtions. The underlying result of Setion 6 establishes the extendedEuler-Lagrange neessary optimality onditions for the general problem (P )under the SNC assumption on the endpoint onstraint set Ω, while the resultof Setion 7 does not impose this assumption or the like on the orrespondingonstraint set desribed by Lipshitzian equalities and inequalities.Our notation is basially standard; see Mordukhovih (2006a,b). Unlessotherwise stated, all the spaes onsidered are Banah with the norm ‖·‖ and theanonial pairing 〈·, ·〉 between the spae in question, say X , and its topologialdualX∗ whose weak∗ topology is denoted by w∗. We use the symbols IB and IB∗to signify the losed unit balls of the spae in question and its dual, respetively.Given a set-valued mapping F : X →→ X∗, its sequential Painlevé-Kuratowskiupper/outer limit at x̄ is
Lim sup

x→x̄
F (x) :=

{
x∗ ∈ X∗

∣∣∃ sequenes xk → x̄, x∗k
w∗

→ x∗ with
x∗k ∈ F (xk) as k ∈ IN := {1, 2, . . .}

}
.

(1.9)2. Disrete approximations of delay-di�erentialinlusionsThe main goal of this setion is to onstrut well-posed disrete approxima-tions of the original problem (P ) that ensure the strong onvergene of optimaltrajetories in the L1-norm on the �initial tail� interval [a − ∆, a] and in the
W 1,1-norm on the main interval [a, b]. Suh a strong onvergene plays a ru-ial role in the subsequent study of delay-di�erential inlusions via their disreteapproximations.Let x̄(·) be a feasible trajetory to (1.1) with the initial ondition (1.2). Weimpose the following standing assumptions on the set-valued mappings F and
C used through the whole paper:



Optimal ontrol of delay-di�erential inlusions in in�nite dimensions 399(H1) The mapping C : [a− ∆, a] →→ X is ompat-valued, uniformly bounded
C(t) ⊂MCIB on [a− ∆, a] with some MC > 0,and Hausdor� ontinuous for a.e. t ∈ [a− ∆, a].(H2) There are an open set U ⊂MCIB and two positive numbers LF and MFsuh that x̄(t) ∈ U for any t ∈ [a, b], the sets F (x, y, t) are nonempty andompat for all (x, y, t) ∈ U × (MCIB)× [a, b], and the following inlusions
F (x, y, t) ⊂MF IB for all (x, y, t) ∈ U × (MCIB) × [a, b], (2.1)
F (x1, y1, t) ⊂ F (x2, y2, t) + LF (‖x1 − x2‖ + ‖y1 − y2‖)IB, (2.2)hold whenever (x1, y1), (x2, y2) ∈ U × (MCIB) and t ∈ [a, b].(H3) F (x, y, ·) is Hausdor� ontinuous for a.e. t ∈ [a, b] uniformly in (x, y) ∈

U × (MCIB).Note that (2.2) signi�es the loal Lipshitz ontinuity of F (·, ·, t) around
(x̄(t), x̄(t−∆)). To larify the meaning of (H3), onsider the so-alled averagedmodulus of ontinuity τ [F ;h] for F (x, y, t) in t ∈ [a, b] when (x, y) ∈ U×(MCIB)de�ned by

τ [F ;h] :=

∫ b

a

σ(F ; t, h) dt, (2.3)where σ(F ; t, h) := sup{ω(F ;x, y, t, h)| (x, y) ∈ U × (MCIB)} with
ω(F ;x, y, t, h)

:= sup
{haus(F (x, y, t1), F (x, y, t2))

∣∣ t1, t2 ∈ [t− h/2, t+ h/2] ∩ [a, b]
}
,and where haus(·, ·) stands for the standard Hausdor� metri on the spae ofnonempty and ompat subsets of X . It follows from the result by Donthevand Farkhi (1989) (given in �nite dimensions, while their proof works pratiallywithout hange in the in�nite-dimensional setting under onsideration) that if

F (x, y, ·) is Hausdor� ontinuous for a.e. t ∈ [a, b] uniformly in (x, y) ∈ U ×
(MCIB), then τ [F ;h] → 0 as h → 0. Of ourse, a simpli�ed version of theabove de�nition applies to the average modulus of ontinuity τ [C;h] of themultifuntion C(·) on [a− ∆, a].Let us now onstrut a disrete approximation of the delay-di�erential inlu-sion (1.1) by replaing the time-derivative in (1.1) by the uniform Euler �nitedi�erene:

ẋ(t) ≈
x(t+ h) − x(t)

h
, h→ 0.To formalize this proedure, for any natural number N ∈ IN take tj := a+ jhNfor j = −N, . . . , k and tk+1 := b, where hN := ∆/N and k ∈ IN is de�ned by

a+ khN ≤ b < a+ (k + 1)hN . (2.4)



400 B. MORDUKHOVICH, D. WANG, L. WANGNote that t−N = a− ∆, t0 = a, and hN → 0 as N → ∞. Then the sequene ofdelay-di�erene inlusions approximating (1.1) is onstruted as follows:
{
xN (tj+1) ∈ xN (tj) + hNF (xN (tj), xN (tj − ∆), tj) for j = 0, . . . , k,
xN (tj) ∈ C(tj) for j = −N, . . . ,−1.

(2.5)The olletion of vetors {xN (tj) | j = −N, . . . , k + 1} satisfying (2.5) is alleda disrete trajetory. The orresponding olletion
{xN (tj+1) − xN (tj)

hN

∣∣∣ j = 0, . . . , k
}is alled a disrete veloity. We also onsider the extended disrete veloitiesde�ned by

vN (t) :=
xN (tj+1) − xN (tj)

hN

, t ∈ [tj , tj+1), j = 0, . . . , k.It follows from the de�nition of the Bohner integral that the orrespondingextended disrete trajetories are given by
xN (t) = x(a) +

∫ t

a

vN (s)ds, t ∈ [a, b],on the main interval [a, b] and by
xN (t) := xN (tj), t ∈ [tj , tj+1), j = −N, . . . ,−1,on the initial tail interval [a − ∆, a). Observe that ẋN (t) = vN (t) for a.e.

t ∈ [a, b].The next theorem ensures the strong approximation of any feasible traje-tory x̄(·) to the original delay-di�erential inlusion given in (1.1) and (1.2) byextended feasible trajetories to its delay-di�erene ounterpart (2.5) in the fol-lowing sense: the approximation/onvergene in the W 1,1([a, b];X)-norm
|x(·)|W 1,1 := max

t∈[a,b]
‖x(t)‖ +

∫ b

a

‖ẋ(t)‖ dton the main interval [a, b] and the one in the L1([a − ∆, a];X)-norm on theinitial tail interval [a − ∆, a]. Note that the state spae X in Theorem 1 isarbitrary Banah and that the strong W 1,1-onvergene of extended disretetrajetories on [a, b] implies the not only their uniform onvergene on thisinterval but also the a.e. pointwise onvergene of their derivatives on [a, b]along some subsequene of {N} as N → ∞.Theorem 1 (strong approximation by disrete trajetories). Let x̄(·)be a feasible trajetory to (1.1) and (1.2) under assumptions (H1)�(H3), where
X is an arbitrary Banah spae. Then there is a sequene of solutions {zN(tj) |
j = −N, . . . , k + 1} to the delay-di�erene inlusions (2.5) with zN (t0) = x̄(a)suh that the extended disrete trajetories zN(t), t ∈ [a−∆, b], onverge to x̄(·)strongly in L1 on [a− ∆, a] and strongly in W 1,1 on [a, b] as N → ∞.



Optimal ontrol of delay-di�erential inlusions in in�nite dimensions 401Proof. Given a feasible solution x̄(t), t ∈ [a − ∆, b], to the delay-di�erentiablesystem (1.1) and (1.2), we have that x̄(·) ∈ L1([a − ∆, a];X) and that x̄(·)satis�es the Newton-Leibniz formula (1.4). Hene x̄(·) and ˙̄x(·) are stronglymeasurable on [a − ∆, a] and [a, b], respetively. Therefore, rearranging themesh points tj, if neessary, we an �nd a sequene of simple/step mappings
{wN (·)} on [a − ∆, b] with wN (a) = x̄(a) suh that eah wN (·) is onstant onthe intervals [tj , tj+1) as j = −N, . . . , k, that wN (·) → x̄(·) on [a − ∆, a] inthe norm of L1([a − ∆, a];X), and that wN (·) → ˙̄x(·) on [a, b] in the norm of
L1([a, b];X) as N → ∞. In the estimates below we use the sequene

ξN :=

∫ a

a−∆

‖x̄(t)−wN (t)‖ dt+

∫ b

a

‖ ˙̄x(t)−wN (t)‖ dt→ 0 as N → ∞. (2.6)Combining the afore-mentioned onvergene of {wN (·)} with assumptions (H1)�(H3), we easily �nd a onstant M > 0 suh that
∫ b

a−∆

‖wN (t)‖ dt ≤M for all N ∈ IN.Further, for eah N ∈ IN de�ne the olletion {uN(tj) | j = −N, . . . , k + 1} by
{
uN (tj) := wN (tj), j = −N, . . . , 0,
uN (tj+1) := uN (tj) + hNwN (tj), j = 0, . . . , k.

(2.7)The orresponding extensions of (2.7) to the intervals [a − ∆, a) and [a, b] aregiven by





uN(t) = wN (t), t ∈ [tj , tj+1), j = −N, . . . ,−1,

uN(t) = x̄(a) +

∫ t

a

wN (s) ds, t ∈ [a, b].
(2.8)To proeed, we observe that the Lipshitzian ondition (2.2) an be equiva-lently written via the distane funtion on X asdist(w;F (x1, y1, t)) ≤ dist(w;F (x2, y2, t)) + LF (‖x1 − x2‖ + ‖y1 − y2‖)whenever w ∈ X , x1, x2 ∈ U , y1, y2 ∈ MCIB, and t ∈ [a, b]. Furthermore, wealways havedist(w;F (x, y, t1)) ≤ dist(w;F (x, y, t2)) + haus(F (x, y, t1), F (x, y, t2))for any w ∈ X , x ∈ U , y ∈ MCIB and t1, t2 ∈ [a, b]. Using now the averagemodulus of ontinuity (2.3), we get the relationships

αN : = hN

−1∑

j=−N

dist(wN (tj);C(tj))

+ hN

k∑

j=0

dist(wN (tj);F (uN (tj), uN (tj − ∆), tj))
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=

−1∑

j=−N

∫ tj+1

tj

dist(wN (tj);C(tj)) dt

+
k∑

j=0

∫ tj+1

tj

dist(wN (tj);F (uN (tj), uN (tj − ∆), tj)) dt

≤
−1∑

j=−N

∫ tj+1

tj

dist(wN (tj);C(t)) dt

+

k∑

j=0

∫ tj+1

tj

dist(wN (tj);F (uN (tj), uN (tj − ∆), t)) dt

+ τ [C;hN ] + τ [F ;hN ], N ∈ IN.Taking the onstrutions of {wN (·), uN (·)} and the above estimates into aount,we arrive at
αN ≤ (1 + 2LF )

−1∑

j=−N

∫ tj+1

tj

‖wN (tj) − x̄(t)‖ dt

+

k∑

j=0

∫ tj+1

tj

(
‖wN(tj) − ˙̄x(t)‖ + 2LF ξN

)
dt+ τ [C;hN ] + τ [F ;hN ]

≤ (1 + 2LF )ξN + 2LF ξN (b − a) + τ [C;hN ] + τ [F ;hN ], N ∈ IN,and onlude that αN → 0 as N → ∞ due to ξN → 0 by (2.6), τ(C;hN ) → 0by (H1), and τ [F ;hN ] → 0 by (H3).To ontinue the proof of the theorem, note that the olletions {uN(tj)} builtupon {wN (tj)} in (2.7) may not be trajetories to the delay-di�erene inlusions(2.5). Let us orret them in suh a way that the resulting olletions zN (tj)satisfy (2.5) and possess the onvergene properties stated in the theorem. Weonstrut the desired trajetories {zN(tj) | j = −N, . . . , k + 1} for all N ∈ INby using the following proximal algorithm:





zN (tj) = vNj
with vNj

∈ C(tj),

‖vNj
− wN (tj)‖ = dist(wN (tj);C(tj)), j = −N, . . . ,−1,

zN (t0) = x̄(a),

zN (tj+1) = zN (tj) + hNvNj
with vNj

∈ F (zN(tj), zN(tj − ∆), tj)and ‖vNj
− wN (tj)‖ = dist(wN (tj);F (zN (tj), zN (tj − ∆), tj)),

j = 0, . . . , k.

(2.9)Obviously, zN(·) in (2.9) are feasible trajetories to (2.5). Now following theproof of Theorem 6.4 in Mordukhovih (2006b) and adapting it to the ase ofthe delay-di�erential inlusions (1.1) with the set-valued initial onditions (1.2)under onsideration, we show that the extensions zN (t), t ∈ [a − ∆, b], of theabove disrete trajetories onverge to x̄(t) in the L1-norm topology on [a−∆, a]and in the W 1,1-norm topology on [a, b]. The proof is omplete.



Optimal ontrol of delay-di�erential inlusions in in�nite dimensions 4033. Disrete approximations of the generalizedBolza problemOur next step is to onstrut a sequene of well-posed disrete approximationsof the generalized Bolza problem (P ) governed by delay-di�erential inlusions insuh a way that optimal solutions to disrete approximation problems stronglyonverge in the sense spei�ed below to a given optimal solution to the originalproblem (P ).Let us �x an optimal solution x̄(t), a − ∆ ≤ t ≤ b, to problem (P ), and let
{zN(t)}, a − ∆ ≤ t ≤ b, be the sequene of the extended trajetories to thedelay-di�erene inlusions (2.5) approximating x̄(·) in the sense of Theorem 1.Denoting

ηN := max
t∈[a,b]

‖zN(t) − x̄(t)‖ → 0 as N → ∞,we onstrut the sequene of disrete approximation problems (PN ) as follows:minimize JN [xN ] := ϕ(xN (a), xN (b)) + ‖xN(a) − x̄(a)‖2

+

−1∑

j=−N

∫ tj+1

tj

‖xN (tj) − x̄(t)‖2dt

+ hN

k∑

j=0

f
(
xN (tj), xN (tj − ∆),

xN (tj+1) − xN (tj)

hN

, tj

)

+
k∑

j=0

∫ tj+1

tj

∥∥∥
xN (tj+1) − xN (tj)

hN

− ˙̄x(t)
∥∥∥

2

dt

(3.1)
subjet to the onstraints

xN (tj+1) ∈ xN (tj) + hNF (xN (tj), xN (tj − ∆), tj), j = 0, . . . , k, (3.2)
xN (tj) ∈ C(tj), j = −N, . . . ,−1, (3.3)
(xN (a), xN (b)) ∈ ΩN := Ω + ηNIB, (3.4)
‖xN (tj) − x̄(tj)‖ ≤ ǫ, j = 1, . . . , k + 1, (3.5)where ǫ > 0 is a small given number. In addition to the standing assumptions(H1)�(H3) on (C,F ) in (1.1) and (1.2) with some neighborhood U of x̄(t),

a ≤ t ≤ b, we impose the following hypotheses on the behavior of ϕ, f , and Ωaround the optimal trajetory x̄(·) under onsideration:(H4) The ost funtion ϕ is ontinuous on U×U , the onstraint set Ω ⊂ X×Xis loally losed around (x̄(a), x̄(b)), and for some ν > 0 the intersetionset proj1Ω ∩ (x̄(a) + νIB) is ompat in X , where proj1Ω stands for theprojetion of Ω on the �rst spae X in the produt X ×X .



404 B. MORDUKHOVICH, D. WANG, L. WANG(H5) The integrand f(x, y, v, ·) is ontinuous for a.e. t ∈ [a, b] and boundeduniformly with respet to (x, y, v) ∈ U × (MCIB)× (MF IB); furthermore,there is µ > 0 suh that f(·, ·, ·, t) is ontinuous on the set
Aµ(t) =

{
(x, y, v) ∈ U × (MCIB) × (MF + µ)IB

∣∣ v ∈ F (x, y, s)for some s ∈ (t− µ, t]
}uniformly in t ∈ [a, b].Along with the original problem (P ), we onsider its �relaxed� ounterpartonstruted in the way well understood in optimal ontrol and variational anal-ysis; see, e.g., the books by Mordukhovih (2006b), Tolstonogov (2000), andWarga (1972). Roughly speaking, the relaxed problem is obtained from (P ) bya onvexi�ation proedure with respet to the veloity variable. Let

fF (x, y, v, t) := f(x, y, v, t) + δ(v;F (x, y, t)),where δ(·; Θ) stands for the indiator funtion of the set in question equal to
0 on Θ and to ∞ otherwise. Denote by f̂F (x, y, v, t) the bionjugate (seondonjugate) funtion to fF , i.e.,

f̂F (x, y, v, t) := (fF )∗∗v (x, y, v, t).The relaxed generalized Bolza problem (R) for the original problem (P ) governedby the delay-di�erential inlusions under onsideration is de�ned as follows:minimize Ĵ [x] := ϕ(x(a), x(b)) +

∫ b

a

f̂F (x(t), x(t − ∆), ẋ(t), t) dt (3.6)over feasible trajetories x(t), a − ∆ ≤ t ≤ b, of the same lass as for (P ) butto the onvexi�ed delay-di�erential inlusion
ẋ(t) ∈ loF (x(t), x(t − ∆), t) a.e. t ∈ [a, b] (3.7)with the initial ondition (1.2) and the endpoint onstraints (1.3). As usual, thesymbol �lo� in (3.7) stands for the onvex losure of the set in question.Denoting by inf(P ) and inf(R) the optimal/in�mal values of the ost fun-tionals in problem (P ) and (R), respetively, we learly have inf(R)≤ inf(P ). If
inf(P ) = inf(R),the original problem (P ) is said to be stable with respet to relaxation. Thisproperty, whih obviously holds under the onvexity assumptions with respetto veloity, turns out also to be natural for broad lasses of nononvex problemsgoverned by delay-di�erential inlusions due to the inherent hidden onvexityof suh systems, related, in fat, to the onvexity of integrals for set-valuedmappings over nonatomi measures; see the afore-mentioned books by Mor-dukhovih, Tolstonogov, and Warga for more results, disussions, and refer-enes.



Optimal ontrol of delay-di�erential inlusions in in�nite dimensions 405The next theorem justi�es the existene of optimal solutions x̄N (·) to thedisrete approximation problems (PN ) and their strong onvergene to the ref-erene optimal solution x̄(·) to the original problem (P ). The strong onvergene
x̄N (·) → x̄(·) is understood in the same sense as in Theorem 1, i.e., as the normonvergene in L1 on the initial tail interval [a− ∆, a] and as the norm onver-gene in W 1,1 on the main interval [a, b]. In fat, under the assumptions madein (H1) and (H2), the strong onvergene above an be equivalently replaed bythat in the norm of Lp on [a − ∆, a] and in the norm of W 1,p on [a, b] for any
p ≥ 1. We use this in what follows.In ontrast to Theorem 1 held in the general Banah state spae X , the mainpart (ii) of Theorem 2 established below requires additional geometri assump-tions imposed on the Banah spae X in question. Namely, we assume thatboth spaes X and X∗ are Asplund, whih automatially holds if X is re�exive.Reall that a Banah spae X is Asplund if every separable subspae of X hasa separable dual. This is a broad lass of Banah spaes, well investigated ingeometri theory and widely applied to many aspets of variational analysis andgeneralized di�erentiation; see the books by Borwein and Zhu (2005), Diesteland Uhl (1977), and Mordukhovih (2006a,b) for more details, numerous results,and disussions. Note a remarkable fat from the geometri theory of Banahspaes: X is Asplund if and only if the dual spae X∗ has the Radon-Nikodýmproperty.Furthermore, part (ii) of the next theorem requires additional assumptionson the initial data in the ase of set-valued initial onditions (1.2):(H6) either the set C(t) is a singleton {c(t)} for a.e. t ∈ [a − ∆, a]; or the set

C(t) is onvex for a.e. t ∈ [a− ∆, a], the mapping F (x, y, t) is linear in yfor a.e. t ∈ [a, a+ ∆], and the funtion f(x, y, v, t) is onvex in (y, v) fora.e. t ∈ [a, a+ ∆].Theorem 2 (strong onvergene of disrete optimal solutions). Let x̄(·)be the given optimal solution to the original Bolza problem (P) with the Banahstate spae X, let {(PN )} as N ∈ IN be a sequene of disrete approximationproblems onstruted above, and let the basi assumptions (H1)�(H5) be satis�ed.Then the following assertions hold:(i) For all N ∈ IN su�iently large the problem (PN ) admits an optimalsolution.(ii) If, in addition, both spaes X and X∗ are Asplund, problem (P) is stablewith respet to relaxation, and if, furthermore, the assumptions in (H6) aresatis�ed, then any sequene {x̄N (·)} of optimal solutions to (PN ) extendedto the ontinuous-time interval [a − ∆, b] onverges to x̄(·) as N → ∞in the L1-norm topology on [a − ∆, a] and in the W 1,1-norm topology on
[a, b].Proof. To justify (i), we take ǫ > 0 in (3.5) suh that x̄(t) + ǫIB ⊂ U for all

t ∈ [a, b] and onsider numbers N ∈ IN so large that ηN < ǫ along the numerial



406 B. MORDUKHOVICH, D. WANG, L. WANGsequene {ηN} used in the onstrution of problem (PN ). Note that for suhlarge N ∈ IN eah problem (PN ) has feasible solutions, sine the trajetory
zN (·) from Theorem 1 satis�es all the onstraints (3.2)�(3.5). The existene ofoptimal solutions to (PN ) follows now from the lassial Weierstrass existenetheorem due to the ompatness and ontinuity assumptions made in (H1)�(H5).To justify the strong onvergene assertion (ii) of the theorem, onsider againthe sequene zN (·) that strongly approximates x̄(·) by Theorem 1. Sine eah
zN (·) is feasible to (PN ), we have

JN [x̄N ] ≤ JN [zN ] for all N ∈ IN.It an be shown similarly to the proof of Theorem 6.13 in Mordukhovih (2006b)given for the ase of nondelayed di�erential inlusions that
JN [zN ] → J [x̄] as N → ∞by (H5) and by using the Lebesgue dominated onvergene theorem valid forthe Bohner integral in arbitrary Banah spaes. The above two relationshipseasily yield that
lim sup
N→∞

JN [x̄N ] ≤ J [x̄] (3.8)under the the general assumptions of the theorem as in assertion (i).Let us show next that (3.8) implies the strong onvergene x̄N (·) → x̄(·)laimed in (ii) under the additional assumptions made therein. Due the afore-mentioned equivalene between the L1/W 1,1 and L2/W 1,2 onvergene in thetheorem, we need to prove that
ρN :=

∫ a

a−∆

‖x̄N (t) − x̄(t)‖2 dt+ ‖x̄N (a) − x̄(a)‖2

+

∫ b

a

‖ ˙̄xN (t) − ˙̄x(t)‖2 dt→ 0

(3.9)as N → ∞. Arguing by ontradition, suppose that (3.9) does not hold. Thenthere is a limiting point ρ of {ρN} suh that ρ > 0. Suppose, without loss ofgenerality, that ρN → ρ > 0 as N → ∞.To proeed further, observe that under the assumptions made in (ii) bothspaes X and X∗ enjoy the Radon-Nikodým property (RNP). Indeed, the onefor X∗ is equivalent, as mentioned above, to the Asplund property of X , whilethe Asplund property of X∗ ensures the RNP of X due to the latter fat andthe inlusion X ⊂ X∗∗. Note also that both sequenes {x̄N (t)}, t ∈ [a −
∆, a], and { ˙̄xN (t)}, t ∈ [a, b], are uniformly bounded by the assumptions (H1)and (H2). Applying now to these sequenes the Dunford theorem on the weakompatness in, respetively, the spaes L1([a− ∆, b];X) and L1([a, b];X) (see,



Optimal ontrol of delay-di�erential inlusions in in�nite dimensions 407e.g., Theorem IV.1 in Diestel and Uhl, 1977), we �nd x̃(·) ∈ L1([a − ∆, b];X)and v(·) ∈ L1([a, b];X) suh that
x̄N (·) → x̃(·) weakly in L1([a− ∆, a];X), (3.10)
˙̄xN (·) → v(·) weakly in L1([a, b];X) (3.11)along a subsequene of N → ∞, where all N ∈ IN an be taken without lossof generality. Note that eah xN (·), a ≤ t ≤ b, satis�es the Newton-Leibnizformulā
xN (t) = x̄N (a) +

∫ t

a

˙̄xN (s) ds for all t ∈ [a, b] and N ∈ IN. (3.12)Furthermore, by ompatness of the set {x̄N (a)| N ∈ IN} in X due to assump-tion (H4) and by taking into aount the relationships
˙̄xN (t) = ˙̄xN (tj) ∈ F (x̄N (tj), x̄N (tj − ∆), tj),

t ∈ [tj , tj+1), j = 0, . . . , k, N ∈ IN, (3.13)and assumptions (H2) and (H3) imposed on F , we onlude that the sequene
{xN (·)} ontains a onvergent subsequene in the norm topology of C([a, b];X);see, e.g., Theorem 3.4.2 in Tolstonogov (2000). Sine the Bohner integral iswell known to be weakly ontinuous as an operator from L1([a, b];X) to X , wepass to the limit in (3.12) as N → ∞ and dedue from (3.11) and from theabove disussions that there is x̃(·) ∈ C([a, b];X) suh that

x̃(t) = x̃(a) +

∫ t

a

v(s) ds for all t ∈ [a, b], (3.14)whih immediately implies the absolute ontinuity and a.e. Fréhet di�erentia-bility of x̃(·) on [a, b] with v(t) = ˙̃x(t) for a.e. t ∈ [a, b].Thus now we have the ar x̃ : [a − ∆, b] → X built in (3.10) and (3.14)with v(·) onstruted in (3.11). Observe, �rst of all, that x̃(·) is a feasible arto the relaxed problem (R). Indeed, the lassial Mazur theorem in funtionalanalysis allows us to onlude from the weak onvergene in (3.10) and (3.11)that there are onvex ombinations of elements from {x̄N (t)}, t ∈ [a − ∆, a],and { ˙̄xN (t)}, t ∈ [a, b], whih onverge to x̃(t) and v(t) = ˙̃x(t) strongly in
L1([a − ∆, a];X) and L1([a, b];X), respetively. Hene, some subsequenes ofthese onvex ombinations (as usual we take the whole sequenes without lossof generality) onverge almost pointwisely to x̃(t) and ˙̃x(t) on the orrespondingintervals. This immediately implies by passing to the limit in (3.3) for x̄N (·) dueto (H1) and the assumed onvexity of the sets C(t) in (H6) that x̃(t) satis�es(1.2), whih is the initial ondition for the relaxed problem (R). The ful�llmentof the endpoint onstraints (1.3) for x̃(·) an be easily justi�ed by passing to thelimit in (3.4) and taking into aount that ηN → 0 as N → ∞. Passing �nallyto the limit in the disrete inlusions (3.13) and employing the a.e. pointwise



408 B. MORDUKHOVICH, D. WANG, L. WANGonvergene of the onvex ombinations of {x̄N (·)} on [a − ∆, a] and { ˙̄xN (·)}on [a, b] justi�ed above as well as the onvexi�ed struture of the relaxed delay-di�erential inlusion (3.7) under the linearity assumption on F in (H6) in thease of the multivalued initial tail mapping C(·), we onlude that x̃(·) satis�es(3.7) on [a, b], and hene it is a feasible ar to (R).Let us further proeed with the passage to the limit in the ost funtional(3.1) along the sequene {x̄N (·)}. By the identity
hN

k∑

j=0

f
(
x̄N (tj), x̄N (tj − ∆),

x̄N (tj+1) − x̄N (tj)

hN

, tj

)

=

k∑

j=0

∫ tj+1

tj

f(x̄N (tj), x̄N (tj − ∆), ˙̄xN (tj), tj) dt,by struture (3.6) of the integrand in (R), by assumptions (H5) and (H6) on f ,and by the a.e. pointwise onvergene of the onvex ombinations above we get
∫ b

a

f̂F (x̃(t), x̃(t− ∆), ˙̃x(t), t) dt

≤ lim inf
N→∞

hN

k∑

j=0

f
(
x̄N (tj), x̄N (tj − ∆),

x̄N (tj+1) − x̄N (tj)

hN

, tj

)
.Observe further that the integral funtionals

I1[v] :=

∫ a

a−∆

‖v(t) − x̄(t)‖2dt and I2[v] :=

∫ b

a

‖v(t) − ˙̄x(t)‖2dtare lower semiontinuous in the weak topology of L1([a− ∆, a];X) and
L1([a, b];X), respetively, due to the onvexity of the integrands therein in v.Sine

−1∑

j=−N

∫ tj+1

tj

‖x̄N (tj) − x̄(t)‖2dt =

∫ a

a−∆

‖x̄N (t) − x̄(t)‖2dt and
k∑

j=0

∫ tj+1

tj

∥∥∥
x̄N (tj+1) − x̄N (tj)

hN

− ˙̄x(t)
∥∥∥

2

dt =

∫ b

a

‖ ˙̄xN (t) − ˙̄x(t)‖2dt,the afore-mentioned weak lower semiontinuity implies that
∫ a

a−∆

‖x̃(t) − x̄(t)‖2dt ≤ lim inf
N→∞

−1∑

j=−N

∫ tj+1

tj

‖x̄(tj) − x̄(t)‖2dt and
∫ b

a

‖ ˙̃x(t) − ˙̄x(t)‖2dt ≤ lim inf
N→∞

k∑

j=0

∫ tj+1

tj

∥∥∥
x̄N (tj+1) − x̄N (tj)

hN

− ˙̄x(t)
∥∥∥

2

dt.



Optimal ontrol of delay-di�erential inlusions in in�nite dimensions 409Thus, passing to the limit in (3.1) and taking into aount the onstrution of
ρN in (3.9) and the upper estimate (3.8) established above, we arrive at theinequalities

Ĵ [x̃] + ρ ≤ lim inf
N→∞

JN [x̄N ] ≤ lim sup
N→∞

JN [x̄N ] ≤ J [x̄],whih imply by the relaxation stability of (P ) and by assumed positivity of ρ > 0that
Ĵ [x̃] < J [x̄] = Ĵ [x̄]. (3.15)Sine the ar x̃(·) is proved to be feasible to the relaxed problem (R), the stritinequality in (3.15) obviously ontradits the optimality of x̄(·) to (R) and to

(P ), and hene the positivity assumption on ρ was wrong. Thus we get theonvergene ρN → 0 in (3.9), whih justi�es the strong onvergene of optimalsolutions x̄N (·) → x̄(·) as N → ∞ laimed in assertion (ii). This ompletes theproof of the theorem.4. Tools of generalized di�erentiationTheorem 2 on the strong onvergene of disrete approximationsmakes a bridgebetween the given optimal solution x̄(·) to the original Bolza problem (P )governed by the delay-di�erential inlusion (1.1) and optimal solutions to itsdisrete-time ounterparts (PN ). This determines our further strategy: to de-rive �rst the neessary onditions for the optimal solutions x̄N (·) to the approx-imating problems (PN ) and then get those for the given optimal solution x̄(·) tothe original problem (P ) by passing to the limit from the ones for the disreteapproximations.A harateristi feature of problems (P ) and (PN ) is their intrinsi nons-moothness that is inevitably generated by the dynami onstraints in (1.1) and(2.5), even in the ase of smooth ost funtions and endpoint onstraints, al-though we do not restrit our onsideration to the smooth data in any of theseparts. To deal with nonsmoothness, we use appropriate tools of generalized dif-ferentiation brie�y reviewed in this setion based on the book by Mordukhovih(2006a), where the reader an �nd more details and disussions. We also referthe reader to the reent books by Borwein and Zhu (2005) and by Shirotzek(2007) for related and additional material on generalized di�erentiation. Sinethe orresponding onstrutions and properties are used in this paper in theAsplund spae framework, their de�nitions are adjusted to this setting.We start with generalized normals to nonempty sets that are loally losedaround the referenes points. Given Ω ⊂ X , de�ne the (basi, limiting, Mor-dukhovih) normal one to Ω at x̄ ∈ Ω by
N(x̄; Ω) := Lim sup

x
Ω
→x̄

N̂(x; Ω) (4.1)



410 B. MORDUKHOVICH, D. WANG, L. WANGvia the sequential Painlevé-Kuratowski outer/upper limit (1.9) of the prenor-mal/Fréhet normal one to Ω at x ∈ Ω given by
N̂(x; Ω) :=

{
x∗ ∈ X∗

∣∣∣ lim sup
u

Ω
→x

〈x∗, u− x〉

‖u− x‖
≤ 0

}
, (4.2)where the symbol x Ω

→ x̄ indiates that x→ x̄ with x ∈ Ω. Note that for onvexsets Ω we have
N(x̄; Ω) = N̂(x̄; Ω) =

{
x∗ ∈ X∗

∣∣ 〈x∗, x− x̄〉 ≤ 0 for all x ∈ Ω
}
. (4.3)Given a set-valued mapping F : X →→ Y and a point (x̄, ȳ) ∈ gphF , de�nethe basi oderivative of F at (x̄, ȳ) and the Fréhet oderivative of F at thispoint by, respetively,

D∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗

∣∣ (x∗,−y∗) ∈ N((x̄, ȳ); gphF )
}
, (4.4)

D̂∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗

∣∣ (x∗,−y∗) ∈ N̂((x̄, ȳ); gphF )
}
. (4.5)Note that both oderivatives (4.4) and (4.5) are positively homogeneous set-valued mappings from Y ∗ to X∗. They both are single-valued and linear

D∗F (x̄)(y∗) = D̂∗F (x̄)(y∗) =
{
∇F (x̄)∗y∗

} for all y∗ ∈ Y ∗if F : X → Y is single-valued and C1 around x̄, or merely stritly di�erentiableat this point.Given now an extended-real-valued funtion ϕ : X → IR := (−∞,∞] �niteat x̄, the (basi, limiting, Mordukhovih) subdi�erential of ϕ at x̄ is de�ned by
∂ϕ(x̄) := Lim sup

x
ϕ
→x̄

∂̂ϕ(x), (4.6)where x ϕ
→ x̄ means that x→ x̄ with ϕ(x) → ϕ(x̄), and where ∂̂ϕ(x) stands forthe Fréhet subdi�erential of ϕ at x de�ned by

∂̂ϕ(x) :=
{
x∗ ∈ X∗

∣∣∣ lim inf
u→x

ϕ(u) − ϕ(x) − 〈x∗, u− x〉

‖u− x‖
≥ 0

}
. (4.7)In this paper, besides the generalized di�erential onstrutions de�ned above,we also use some of their extended limiting versions for moving (parameter-dependent) objets needed in the ase of nonautonomous systems. Given amoving set Ω: T →→ X , the extended normal one to Ω(t̄) at x̄ ∈ Ω(t̄) is de�nedby

N+(x̄; Ω(t̄)) := Lim sup

(x,t)
gph Ω
→ (x̄,t̄)

N̂(x; Ω(t)). (4.8)



Optimal ontrol of delay-di�erential inlusions in in�nite dimensions 411Given a parameter-dependent funtion ϕ : X × T → IR �nite at (x̄, t̄), the ex-tended subdi�erential of ϕ(·, t̄) at x̄ is de�ned by
∂+ϕ(x̄, t̄) = Lim sup

(x,t)
ϕ
→(x̄,t̄)

∂̂ϕ(x, t), (4.9)where ∂̂ϕ(·, t) is taken with respet to x under �xed t. Obviously, the extendednormal one (4.8) and the extended subdi�erential (4.9) redue to the basiobjets (4.1) and (4.6) if, respetively, Ω(·) and ϕ(·, t) are independent of t.It is important to emphasize that the limiting onstrutions (4.1), (4.4),(4.6), (4.8), and (4.9), being generally nononvex, enjoy full aluli in the frame-work of Asplund spaes, while the Fréhet-like onstrutions (4.2), (4.5), and(4.7) satisfy �fuzzy alulus rules� used in the next setion. All these results arebased on the fundamental extremal/variational priniples of variational analysis.An important ingredient of variational analysis in in�nite-dimensional spaesis the sequential normal ompatness (SNC) property of sets de�ned as follows:
Ω ⊂ X is SNC at x̄ ∈ Ω if, for any sequenes {(xn, x

∗

n)} ⊂ X ×X∗ satisfying
xn

Ω
→ x̄ as n→ ∞ and x∗n ∈ N̂(xn; Ω) for all n ∈ IN ,we have the impliation

x∗n
w∗

→ 0 =⇒ ‖x∗n‖ → 0 as n→ ∞.This property automatially holds if either X is �nite-dimensional, or Ω is aonvex set having nonempty relative interior with respet to its losed a�nehull of �nite odimension. More generally, Ω enjoys the SNC property at x̄ ifit is ompatly epi-Lipshitzian (CEL) around this point in the sense of Bor-wein and Strójwas, whih is implied in turn by the epi-Lipshitzian property inthe sense of Rokafellar; see Subsetion 1.1.4 of the afore-mentioned book byMordukhovih (2006a) for more details, referenes, and disussions. A ruialfeature of SNC is full alulus (i.e., omprehensive rules ensuring the preser-vation of this property under various operations), whih is also based on theextremal/variational priniples.5. Neessary onditions for delay-di�erene inlusionsIn this setion we obtain neessary onditions for optimal solutions to the dis-rete optimization problems (PN ). We redue these disrete-time dynami opti-mization problems to problems of mathematial programming with funtional,operator, and many geometri onstraints. To ondut a loal variational anal-ysis of the mathematial programs and disrete optimization problems underonsideration, we to use the tools of generalized di�erentiation, disussed inSetion 4.



412 B. MORDUKHOVICH, D. WANG, L. WANGIt is easy to observe that eah disrete optimization problem (PN ), for any�xed N ∈ IN and the orresponding number k ∈ IN de�ned in (2.4), an beequivalently written as the following mathematial program (MP ):





minimize φ0(z) subjet to
φj(z) ≤ 0, j = 1, . . . , s,
g(z) = 0,
z ∈ Θj ⊂ Z, j = 1, . . . , l,

(5.1)in the in�nite-dimensional spae Z := XN+2k+3 with respet to the �long�variable
z = (xN

−N , . . . , x
N
k+1, y

N
0 , . . . , y

N
k )

:= (xN (t−N ), . . . , xN (tk+1), y
N(t0), . . . , y

N(tk)) ∈ Z
(5.2)subjet to, respetively, inequality onstraints de�ned by the funtions φj , op-erator onstraints de�ned by the mappings g whose image spae is in�nite-dimensional, and the inreasing number of geometri onstraints de�ned by thesets Θj partiularly generated by the delay-di�erene dynamis. The initialdata (φj , g,Θj) in (5.1) are given by:

φ0(z) : = ϕ(xN
0 , x

N
k+1) + ‖xN

0 − x̄(a)‖2 +

−1∑

j=−N

∫ tj+1

tj

‖xN
j − x̄(t)‖2dt

+ hN

k∑

j=0

f(xN
j , x

N
j−N , y

N
j , tj) +

k∑

j=0

∫ tj+1

tj

‖yN
j − ˙̄x(t)‖2dt,

(5.3)
φj(z) := ‖xN

j − x̄(tj)‖ − ǫ, j = 1, . . . , k + 1, (5.4)
g(z) = (g0(z), . . . , gk(z)) with
gj(z) := xN

j+1 − xN
j − hNy

N
j , j = 0, . . . , k,

(5.5)
Θj :=

{
(xN

−N , . . . , y
N
k ) | xN

j ∈ C(tj)
}
, j = −N, . . . ,−1, (5.6)

Θj :=
{
(xN

−N , . . . , y
N
k ) | yN

j ∈ F (xN
j , x

N
j−N , tj)

}
, j = 0, . . . , k, (5.7)

Θk+1 :=
{
(xN

−N , . . . , y
N
k ) | (xN

0 , x
N
k+1) ∈ ΩN

}
. (5.8)The next theorem establishes the neessary onditions for optimal solutionsto eah problem (PN ). In ontrast to the ase of delay-di�erene systems with�nite-dimensional state spaes as in Mordukhovih and L. Wang (2003), we nowobtain optimality onditions in fuzzy/approximate disrete-time forms of theEuler-Lagrange and transversality inlusions, expressed in terms of the Fréhet-like generalized di�erential onstrutions reviewed in Setion 4. The major rea-son for this is that the optimality onditions of the fuzzy type for disrete-timesystems an be obtained under fairly general and nonrestritive assumptions on



Optimal ontrol of delay-di�erential inlusions in in�nite dimensions 413the initial data, whih happens to be muh more onvenient to derive the mainresults of the paper on neessary optimality onditions for delay-di�erentialinlusions in in�nite dimensions by passing to the limit from disrete approx-imations; see Setions 6 and 7. The proof of the fuzzy optimality onditionsin the next theorem is largely based on applying the fuzzy alulus rules forFréhet normals, subgradients, and oderivatives and on dual neighborhood har-aterizations of the Lipshitzian and metri regularity properties for nonsmoothmappings taken from Mordukhovih (2006a). Note that fuzzy alulus rulesprovide representations of the underlying normals/subgradients/oderivativesof ompositions at the referene points via those at points that are arbitrarylose to the referene ones. Just for notational simpliity and onveniene, wesuppose in the formulation and proof of the next theorem that these arbitrarylose points redue to the referene ones in question. It makes no di�erene forthe limiting proedure to derive the main neessary optimality onditions fordelay-di�erential inlusions in what follows.Theorem 3 (approximate Euler-Lagrange onditions for delay-di�erene inlusions). Let z̄N(·) be an optimal solution to problem (PN ) withany �xed N ∈ IN su�iently large under the standing hypotheses (H1)�(H3).Denote Fj := F (·, ·, tj) and fj := f(·, ·, ·, tj) and assume, in addition, that Xis Asplund and that the funtions ϕ and fj are Lipshitz ontinuous around
(x̄N

0 , x̄
N
k+1) and (x̄N

j , x̄
N
j−N , ȳ

N
j ), respetively, for j = 0, . . . , k. Consider thequantities





θN
j := 2

∫ tj+1

tj

∥∥∥
x̄N

j+1 − x̄N
j

hN

− ˙̄x(t)
∥∥∥ dt, j = 0, . . . , k,

σN
j := 2

∫ tj+1

tj

‖x̄N
j − x̄(t)‖ dt, j = −N, . . . ,−1.

(5.9)Then there exists a number γ > 0 independent of N suh that for any sequenesof positive numbers εN → 0 as N → ∞ there are multipliers λN ≥ 0 andsequenes of the disrete adjoint ars pN
j ∈ X∗ (j = 0, . . . , k + 1), and qN

j ∈
X∗ (j = −N, . . . , k + 1), satisfying the following relationships:�the nontriviality ondition

λN + ‖pN
k+1‖ ≥ γ, (5.10)� the approximate Euler-Lagrange inlusion





(pN
j+1 − pN

j

hN

,
qN
j−N+1 − qN

j−N

hN

,−
λNθN

j

hN

aN
j + pN

j+1 + qN
j+1

)

∈ λN ∂̂f(x̄N
j , x̄

N
j−N , ȳ

N
j , tj) + N̂((x̄N

j , x̄
N
j−N , ȳ

N
j ); gphFj)

+εNIB
∗ with some aN

j ∈ IB∗, j = 0, . . . , k,

(5.11)
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−
qN
j+1 − qN

j

hN

− λN
σN

j

hN

bNj ∈ N̂(x̄N
j ;C(tj)) + εNIB

∗with some bNj ∈ IB∗, j = −N, . . . ,−1,

qN
j = 0, j = k −N + 1, . . . , k + 1,

(5.12)� and the approximate transversality inlusion
(pN

0 + qN
0 ,−p

N
k+1) ∈ λN ∂̂ϕ(x̄N

0 , x̄
N
k+1) + N̂((x̄N

0 , x̄
N
k+1); ΩN ) + εNIB

∗.(5.13)Proof. Consider problem (PN ) in the equivalent mathematial programmingform (5.1) for the deision variable z ∈ Z in (5.2) with the initial data de-�ned in (5.3)�(5.8). Given ǫ > 0 in (3.5), take N ∈ IN so large that onstraints(3.5) hold as strit inequalities, whih is ensured by Theorem 2. Then all theinequality onstraints in (5.4) are inative at the optimal solution
z̄N := (x̄N

−N , . . . , x̄
N
k+1, ȳ

N
0 , . . . , ȳ

N
k )

= (x̄N (t−N ), . . . , x̄N (tk+1), ȳ
N(t0), . . . , ȳ

N(tk))to (PN ), and thus the funtions φj , j = 1, . . . , k + 1, an be ignored in thearguments below.Let us examine the following two mutually exlusive ases in the proof of thetheorem, whih omplement eah other.Case 1. Assume that the operator onstraint mapping g : XN+2k+3 →
Xk+1 in (5.5) is metrially regular at z̄N relative to the set

Θ :=

k+1⋂

j=−N

Θj , (5.14)with Θj taken from (5.6)�(5.8), in the sense that there is a onstant µ > 0 anda neighborhood V of z̄N suh that the distane estimatedist(z;S) ≤ µ ‖g(z)− g(z̄N)‖ for all z ∈ Θ ∩ Vwith S :=
{
z ∈ Θ | g(z) = g(z̄N)

} is satis�ed. Then, by Io�e's exat penal-ization theorem (see, e.g., Theorem 5.16 in Mordukhovih, 2006b), we onludethat z̄N is a loal optimal solution to the unonstrained penalized problem:minimize φ0(z) + µ (‖g(z)‖ + dist(z; Θ))for all µ > 0 su�iently large. It easily follows from onstrution (4.7) of theFréhet subdi�erential that the Fermat generalized stationary ondition
0 ∈ ∂̂

(
φ0(·) + µ‖g(·)‖ + µ dist(·,Θ)

)
(z̄N ) (5.15)



Optimal ontrol of delay-di�erential inlusions in in�nite dimensions 415holds. Taking any sequene εN ↓ 0 as N → ∞ and employing in (5.15) thefuzzy sum rule and then the formula for omputing Fréhet subgradients of thedistane funtion from, respetively, Theorem 2.33(b) and Proposition 1.95 inMordukhovih (2006a), we get
0 ∈ ∂̂φ0(z̄

N) +
k∑

j=0

∇gj(z̄
N)∗e∗j + N̂(z̄N ; Θ) + εNhNIB

∗, (5.16)for some e∗j ∈ X∗ satisfying
k∑

j=0

∇gj(z̄
N)∗e∗j

=
(
0, . . . , 0,−e∗0, e

∗

0 − e∗1, . . . , e
∗

k−1 − e∗k, e
∗

k,−hNe
∗

0, . . . ,−hNe
∗

k

)
(5.17)due to the spei� struture of the operator onstraints (5.5) and the simplehain rule for the omposition ‖g(z)‖ = (ψ ◦ g)(z) with ψ(v) := ‖v‖ and thesmooth mapping g from (5.5).To proeed further, we apply to the set Θ in (5.14) the fuzzy intersetionrule from Lemma 3.1 in Mordukhovih (2006a) ensuring that

N̂(z̄N ; Θ) ⊂ N̂(z̄N ; Θ−N) + . . .+ N̂(z̄N ; Θk+1) + εNhNIB
∗.Taking into aount the sum struture of ost funtional φ0 in (5.3) and thespei� forms of the terms therein, we get from the afore-mentioned fuzzy sumrule that

∂̂φ0(z̄
N ) ⊂ ∂̂ϕ(x̄N

0 , x̄
N
k+1) + 2‖x̄N

0 − x̄(a)‖IB∗

+

−1∑

j=−N

[∫ tj+1

tj

2‖x̄N
j − x̄(t)‖ dt

]
IB∗ + hN

k∑

j=0

∂̂f(x̄N
j , x̄

N
j−N , ȳ

N
j , tj)

+
k∑

j=0

[∫ tj+1

tj

2‖ȳN
j − ˙̄x(t)‖ dt

]
IB∗ + εNhNIB

∗,where the Fréhet subdi�erential of the funtion f is onsidered with respet ofits all but t variables, and where the lassial relationship ∂‖ · ‖2(x) ⊂ 2‖x‖IB∗is used together with the subdi�erentiation formula under the integral sign in(5.3) well known from onvex analysis. Substituting the latter relationships into(5.16) and adjusting εN if neessary, we arrive at
0 ∈ ∂̂ϕ(x̄N

0 , x̄
N
k+1) + 2‖x̄N

0 − x̄(a)‖IB∗ +
−1∑

j=−N

[∫ tj+1

tj

2‖x̄N
j − x̄(t)‖ dt

]
IB∗

+hN

k∑

j=0

∂̂f(x̄N
j , x̄

N
j−N , ȳ

N
j , tj) +

k∑

j=0

[∫ tj+1

tj

2‖ȳN
j − ˙̄x(t)‖ dt

]
IB∗ (5.18)
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+

k∑

j=0

∇gj(z̄
N )∗e∗j +

k+1∑

j=−N

N̂(z̄N ; Θj) + εNhNIB
∗.To elaborate the relationships in (5.18), let z∗j = (x∗

−N,j , . . . , x
∗

k+1,j , y
∗

0,j , . . . ,

y∗k,j) and observe from the set strutures in (5.6) that for any z∗j ∈ N̂(z̄N ; Θj),
j = −N, . . . ,−1, all but one omponents of z∗j are zero with the remainingone satisfying x∗j,j ∈ N̂(x̄N

j ;C(tj)), j = −N, . . . ,−1. Similarly the relationships
z∗j ∈ N̂(z̄N ; Θj) for j = 0, . . . , k and z∗k+1 ∈ N̂(z̄N ; Θk+1) imply that

(x∗j,j , x
∗

j−N,j , y
∗

j,j) ∈ N̂((x̄N
j , x̄

N
j−N , ȳ

N
j ); gphFj) for j = 0, . . . , k,

(x∗0,k+1, x
∗

k+1,k+1) ∈ N̂((x̄N
0 , x̄

N
k+1); ΩN )

(5.19)with all the other omponents of z∗j , j = 0, . . . , k+ 1, equal to zero. Combiningthese relationships with (5.17) and (5.18) and using the notation
(uN

0 , u
N
k+1) ∈ ∂̂ϕ(x̄N

0 , x̄
N
k+1), (vN

j , κ
N
j−N , w

N
j ) ∈ ∂̂f(x̄N

j , x̄
N
j−N , ȳ

N
j , tj),and (5.9) for (θN

j , σ
N
j ) with ȳN

j = (x̄N
j+1 − x̄N

j )/hN due to g(z̄N) = 0 in (5.5),we arrive at





−x∗j,j − x∗j,j+N ∈ hNκ
N
j + σN

j IB
∗ + εNhNIB

∗, j = −N, . . . ,−1,

−x∗j,j − x∗j,j+N ∈ hNκ
N
j + hNv

N
j + e∗j−1 − e∗j + εNhNIB

∗,

j = 1, . . . , k −N,

−x∗j,j ∈ hNv
N
j + e∗j−1 − e∗j + εNhNIB

∗, j = k −N + 1, . . . , k,

−y∗j,j ∈ hNw
N
j + θN

j IB
∗ − hNe

∗

j + εNhNIB
∗, j = 0, . . . , k,

−x∗k+1,k+1 ∈ uN
k+1 + e∗k + εNhNIB

∗,

−x∗0,0 − x∗0,k+1 ∈ uN
0 + hNκ

N
0 + 2‖x̄N

0 − x̄(a)‖IB∗

+hNv
N
0 − e∗0 + εNhNIB

∗,

(5.20)
where (x∗j,j , x

∗

j−N,j , y
∗

j,j) and (x∗0,k+1, x
∗

k+1,k+1) satisfy (5.19). Further, let





p̃N
j := e∗j−1 for j = 1, . . . , k + 1,

q̃N
j := κN

j +
x∗j,j+N

hN

for j = −N, . . . , k −N,

q̃N
j := 0 for j = k −N + 1, . . . , k + 1

(5.21)and de�ne the the adjoint disrete trajetories (pN
j , q

N
j ) by





qN
k+1 := 0, qN

j := qN
j+1 − q̃N

j hN for j = −N, . . . , k + 1,

pN
0 := uN

0 + x∗0,k+1 − qN
0 ,

pN
j := p̃N

j − qN
j hN for j = 1, . . . , k + 1.

(5.22)It is easy to hek that qN
j = 0 for j = k −N + 1, . . . , k + 1. Combining �nallythe relationships and notation (5.19)�(5.22), we get the optimality onditions



Optimal ontrol of delay-di�erential inlusions in in�nite dimensions 417(5.10)�(5.13) of the theorem with λN = 1 along an arbitrarily hosen sequene
εN ↓ 0 as N → ∞. This ompletes the proof in Case 1.Case 2. It remains to onsider the situation when the mapping g from (5.5)is not metrially regular at z̄N relative to the set Θ. In this ase the restritionof g on Θ de�ned by

gΘ(z) :=

{
g(z) if z ∈ Θ,
∅ otherwise (5.23)is not metrially regular around z̄N in the standard sense. Piking again anarbitrary sequene εN ↓ 0 as N → ∞ and using the haraterization of themetri regularity property from Theorem 4.5 in Mordukhovih (2006a), for any�xed N ∈ IN we �nd z ∈ z̄N + εNIB and e∗ = (e∗0, . . . , e

∗

k) ∈ (X∗)k satisfyingthe relationships
‖e∗‖ > 1 and 0 ∈ D̂∗gΘ(z)(e∗). (5.24)Taking now into aount the struture of the mapping gΘ in (5.23) and applyingthe oderivative sum rule for (4.5) from Theorem 1.62 in Mordukhovih (2006a)and then the afore-mentioned intersetion rule for Fréhet normals to Θ in (5.9),we get
0 ∈

k∑

j=0

∇gj(z)
∗e∗j +

k+1∑

j=−N

N̂(zj ; Θj) + εNhNIB
∗with some zj ∈ Θj∩(z+εNIB). Thus there are z∗j ∈ N̂(z̄N ; Θj), j = −N, . . . , k+

1, suh that
−

k+1∑

j=−N

z∗j ∈
k∑

j=0

∇gj(z̄
N)∗e∗ + εNhNIB

∗ (5.25)It follows from (5.25), (5.17), and the orresponding arguments in Case 1 thatthere are (x∗j,j , x
∗

j−N,j , y
∗

j,j) and (x∗0,k+1, x
∗

k+1,k+1) satisfying (5.19), for whih




−x∗j,j − x∗j,j+N ∈ εNhNIB
∗, j = −N, . . . ,−1,

−x∗j,j − x∗j,j+N ∈ e∗j−1 − e∗j + εNhNIB
∗, j = 1, . . . , k −N,

−x∗j,j ∈ e∗j−1 − e∗j + εNhNIB
∗, j = k −N + 1, . . . , k,

−y∗j,j ∈ hNe
∗

j + εNhNIB
∗, j = 0, . . . , k,

−x∗k+1,k+1 ∈ e∗k + εNhNIB
∗,

−x∗0,0 − x∗0,k+1 ∈ −e∗0 + εNhNIB
∗.De�ning further the adjoint disrete trajetories pN

j for j = 0, . . . , k + 1 and
qN
j for j = −N, . . . , k + 1 in the same way as in Case 1, we justify by similar



418 B. MORDUKHOVICH, D. WANG, L. WANGarguments the validity of the approximate Euler-Lagrange inlusion (5.11), theapproximate tail onditions (5.12), and the approximate transversality inlusion(5.13) with λN = 0. Let us now verify that the loal Lipshitz ontinuity of Fassumed in (H2) implies the ful�llment of the nontriviality ondition (5.10).First we show that there exist two positive numbers α1 and α2 independentof N suh that
‖pN

j ‖ ≤ α1‖p
N
k+1‖ + α2εN , j = 0, . . . , k. (5.26)Observe that the approximate Euler-Lagrange inlusion (5.11) with λN = 0 anbe equivalently written in terms of the oderivative (4.5) as

(pN
j+1 − pN

j

hN

,
qN
j−N+1 − qN

j−N

hN

)
∈ D̂∗F (x̄N

j , x̄
N
j−N , ȳ

N
j )(−pN

j+1−q
N
j+1)+εNIB

∗.Then, using the neighborhood haraterization of the loal Lipshitzian propertyfrom Theorem 4.7 in Mordukhovih (2006a), we get that
∥∥∥
(pN

j+1 − pN
j

hN

,
qN
j−N+1 − qN

j−N

hN

)∥∥∥ ≤ LF ‖p
N
j+1+q

N
j+1‖+εN , j = 0, . . . , k, (5.27)where LF is the Lipshitz onstant of F from (2.2) in (H2). Noting that qN

j+1 = 0for j = k −N, . . . , k by (5.12), we have for these indies that
‖(pN

j , q
N
j−N )‖ ≤ LFhN‖pN

j+1‖ + ‖(pN
j+1, q

N
j−N+1)‖ + hNεN

≤ (LFhN + 1)‖(pN
j+1, q

N
j−N+1)‖ + hNεN

≤ (LFhN + 1)2‖(pN
j+2, q

N
j−N+2)‖ + (LFhN + 1)hNεN + hNεN

≤ . . .

≤ (LFhN + 1)k+1−j [‖pN
k+1‖ + εN/LF ]

≤ (LFhN + 1)N+1[‖pN
k+1‖ + εN/LF ] ≤ eLF ∆[‖pN

k+1‖ + εN/LF ].For the indies j = k− 2N, . . . , k−N − 1 we get from (5.27) and the estimatesabove that
‖(pN

j , q
N
j−N )‖ ≤ LFhN‖pN

j+1 + qN
j+1‖ + ‖(pN

j+1, q
N
j−N+1)‖ + hNεN

≤ (LFhN + 1)‖(pN
j+1, q

N
j−N+1)‖

+ LFhN (eLF ∆‖pN
k+1‖ + eLF ∆εN/LF ) + hNεN + (LFhN + 1)hNεN

+ (LFhN + 1)LFhN (eLF ∆‖pN
k+1‖ + eLF ∆εN/LF )

≤ . . .

≤ (LFhN + 1)k+1−j [‖(pN
k+1‖ + eLF ∆‖pN

k+1‖ + eLF ∆εN/LF + εN/LF ]

≤ eLF ∆(1 + eLF ∆)[‖pN
k+1‖ + εN/LF ].



Optimal ontrol of delay-di�erential inlusions in in�nite dimensions 419After repeating the above proess �nitely many times we arrive at the desiredestimate (5.26).To onlude now the proof of the nontriviality ondition (5.10) along with(5.11)�(5.13) and λN = 0, suppose the opposite and then, taking a sequene
γm ↓ 0 as m→ ∞, hoose numbers Nm ∈ IN and ε̃m := εNm

> 0 suh that
km := [1/γm], ε̃m ≤ γ2

m, and ‖pNm

km+1‖ ≤ γ2
m as m ∈ IN,where km is omputed by (2.4) for Nm, and where [·] stands for the greatestinteger less than or equal to the given real number. Then by (5.26) we have

km+1∑

j=1

‖pNm

j ‖ ≤ α1(km +1)γ2
m+α2ε̃m(km +1) ≤ 2(α1+α2)γm ↓ 0 as m→ ∞,whih ontradits the negation of metri regularity (5.24) imposed in Case 2 andthus ompletes the proof of the theorem.6. Euler-Lagrange onditions for delay-di�erentialinlusionsIn this setion we derive neessary optimality onditions for the given optimal so-lution x̄(·) to the original Bolza problem (P ). The proof is based on the passingto the limit from the neessary optimality onditions for the disrete approxi-mation problems (PN ) obtained in Setion 5. We keep assumptions (H1�(H3)and (H6), but instead of (H4) and (H5) impose their following modi�ations:(H4') ϕ is Lipshitz ontinuous on U ×U ; Ω = Ωa ×Ωb ⊂ X ×X , where Ωa isompat around x̄(a) while Ωb is losed around x̄(b).(H5') The integrand f(x, y, v, ·) is ontinuous for a.e. t ∈ [a, b] and boundeduniformly with respet to (x, y, v) ∈ U × (MCIB)× (MF IB); furthermore,there are numbers µ > 0 and Lf ≥ 0 suh that f(·, ·, ·, t) is Lipshitzontinuous on the set Aµ(t) from (H5) with onstraint Lf uniformly in

t ∈ [a, b].The next theorem establishes neessary optimality onditions in the extendedEuler-Lagrange form for the given optimal solution to the original problem (P )in terms of the limiting normals and subgradients of Setion 4 for the initial dataof (P ) omputed with respet to all but time variables along the referene opti-mal solution. Note that the optimality onditions obtained in the general aseof geometri endpoint onstraints in in�nite-dimensional state spaes requirethe sequential normal ompatness assumption imposed on Ωb at the optimalendpoint x̄(b).Theorem 4 (extended Euler-Lagrange onditions for delay-di�erentialinlusions). Let x̄(·) be an optimal solution to (P ) under hypotheses (H1)�(H3), (H4'), (H5'), and (H6). Assume in addition that both spaes X and X∗



420 B. MORDUKHOVICH, D. WANG, L. WANGare Asplund, that Ωb is SNC at x̄(b), and that (P ) is stable with respet to relax-ation. Then there exist a number λ ≥ 0 and two absolutely ontinuous adjointars p : [a, b] → X∗ and q : [a − ∆, b] → X∗ suh that the following onditionshold:�the extended Euler-Lagrange inlusion
(ṗ(t), q̇(t− ∆)) ∈ clco

{
(u,w) | (u,w, p(t) + q(t))

∈ λ∂+f(x̄(t), x̄(t− ∆), ˙̄x(t), t) (6.1)
+N+((x̄(t), x̄(t− ∆), ˙̄x(t)); gphF (·, ·, t))

}
a.e. t ∈ [a, b],where the norm-losure operation �l� an be omitted when the state spae X isre�exive;�the optimal tail onditions{

〈q̇(t), x̄(t)〉 = min
c∈C(t)

〈q̇(t), c〉 a.e. t ∈ [a− ∆, a),

q(t) = 0, t ∈ [b− ∆, b];
(6.2)�the transversality inlusion

(p(a) + q(a),−p(b)) ∈ λ∂ϕ(x̄(a), x̄(b)) +N(x̄(a); Ωa) ×N(x̄(b); Ωb); (6.3)� the nontriviality ondition
λ+ ‖p(b)‖ > 0. (6.4)Proof. We derive the optimality onditions of the theorem by passing to thelimit in the neessary optimality onditions obtained in Theorem 3 and usingthe strong onvergene of disrete approximations established in Theorem 2. Weatually need more: to justify a suitable onvergene of adjoint/dual elementsin the neessary optimality onditions for disrete approximations. It is done inwhat follows by employing the afore-mentioned oderivative haraterization ofLipshitz ontinuity, robustness of our limiting generalized di�erential onstru-tions, and the imposed SNC property of the endpoint onstraint set togetherwith appropriate fats of funtional analysis.Reall again that the Asplund property of both spaesX and X∗ ensures theRadon-Nikodým property of these spaes. This implies, in partiular, that theabsolute ontinuity of the primal and adjoint ars in the setting of the theoremis equivalent to the ful�llment of the Newton-Leibniz formula (1.4) for thesears. Note also that the assumptions made in this theorem ensure the validityof all the assumptions made in both Theorem 2 and Theorem 3.Employing the neessary optimality onditions for (PN ) obtained in Theo-rem 3, we �nd sequenes of numbers λN ≥ 0 and adjoint disrete trajetories

pN
j and qN

j−N satisfying inlusions (5.10)-(5.13) with some εN ↓ 0 as N → ∞.Observe that without loss of generality the nontriviality ondition (5.10) an beequivalently written as
λN + ‖pN

k+1‖ = 1 for all N ∈ IN, (6.5)



Optimal ontrol of delay-di�erential inlusions in in�nite dimensions 421sine the number γ > 0 in (5.10) is independent of N .Suppose, without loss of generality, that λN → λ ≥ 0 as N → ∞. Asabove, the notation x̄N (t), pN(t), and qN (t − ∆) indiates the pieewise linearextensions of the disrete ars to the orresponding ontinuous-time intervalswith their pieewise onstant derivatives ˙̄xN (t), ṗN (t), and q̇N (t − ∆). Basedon (5.9), de�ne their pieewise onstant extensions
θN (t) :=

θN
j

hN

aN
j for t ∈ [tj , tj+1), j = 0, . . . , k,

σN (t) :=
σN

j

hN

bNj for t ∈ [tj , tj+1), j = −N, . . . ,−1,and onlude from the strong onvergene results of Theorem 1 that
∫ b

a

‖θN (t)‖ dt =
k∑

j=0

‖θN
j ‖ ≤ 2

k∑

j=0

∫ tj+1

tj

∥∥∥
x̄N

j+1 − x̄N
j

hN

− ˙̄x(t)
∥∥∥ dt

= 2

∫ b

a

‖ ˙̄xN (t) − ˙̄x(t)‖ dt → 0,

∫ a

a−∆

‖σN (t)‖ dt =
−1∑

j=−N

‖σN
j ‖ ≤ 2

−1∑

j=−N

∫ tj+1

tj

‖x̄N
j − x̄(t)‖ dt

= 2

∫ a

a−∆

‖x̄N (t) − x̄(t)‖ dt→ 0as N → ∞. Sine the strong L1 onvergene of {θN(·)} and {σN (·)}, establishedabove, implies the a.e. onvergene of their subsequenes, we suppose withoutloss of generality that
θN (t) → 0 a.e. t ∈ [a, b], σN (t) → 0 a.e. t ∈ [a− ∆, a] as N → ∞. (6.6)Further, let us estimate (pN (t), qN (t − ∆)) for large N . It follows from theapproximate Euler-Lagrange ondition (5.11) that for all j = 0, . . . , k we havethe inlusions

(pN
j+1 − pN

j

hN

− λNvN
j ,

qN
j−N+1 − qN

j−N

hN

− λNκN
j−N ,

−
λNθN

j

hN

aN
j + pN

j+1 + qN
j+1 − λNωN

j

)

∈ N̂((x̄N
j , x̄

N
j−N , ȳ

N
j ); gphFj) + εNIB

∗with some (vN
j , κ

N
j−N , ω

N
j ) ∈ ∂̂f(x̄N

j , x̄
N
j−N , ȳ

N
j , tj) and aN

j ∈ IB∗. This implies



422 B. MORDUKHOVICH, D. WANG, L. WANGby (4.5) that
(pN

j+1 − pN
j

hN

− λNvN
j ,

qN
j−N+1 − qN

j−N

hN

− λNκN
j−N

)

∈ D̂∗Fj(x̄
N
j , x̄

N
j−N , ȳ

N
j )

(
λNωN

j +
λNθN

j

hN

aN
j − pN

j+1 − qN
j+1

)
+ εNIB

∗for these indies j, whih gives by the oderivative ondition for Lipshitzianstability taken from Theorem 1.43 in Mordukhovih (2006a) that
∥∥∥
(pN

j+1 − pN
j

hN

− λNvN
j ,

qN
j−N+1 − qN

j−N

hN

− λNκN
j−N

)∥∥∥

≤ LF

∥∥∥λNωN
j +

λNθN
j

hN

aN
j − pN

j+1 − qN
j+1

∥∥∥ + εN , j = 0, . . . , k.

(6.7)The subdi�erential spei�ation of the latter result for the ase of loally Lips-hitzian funtions ensures the estimates ‖(vN
j , κ

N
j−N , ω

N
j )‖ ≤ Lf for j = 0, . . . , k,whih implies by (6.7) and the approximate tail onditions in (5.12) that

‖(pN
j , q

N
j−N )‖ ≤ LF ‖λ

NθN
j ‖ + LFλ

NhN‖ωN
j ‖ + LFhN‖pN

j+1 + qN
j+1‖

+ ‖(pN
j+1, q

N
j−N+1)‖ + λNhN‖(vN

j , κ
N
j−N )‖ + hNεN

≤ LF ‖θ
N
j ‖ + (LF + 1)hNLf + (LFhN + 1)‖(pN

j+1, q
N
j−N+1)‖ + hNεN

≤ LF ‖θ
N
j ‖ + (LFhN + 1)LF‖θ

N
j+1‖

+ (LF + 1)hNLf + (LFhN + 1)(LF + 1)hNLf

+ (LFhN + 1)2‖(pN
j+2, q

N
j−N+2)‖ + (LFhN + 1)hNεN + hNεN ≤ . . .

≤ exp[LF (b− a)](1 + Lf(LF + 1)/LF + LF νN )

+ [(LFhN + 1)N − 1]εN/LFfor j = k −N, . . . , k, where
νN :=

∫ b

a

‖ ˙̄x(t) − ˙̄xN (t)‖ dt→ 0 as N → ∞by Theorem 2, and where [(LFhN +1)N −1]εN/LF → 0 by εN → 0 as N → ∞.The latter implies the uniform boundedness of the sequene {(pN
j , q

N
j−N )| j =

k − N, . . . , k} with respet to N ∈ IN , i.e., there is M1 > 0 independent of Nsuh that
‖(pN

j , q
N
j−N )‖ ≤M1 for all j = k −N, . . . , k and N ∈ IN. (6.8)Thus, the the pieewise linear extensions pN(t) and qN (t − ∆) are uniformlybounded on [b− ∆, b].



Optimal ontrol of delay-di�erential inlusions in in�nite dimensions 423For j = k − 2N, . . . , k −N − 1, it follows from (6.7) and (6.8) that
‖(pN

j , q
N
j−N )‖ ≤ LF ‖λ

NθN
j ‖ + LFλ

NhN‖ωN
j ‖ + LFhN‖pN

j+1 + qN
j+1‖

+ ‖(pN
j+1, q

N
j−N+1)‖ + λNhN‖(vN

j , κ
N
j−N )‖ + hNεN

≤ LF ‖θ
N
j ‖ + (LFhN + hN )Lf + LFhNM1 + LFhN‖pN

j+1‖

+ ‖(pN
j+1, q

N
j−N+1)‖ + hNεN

≤ LF ‖θ
N
j ‖ + (LF + 1)hNLf + LFhNM1

+ (LFhN + 1)‖(pN
j+1, q

N
j−N+1)‖ + hNεN ,whih implies the uniform boundedness of the sequene {(pN

j , q
N
j−N )| j = k −

2N, . . . , k −N + 1} as N ∈ IN and hene the uniform boundedness of {(pN (t),
qN (t−∆))} on the interval [b− 2∆, b−∆]. Repeating the above proedure, weonlude that the sequene {(pN (t), qN (t − ∆))} is uniformly bounded on thewhole interval [a, b].To estimate (ṗN (t), q̇N (t− ∆)), we have from (6.7) that

‖(ṗN (t), q̇N (t− ∆))‖ =
∥∥∥
(pN

j+1 − pN
j

hN

,
qN
j−N+1 − qN

j−N

hN

)∥∥∥ + εN

≤ LF

∥∥∥λNωN
j +

λNθN
j

hN

aN
j − pN

j+1 − qN
j+1

∥∥∥ + λN‖(vN
j , κ

N
j−N )‖ + εN

≤ (LF + 1)Lf + LF (‖θN (t)‖ + ‖pN
j+1‖ + ‖qN

j+1‖) + εN , t ∈ [tj , tj+1),

(6.9)for all j = 0, . . . , k and N ∈ IN . Taking into aount (6.6) and the uniformboundedness of {(pN (t), qN (t − ∆))} as well as the RNP of both X and X∗,we apply the afore-mentioned Dunford theorem on the (sequential) weak om-patness in L1([a, b];X∗) and onlude with no loss of generality that bothsequenes {ṗN(t)} and {q̇N(t − ∆)} weakly onverge in L1([a, b];X∗). Further-more, by ‖pN(b)‖ ≤ 1 as N ∈ IN due to (6.5) and the Asplund property of Xwe have that {pN(b)} is sequentially weak∗ ompat in X∗. Arguing now as inthe proof of Theorem 2 by using the Newton-Leibniz formula for pN (·) and theweak ontinuity of the Bohner integral as a linear operator from L1([a, b];X∗)to X∗, we get an absolutely ontinuous ar p : [a, b] → X∗ suh that
{
pN (t) → p(t) weak∗ in X∗ for all t ∈ [a, b],
ṗN (·) → ṗ(·) weakly in L1([a, b];X∗) as N → ∞.

(6.10)Similarly, by taking into aount the seond tail ondition in (5.12), we �nd anabsolutely ontinuous ar q : [a− ∆, b] → X∗ suh that q(t) satis�es the seondtail ondition on [b − ∆, b] in (6.2) and
{
qN (t− ∆) → q(t− ∆) weak∗ in X∗ for all t ∈ [a, b],
q̇N (· − ∆) → q̇(· − ∆) weakly in L1([a, b];X∗) as N → ∞.

(6.11)The �rst tail ondition on [a − ∆, a] in (6.2) follows by passing to the limit inthe orresponding one from (5.12), taking into aount the onvergene in (6.11)



424 B. MORDUKHOVICH, D. WANG, L. WANGand of σN (·) in (6.6) and the spei� struture of the normal one to onvexsets given in (4.3).To prove the extended Euler-Lagrange inlusion (6.1) by passing to the limitin the approximate one (5.11), we rewrite the latter as
(ṗN (t), q̇N (t− ∆)) ∈

{
(u, v) |

(
u, v, pN(tj+1) + qN (tj+1) − λNθN

j a
N
j /hN

)

∈ λN ∂̂f(x̄(tj), x̄(tj − ∆), ˙̄xN (tj), tj) (6.12)
+N̂

(
(x̄N (tj), x̄

N (tj − ∆), ˙̄xN (t)); gphF (·, ·, tj)
)}

+ εNIB
∗for t ∈ [tj , tj+1), j = 0, . . . , k, and N ∈ IN . Observe that the weak onvergenein L1([a, b];X∗) of the derivatives ṗN (·) and q̇N (· − ∆) from (6.10) and (6.11)implies by the lassial Mazur theorem the strong onvergene in L1([a, b];X∗)of their onvex ombinations and hene the a.e. pointwise onvergene of (somesubsequenes of) these ombinations on [a, b]. Using this, the weak∗ pointwiseonvergene in X∗ of {(pN (t), qN (t−∆))} from (6.10) and (6.11), the pointwiseonvergene of {θN (t)} from (6.6), the strong onvergene of { ˙̄xN (t)} from The-orem 2, and the onstrutions of extended limiting normals and subgradientsfrom (4.8) and (4.9), we pass to the limit in (6.12) as N → ∞ and arrive at theextended Euler-Lagrange inlusion (6.1).If X is re�exive, the losure operation in (6.1) an be omitted. Indeed, in there�exive ase weak and weak∗ topology agree and, furthermore, every boundedand onvex set is weakly ompat in X∗, being therefore automatially losedin the norm topology of X∗ due the afore-mentioned Mazur theorem. Hene,the arguments above allow us to drop the losure operation in the limitingonvexi�ation proedure due to the derivative estimates in (6.9).To derive the transversality inlusion in (6.3), we pass to the limit in theapproximate one from (5.13) as N → ∞. Sine ΩN = Ω + ηIB in (5.13) with

ηN → 0 as N → ∞ by Theorem 1, we �rst employ the sum rule for Fréhetnormals from Theorem 3.7(i) in Mordukhovih (2006a) and then pass to limitingnormals and subgradients in (6.3) by using the weak∗ onvergene of {pN(a)}and of {pN (b)} in X∗ and the simple formula for basi normals to the Cartesianprodut of sets.To omplete the proof of the theorem, it remains to verify the nontrivial-ity ondition (6.4) under the SNC assumption on Ωb at x̄(b). Suppose, on theontrary, that λ = 0 and p(b) = 0 for the limiting elements in the above proe-dure. Without loss of generality, assume that λN = 0 for all N ∈ IN . It followsfrom the arguments above that pN (b)
w∗

→ 0 as N → ∞ in this ase. By theapproximate transversality ondition (5.13) with λN = 0 we have that
−pN(b) ∈ N̂(x̄N (b); Ωb + ηNIB) + εNIB

∗.Applying then the afore-mentioned sum rule for Fréhet normals to the latterinlusion and taking into aount its struture, we �nd a sequene {p̃N} ⊂ X∗
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−p̃N ∈ N̂(x̄N (b); Ωb) and ‖p̃N − pN (b)‖ → 0 as N → ∞. (6.13)Thus, p̃N w∗

→ 0 and, by the assumed SNC property of Ωb at x̄(b), we get fromthe �rst relationship in (6.13) that ‖p̃N‖ → 0 as N → ∞. This implies by theseond relationship in (6.13) that ‖pN(b)‖ = ‖pN(tk+1)‖ → 0 as N → ∞, whihlearly ontradits the nontriviality ondition (6.5) for disrete approximations.This ompletes the proof of the theorem.7. Delay systems with funtional endpoint onstraintsIn the last setion of the paper we onsider a version of the generalized Bolzaproblem (P ) formulated in Setion 1, where endpoint onstraints of the geomet-ri type (1.3) are replaed by their funtional ounterpart given by �nitely manyequalities and inequalities with Lipshitz ontinuous funtions. Let us denotethis problem by (P0) and desribe as follows, where for simpliity we on�neourselves to the ase of delay-di�erential inlusions with �xed left endpoints:minimize J [x] := ϕ0(x(b)) +

∫ b

a

f(x(t), x(t − ∆), ẋ(t), t) dtover feasible ars x : [a−∆, b] → X as for (P ) in Setion 1 with ∆ > 0, subjetto
ẋ(t) ∈ F (x(t), x(t − ∆), t) a.e. t ∈ [a, b], x(a) = x0 ∈ X,

x(t) ∈ C(t) a.e. t ∈ [a− ∆, a),

ϕi(x(b)) ≤ 0, i = 1, . . . ,m,

ϕi(x(b)) = 0, i = m+ 1, . . . ,m+ r.Given an optimal solution x̄(·) to (P0), we keep assumptions (H1)�(H3), (H5'),and (H6) while replae (H4) and (H4') by the following:(H4�) The ost funtion ϕ0 and all the endpoint onstraint funtions ϕi, i =
1, . . . ,m+ r, are loally Lipshitzian around x̄(b).The next theorem provides neessary optimality onditions for the givenoptimal solution x̄(·) to (P0) in the extended Euler-Lagrange form with thetransversality inlusion expressed via the basi subgradients of the endpointfuntions. Observe the di�erent subdi�erential treatments therein of the equalityonstraints versus those for the ost/inequality ones given by nonsmooth fun-tions and also the fat that all multipliers λi, i = 0, . . . ,m+ r, are nonnegative.The main distintion between the results obtained for (P0) and those in Theo-rem 4 for (P ) is that we now do not impose the SNC assumption on the endpointonstraints. This is a remarkable spei� feature of the onstraints desribedby �nitely many equalities and inequalities with Lipshitzian funtions.



426 B. MORDUKHOVICH, D. WANG, L. WANGTheorem 5 (extended Euler-Lagrange onditions for delay-di�erentialinlusions with funtional endpoint onstraints). Let x̄(·) be an opti-mal solution to problem (P0) under hypotheses (H1)�(H3), (H4�), (H5'), and(H6). Assume in addition that both spaes X and X∗ are Asplund and thatproblem (P0) is stable with respet to relaxation. Then there are multipliers
(λ0, . . . , λm+r) ∈ IRm+r+1 and absolutely ontinuous dual ars p : [a, b] → X∗and q : [a− ∆, b] → X∗ satisfying the following relationships:�the sign and nontriviality onditions

λi ≥ 0 for all i = 0, . . . ,m+ r, and m+r∑

i=0

λi 6= 0;�the omplementary slakness onditions
λiϕi(x̄(b)) = 0 for i = 1, . . . ,m;�the extended Euler-Lagrange inlusion

(ṗ(t), q̇(t− ∆)) ∈ clco
{
(u,w) | (u,w, p(t) + q(t)) ∈ λ∂+f(x̄(t), x̄(t− ∆), ˙̄x(t), t)

+N+((x̄(t), x̄(t− ∆), ˙̄x(t)); gphF (·, ·, t))
}

a.e. t ∈ [a, b],where the norm-losure operation an be omitted when the state spae X isre�exive;�the optimal tail onditions
{

〈q̇(t), x̄(t)〉 = min
c∈C(t)

〈q̇(t), c〉 a.e. t ∈ [a− ∆, a),

q(t) = 0, t ∈ [b− ∆, b];�the transversality inlusion
−p(b) ∈

m∑

i=0

λi∂ϕi(x̄(b)) +

m+r∑

i=m+1

λi

[
∂ϕi(x̄(b)) ∪ ∂(−ϕi)(x̄(b))

]
.Proof. (Sketh of the proof) Let us disuss the following two shemes to justifythe formulated optimality onditions. The �rst one goes in the diretion devel-oped by Mordukhovih (2007) for the ase of nondelayed autonomous problemsgoverned by evolution/di�erential inlusions in in�nite dimensions. It is basedon the onstrution of disrete approximations that largely exploits the Lips-hitzian nature of the �nitely many equality and inequality endpoint onstraintsimposed in (P0) and then on passing to the limit from disrete approximationswith taking into aount spei� features of subgradients of Lipshitzian fun-tions. Implementing this sheme in the ase of the delay-di�erential systemsunder onsideration and employing the above developments of this paper forthe delayed inlusions, we arrive at the neessary optimality onditions for (P0)formulated in the theorem.
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