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394 B. MORDUKHOVICH, D. WANG, L. WANG1. Introdu
tion, problem formulation, and dis
ussionsThe primary obje
tive of this paper is to study a general 
lass of optimal 
on-trol problems governed by 
onstrained delay-di�erential in
lusions in in�nite-dimensional spa
es. The main problem of our study is the generalized Bolzaproblem (P ) governed by delay-di�erential in
lusions in in�nite dimensions withendpoint 
onstraints and multivalued initial 
onditions formulated as follows.Let X be a Bana
h state spa
e, let [a, b] ⊂ IR be a �xed time interval, and let
x : [a−∆, b] → X be a feasible traje
tory/ar
 of the delay-di�erential in
lusion

ẋ(t) ∈ F (x(t), x(t − ∆), t) a.e. t ∈ [a, b], (1.1)
x(t) ∈ C(t) a.e. t ∈ [a− ∆, a), (1.2)
(x(a), x(b)) ∈ Ω ⊂ X2 (1.3)with a given time delay ∆ > 0, where F : X × X × [a, b] →→ X and C : [a −

∆, a] →→ X are set-valued mappings de�ning the system dynami
s and the initialstate 
onditions, respe
tively, and where the set Ω ⊂ X2 de�nes the endpoint
onstraints. By a feasible ar
 above we mean a mapping x : [a−∆, b] → X thatis summable on [a−∆, a], Fré
het di�erentiable for a.e. t ∈ [a, b], satisfying theNewton-Leibniz formula
x(t) = x(a) +

∫ t

a

ẋ(s) ds for all t ∈ [a, b] (1.4)and all the 
onstraints in (1.1)�(1.3), where the integral in (1.4) is taken in theBo
hner sense. It is well known that for X = IRn the a.e. Fré
het di�erentia-bility and Newton-Leibnitz requirements on x(t), a ≤ t ≤ b, 
an be equivalentlyrepla
ed by its absolute 
ontinuity in the standard sense. In fa
t, there is a fulldes
ription of Bana
h spa
es, where this equivalen
e holds true: they are spa
essatisfying the so-
alled Radon-Nikodým property (RNP); see, e.g., Diestel andUhl (1977). The latter property is ful�lled, in parti
ular, in any re�exive spa
e.Given now the endpoint/Mayer 
ost fun
tion ϕ : X ×X → IR and the inte-grand/Lagrangian f : X×X ×X× [a, b] → IR, we 
onsider the Bolza fun
tional
J [x] := ϕ(x(a), x(b)) +

∫ b

a

f(x(t), x(t − ∆), ẋ(t), t) dt (1.5)and formulate the dynami
 optimization/optimal 
ontrol problem (P ) asminimize J [x] subje
t to (1.1) − (1.3) (1.6)over feasible ar
s x : [a−∆, b] → X assuming that J [x] > −∞ for all the feasiblear
s and there is at least one feasible x(·) with J [x] <∞.Note that the generalized Bolza problem (P ) uni�es a number of parti
ularproblems of dynami
 optimization (of Mayer type, of Lagrange type, et
.) and
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ontains 
onventional parameterized forms of optimal 
ontrol problems governedby 
ontrolled delay-di�erential equations of the type
ẋ(t) = g(x(t), x(t − ∆), u, t), u ∈ U, a.e. t ∈ [a, b]. (1.7)Besides other advantages and, of 
ourse, higher level of generality of model (1.1)in 
omparison with that of (1.7), the dire
t in
lusion des
ription (1.1) allowsus to 
over the 
losed-loop 
ase U = U(x) in (1.7), whi
h is among the most
hallenging in 
ontrol theory and the most important for appli
ations. Notealso that the presen
e of the set-valued mapping C(·) de�ned on the initialtime interval [a−∆, a) in (1.2) is a spe
i�
 feature of delay-di�erential systemsproviding an additional sour
e for optimizing the 
ost fun
tional (1.5) by a
hoi
e of the initial 
ondition x(t) ∈ C(t) on [a− ∆, a).The problem (P ) under 
onsideration has been studied by Mordukhovi
h andL. Wang (2003) in the 
ase of �nite-dimensional state spa
es X = IRn; see alsothe referen
es therein for previous developments on �nite-dimensional delay-di�erential in
lusions as well as the books by Mordukhovi
h (2006b), Smirnov(2002), and Vinter (2000) for more dis
ussions of various approa
hes and re-sults on nondelayed 
ounterparts of problem (P ) and related �nite-dimensional
ontrol systems.We are not familiar with any results on ne
essary optimality 
onditions foroptimal 
ontrol problems governed by delay-di�erential in
lusions and related
ontrol systems with in�nite-dimensional state spa
es, even in the 
ase of �xedinitial 
onditions C(t) = {c(t)} in (1.2). On the other hand, there are re
entdevelopments by Mordukhovi
h (2006b, 2007) on in�nite-dimensional 
ontrolsystems governed by nondelayed evolution/di�erential in
lusions of type (1.1)with ∆ = 0. We also refer the reader to related (while di�erent) developments inMordukhovi
h and D. Wang (2005) 
on
erning semilinear evolution in
lusionsof the type
ẋ(t) ∈ Ax(t) + F (x(t), t), (1.8)where A : X → X is an unbounded generator of a C0-semigroup, and wheresolutions to (1.8) are understood in the mild sense. The main approa
h usedin this paper to derive ne
essary 
onditions for optimal solutions to the dy-nami
 optimization problem (P ) under 
onsideration is the method of dis
reteapproximations suggested and implemented by Mordukhovi
h (2005) in the 
aseof nondelayed di�erential in
lusions in �nite-dimensional spa
es. This methodwas extended in Mordukhovi
h and L. Wang (2003, 2004) to various 
lassesof hereditary fun
tional-di�erential in
lusions in �nite dimensions and then inMordukhovi
h (2006b, 2007) and in Mordukhovi
h and D. Wang (2005) to non-delayed di�erential and evolution in
lusions in in�nite-dimensional spa
es. Theversion of the dis
rete approximation method developed in this paper for theproblem (P ) under 
onsideration 
onsists of the following three major parts ea
hof whi
h is 
ertainly of its own interest:(a) To 
onstru
t a sequen
e of well-posed dis
rete approximations of the



396 B. MORDUKHOVICH, D. WANG, L. WANGgiven optimal solution to the original problem (P ) in su
h a way that the ap-proximating dis
rete-time problems admit optimal solutions, whi
h strongly (a.e.pointwisely with respe
t to derivatives) 
onverge to the designated minimizer forthe original problem (P ). This part of our method is 
losely related to sensitivityanalysis of the 
ontinuous-type optimization problem (P ) for delay-di�erentialin
lusions under 
onsideration with respe
t to dis
rete approximations, involvesnot only qualitative but also quantitative aspe
ts of �nite-di�eren
e approxima-tions, and essentially relies on the possibility to strongly (and 
onstru
tively)approximate any feasible traje
tory to the delay-di�erential in
lusion by feasibletraje
tories to its �nite-di�eren
e 
ounterparts.(b) To derive ne
essary optimality 
onditions for approximating dis
rete-time problems arising in the well-posed dis
rete approximation pro
edure de-veloped in part (a). For any �xed step of approximation, the dis
rete-time ap-proximating problems 
an be redu
ed to non-dynami
 problems of 
onstrainedmathemati
al programming formulated in in�nite-dimensional spa
es, sin
e thestate spa
e in the original problem (P ) is in�nite-dimensional. A 
hara
teristi
feature of ea
h of these mathemati
al programming problems is a spe
i�
 stru
-ture of the involved 
onstraints that are generated by the dynami
 
onstraintsof the original problem (P ) in the pro
ess of dis
rete approximations. Due tothe essential in�nite-dimensional nature of the mathemati
al programs under
onsideration and in order to avoid additional assumptions in the subsequentpro
edure of passing to the limit from dis
rete approximations, we 
on
entrateon deriving fuzzy ne
essary optimality 
onditions in the obtained problems ofmathemati
al programming and their dis
rete-time 
ounterparts. This is doneon the basis of advan
ed tools of variational analysis and generalized di�erenti-ation in in�nite-dimensional spa
es.(
) The �nal step in the method of dis
rete approximations is the passageto the limit from the obtained ne
essary optimality 
onditions in the approxi-mating problems to derive veri�able exa
t/pointbased ne
essary 
onditions forthe referen
e optimal solution to the original problem (P ). This step, besidesemploying and unifying the 
onvergen
e/stability results of part (a) and thefuzzy optimality 
onditions of part (b), requires the justi�
ation of an appro-priate pointwise 
onvergen
e of adjoint traje
tories. This is also done on thebasis of advan
ed tools of in�nite-dimensional variational analysis and robustgeneralized di�erentiation; see below for more details.The rest of the paper is organized as follows. In Se
tion 2 we formu-late and dis
uss the (fairly general) standing assumptions on the non
onvexdelay-di�erential in
lusion (1.1) and the initial 
ondition (1.2), then 
onstru
ta sequen
e of dis
rete approximations to (1.1) and (1.2) by delay-di�eren
ein
lusions and establish, in an arbitrary Bana
h spa
e setting, a prin
ipal re-sult on the strong W 1,1-approximation of any feasible traje
tory to the delay-di�erential system (1.1) and (1.2) by a sequen
e of feasible traje
tories to thedelay-di�eren
e in
lusions 
onstru
ted above.
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tion 3 
on
erns dis
rete approximations of the whole problem (P ) deal-ing not only with the underlying delay-di�erential in
lusion, but also with theendpoint 
onstraints (1.2) and the 
ost fun
tional (1.5). Assuming a 
ertainrelaxation stability of the original problem and given the referen
e optimal solu-tion x̄(·) to (P ), we 
onstru
t a well-posed sequen
e of dis
rete approximations
{(PN )}, N = 1, 2, . . ., to (P ) in su
h a way, that ea
h (PN ) admits an optimalsolution x̄N (·), and the sequen
e {x̄N (t)}, naturally extended to the whole inter-val [a − ∆, b], W 1,1-strongly 
onverges to x̄(t) as N → ∞. This result requiresappropriate geometri
 assumptions on the Bana
h state spa
e X in questionthat hold, in parti
ular, when X is re�exive.In Se
tion 4 we brie�y overview the basi
 
onstru
tions of dual-spa
e gen-eralized di�erentiation (normals to sets, 
oderivatives of set-valued mappings,and subdi�erentials of extended-real-valued fun
tions) playing a fundamentalrole in the subsequent variational analysis and deriving ne
essary optimality
onditions in dis
rete-time and 
ontinuous-time optimization problems under
onsideration, sin
e both 
lasses are intrinsi
ally nonsmooth. We also de�neand dis
uss the so-
alled sequential normal 
ompa
tness (SNC) property of sets,whi
h is automati
 in �nite dimensions while o

urs to be a 
ru
ial element ofvariational analysis in in�nite-dimensional spa
es.Se
tion 5 is devoted to deriving ne
essary optimality 
onditions for the dis-
rete approximation problems 
onstru
ted in Se
tion 3, whi
h are governedby delay-di�eren
e in
lusions with endpoint 
onstraints in in�nite-dimensionalspa
es. As mentioned above, we redu
e these problems to mathemati
al pro-grams in Bana
h spa
es with spe
i�
 types of 
onstraints 
ontaining, in par-ti
ular, an in
reasing number of set/geometri
 
onstraints with possibly emptyinteriors generated by the dis
rete-time dynami
s. The ne
essary optimality
onditions for su
h mathemati
al programs and delay-di�eren
e in
lusions areobtained in this se
tion in approximate/fuzzy forms, in 
ontrast to the ex-a
t/pointbased forms as in our earlier developments in �nite dimensions. Thefuzzy results obtained do not require restri
tive assumptions on the initial dataand are essentially more 
onvenient for the subsequent passage to the limit whilederiving the main results of the paper on ne
essary optimality 
onditions for theoriginal delay-di�erential problem (P ) in in�nite-dimensional spa
es. The de-vi
e developed to establish these fuzzy ne
essary 
onditions for delay-di�eren
ein
lusions is rather involved in 
omparison, e.g., with the 
orresponding resultsin �nite dimensions and/or in the nondelayed 
ase. Our approa
h is based onusing advan
ed tools of generalized di�erential 
al
ulus, 
oderivative 
hara
ter-izations of metri
 regularity, et
.In Se
tions 6 and 7 we establish the main results of the paper on ne
es-sary optimality 
onditions of the extended Euler-Lagrange type for the originalgeneralized Bolza problem (P ) governed by the 
onstrained delay-di�erentialin
lusions with in�nite-dimensional state spa
es. The �nal results obtained inthese se
tions are given in the required exa
t/pointbased forms via the robustgeneralized di�erential 
onstru
tions reviewed in Se
tion 4. These 
onditions



398 B. MORDUKHOVICH, D. WANG, L. WANGare derived by passing to the limit from the fuzzy optimality 
onditions for theapproximating delay-di�eren
e problems obtained in Se
tion 5 by using the 
on-vergen
e/stability results for dis
rete approximations established in Se
tions 2and 3. Along with these ingredients, the passage to the limit in the approxi-mating ne
essary optimality 
onditions requires a deli
ate variational analysison the appropriate 
onvergen
e of adjoint ar
s; this is mainly done on the ba-sis of generalized di�erential 
al
ulus and dual 
oderivative 
hara
terizations ofLips
hitzian stability.The major di�eren
e between the frameworks and results of Se
tion 6 andSe
tion 7 is that the former addresses the original problem (P ) with endpoint
onstraints of the general geometri
 type, while the latter/last se
tion dealswith the parti
ular (and more 
onventional in dynami
 optimization) version ofthe original problem, where endpoint 
onstraints are given expli
itly by �nitelymany equalities and inequalities de�ned by Lips
hitz 
ontinuous (in parti
ular,smooth) fun
tions. The underlying result of Se
tion 6 establishes the extendedEuler-Lagrange ne
essary optimality 
onditions for the general problem (P )under the SNC assumption on the endpoint 
onstraint set Ω, while the resultof Se
tion 7 does not impose this assumption or the like on the 
orresponding
onstraint set des
ribed by Lips
hitzian equalities and inequalities.Our notation is basi
ally standard; see Mordukhovi
h (2006a,b). Unlessotherwise stated, all the spa
es 
onsidered are Bana
h with the norm ‖·‖ and the
anoni
al pairing 〈·, ·〉 between the spa
e in question, say X , and its topologi
aldualX∗ whose weak∗ topology is denoted by w∗. We use the symbols IB and IB∗to signify the 
losed unit balls of the spa
e in question and its dual, respe
tively.Given a set-valued mapping F : X →→ X∗, its sequential Painlevé-Kuratowskiupper/outer limit at x̄ is
Lim sup

x→x̄
F (x) :=

{
x∗ ∈ X∗

∣∣∃ sequen
es xk → x̄, x∗k
w∗

→ x∗ with
x∗k ∈ F (xk) as k ∈ IN := {1, 2, . . .}

}
.

(1.9)2. Dis
rete approximations of delay-di�erentialin
lusionsThe main goal of this se
tion is to 
onstru
t well-posed dis
rete approxima-tions of the original problem (P ) that ensure the strong 
onvergen
e of optimaltraje
tories in the L1-norm on the �initial tail� interval [a − ∆, a] and in the
W 1,1-norm on the main interval [a, b]. Su
h a strong 
onvergen
e plays a 
ru-
ial role in the subsequent study of delay-di�erential in
lusions via their dis
reteapproximations.Let x̄(·) be a feasible traje
tory to (1.1) with the initial 
ondition (1.2). Weimpose the following standing assumptions on the set-valued mappings F and
C used through the whole paper:
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ompa
t-valued, uniformly bounded
C(t) ⊂MCIB on [a− ∆, a] with some MC > 0,and Hausdor� 
ontinuous for a.e. t ∈ [a− ∆, a].(H2) There are an open set U ⊂MCIB and two positive numbers LF and MFsu
h that x̄(t) ∈ U for any t ∈ [a, b], the sets F (x, y, t) are nonempty and
ompa
t for all (x, y, t) ∈ U × (MCIB)× [a, b], and the following in
lusions
F (x, y, t) ⊂MF IB for all (x, y, t) ∈ U × (MCIB) × [a, b], (2.1)
F (x1, y1, t) ⊂ F (x2, y2, t) + LF (‖x1 − x2‖ + ‖y1 − y2‖)IB, (2.2)hold whenever (x1, y1), (x2, y2) ∈ U × (MCIB) and t ∈ [a, b].(H3) F (x, y, ·) is Hausdor� 
ontinuous for a.e. t ∈ [a, b] uniformly in (x, y) ∈

U × (MCIB).Note that (2.2) signi�es the lo
al Lips
hitz 
ontinuity of F (·, ·, t) around
(x̄(t), x̄(t−∆)). To 
larify the meaning of (H3), 
onsider the so-
alled averagedmodulus of 
ontinuity τ [F ;h] for F (x, y, t) in t ∈ [a, b] when (x, y) ∈ U×(MCIB)de�ned by

τ [F ;h] :=

∫ b

a

σ(F ; t, h) dt, (2.3)where σ(F ; t, h) := sup{ω(F ;x, y, t, h)| (x, y) ∈ U × (MCIB)} with
ω(F ;x, y, t, h)

:= sup
{haus(F (x, y, t1), F (x, y, t2))

∣∣ t1, t2 ∈ [t− h/2, t+ h/2] ∩ [a, b]
}
,and where haus(·, ·) stands for the standard Hausdor� metri
 on the spa
e ofnonempty and 
ompa
t subsets of X . It follows from the result by Dont
hevand Farkhi (1989) (given in �nite dimensions, while their proof works pra
ti
allywithout 
hange in the in�nite-dimensional setting under 
onsideration) that if

F (x, y, ·) is Hausdor� 
ontinuous for a.e. t ∈ [a, b] uniformly in (x, y) ∈ U ×
(MCIB), then τ [F ;h] → 0 as h → 0. Of 
ourse, a simpli�ed version of theabove de�nition applies to the average modulus of 
ontinuity τ [C;h] of themultifun
tion C(·) on [a− ∆, a].Let us now 
onstru
t a dis
rete approximation of the delay-di�erential in
lu-sion (1.1) by repla
ing the time-derivative in (1.1) by the uniform Euler �nitedi�eren
e:

ẋ(t) ≈
x(t+ h) − x(t)

h
, h→ 0.To formalize this pro
edure, for any natural number N ∈ IN take tj := a+ jhNfor j = −N, . . . , k and tk+1 := b, where hN := ∆/N and k ∈ IN is de�ned by

a+ khN ≤ b < a+ (k + 1)hN . (2.4)



400 B. MORDUKHOVICH, D. WANG, L. WANGNote that t−N = a− ∆, t0 = a, and hN → 0 as N → ∞. Then the sequen
e ofdelay-di�eren
e in
lusions approximating (1.1) is 
onstru
ted as follows:
{
xN (tj+1) ∈ xN (tj) + hNF (xN (tj), xN (tj − ∆), tj) for j = 0, . . . , k,
xN (tj) ∈ C(tj) for j = −N, . . . ,−1.

(2.5)The 
olle
tion of ve
tors {xN (tj) | j = −N, . . . , k + 1} satisfying (2.5) is 
alleda dis
rete traje
tory. The 
orresponding 
olle
tion
{xN (tj+1) − xN (tj)

hN

∣∣∣ j = 0, . . . , k
}is 
alled a dis
rete velo
ity. We also 
onsider the extended dis
rete velo
itiesde�ned by

vN (t) :=
xN (tj+1) − xN (tj)

hN

, t ∈ [tj , tj+1), j = 0, . . . , k.It follows from the de�nition of the Bo
hner integral that the 
orrespondingextended dis
rete traje
tories are given by
xN (t) = x(a) +

∫ t

a

vN (s)ds, t ∈ [a, b],on the main interval [a, b] and by
xN (t) := xN (tj), t ∈ [tj , tj+1), j = −N, . . . ,−1,on the initial tail interval [a − ∆, a). Observe that ẋN (t) = vN (t) for a.e.

t ∈ [a, b].The next theorem ensures the strong approximation of any feasible traje
-tory x̄(·) to the original delay-di�erential in
lusion given in (1.1) and (1.2) byextended feasible traje
tories to its delay-di�eren
e 
ounterpart (2.5) in the fol-lowing sense: the approximation/
onvergen
e in the W 1,1([a, b];X)-norm
|x(·)|W 1,1 := max

t∈[a,b]
‖x(t)‖ +

∫ b

a

‖ẋ(t)‖ dton the main interval [a, b] and the one in the L1([a − ∆, a];X)-norm on theinitial tail interval [a − ∆, a]. Note that the state spa
e X in Theorem 1 isarbitrary Bana
h and that the strong W 1,1-
onvergen
e of extended dis
retetraje
tories on [a, b] implies the not only their uniform 
onvergen
e on thisinterval but also the a.e. pointwise 
onvergen
e of their derivatives on [a, b]along some subsequen
e of {N} as N → ∞.Theorem 1 (strong approximation by dis
rete traje
tories). Let x̄(·)be a feasible traje
tory to (1.1) and (1.2) under assumptions (H1)�(H3), where
X is an arbitrary Bana
h spa
e. Then there is a sequen
e of solutions {zN(tj) |
j = −N, . . . , k + 1} to the delay-di�eren
e in
lusions (2.5) with zN (t0) = x̄(a)su
h that the extended dis
rete traje
tories zN(t), t ∈ [a−∆, b], 
onverge to x̄(·)strongly in L1 on [a− ∆, a] and strongly in W 1,1 on [a, b] as N → ∞.
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lusions in in�nite dimensions 401Proof. Given a feasible solution x̄(t), t ∈ [a − ∆, b], to the delay-di�erentiablesystem (1.1) and (1.2), we have that x̄(·) ∈ L1([a − ∆, a];X) and that x̄(·)satis�es the Newton-Leibniz formula (1.4). Hen
e x̄(·) and ˙̄x(·) are stronglymeasurable on [a − ∆, a] and [a, b], respe
tively. Therefore, rearranging themesh points tj, if ne
essary, we 
an �nd a sequen
e of simple/step mappings
{wN (·)} on [a − ∆, b] with wN (a) = x̄(a) su
h that ea
h wN (·) is 
onstant onthe intervals [tj , tj+1) as j = −N, . . . , k, that wN (·) → x̄(·) on [a − ∆, a] inthe norm of L1([a − ∆, a];X), and that wN (·) → ˙̄x(·) on [a, b] in the norm of
L1([a, b];X) as N → ∞. In the estimates below we use the sequen
e

ξN :=

∫ a

a−∆

‖x̄(t)−wN (t)‖ dt+

∫ b

a

‖ ˙̄x(t)−wN (t)‖ dt→ 0 as N → ∞. (2.6)Combining the afore-mentioned 
onvergen
e of {wN (·)} with assumptions (H1)�(H3), we easily �nd a 
onstant M > 0 su
h that
∫ b

a−∆

‖wN (t)‖ dt ≤M for all N ∈ IN.Further, for ea
h N ∈ IN de�ne the 
olle
tion {uN(tj) | j = −N, . . . , k + 1} by
{
uN (tj) := wN (tj), j = −N, . . . , 0,
uN (tj+1) := uN (tj) + hNwN (tj), j = 0, . . . , k.

(2.7)The 
orresponding extensions of (2.7) to the intervals [a − ∆, a) and [a, b] aregiven by





uN(t) = wN (t), t ∈ [tj , tj+1), j = −N, . . . ,−1,

uN(t) = x̄(a) +

∫ t

a

wN (s) ds, t ∈ [a, b].
(2.8)To pro
eed, we observe that the Lips
hitzian 
ondition (2.2) 
an be equiva-lently written via the distan
e fun
tion on X asdist(w;F (x1, y1, t)) ≤ dist(w;F (x2, y2, t)) + LF (‖x1 − x2‖ + ‖y1 − y2‖)whenever w ∈ X , x1, x2 ∈ U , y1, y2 ∈ MCIB, and t ∈ [a, b]. Furthermore, wealways havedist(w;F (x, y, t1)) ≤ dist(w;F (x, y, t2)) + haus(F (x, y, t1), F (x, y, t2))for any w ∈ X , x ∈ U , y ∈ MCIB and t1, t2 ∈ [a, b]. Using now the averagemodulus of 
ontinuity (2.3), we get the relationships

αN : = hN

−1∑

j=−N

dist(wN (tj);C(tj))

+ hN

k∑

j=0

dist(wN (tj);F (uN (tj), uN (tj − ∆), tj))
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=

−1∑

j=−N

∫ tj+1

tj

dist(wN (tj);C(tj)) dt

+
k∑

j=0

∫ tj+1

tj

dist(wN (tj);F (uN (tj), uN (tj − ∆), tj)) dt

≤
−1∑

j=−N

∫ tj+1

tj

dist(wN (tj);C(t)) dt

+

k∑

j=0

∫ tj+1

tj

dist(wN (tj);F (uN (tj), uN (tj − ∆), t)) dt

+ τ [C;hN ] + τ [F ;hN ], N ∈ IN.Taking the 
onstru
tions of {wN (·), uN (·)} and the above estimates into a

ount,we arrive at
αN ≤ (1 + 2LF )

−1∑

j=−N

∫ tj+1

tj

‖wN (tj) − x̄(t)‖ dt

+

k∑

j=0

∫ tj+1

tj

(
‖wN(tj) − ˙̄x(t)‖ + 2LF ξN

)
dt+ τ [C;hN ] + τ [F ;hN ]

≤ (1 + 2LF )ξN + 2LF ξN (b − a) + τ [C;hN ] + τ [F ;hN ], N ∈ IN,and 
on
lude that αN → 0 as N → ∞ due to ξN → 0 by (2.6), τ(C;hN ) → 0by (H1), and τ [F ;hN ] → 0 by (H3).To 
ontinue the proof of the theorem, note that the 
olle
tions {uN(tj)} builtupon {wN (tj)} in (2.7) may not be traje
tories to the delay-di�eren
e in
lusions(2.5). Let us 
orre
t them in su
h a way that the resulting 
olle
tions zN (tj)satisfy (2.5) and possess the 
onvergen
e properties stated in the theorem. We
onstru
t the desired traje
tories {zN(tj) | j = −N, . . . , k + 1} for all N ∈ INby using the following proximal algorithm:





zN (tj) = vNj
with vNj

∈ C(tj),

‖vNj
− wN (tj)‖ = dist(wN (tj);C(tj)), j = −N, . . . ,−1,

zN (t0) = x̄(a),

zN (tj+1) = zN (tj) + hNvNj
with vNj

∈ F (zN(tj), zN(tj − ∆), tj)and ‖vNj
− wN (tj)‖ = dist(wN (tj);F (zN (tj), zN (tj − ∆), tj)),

j = 0, . . . , k.

(2.9)Obviously, zN(·) in (2.9) are feasible traje
tories to (2.5). Now following theproof of Theorem 6.4 in Mordukhovi
h (2006b) and adapting it to the 
ase ofthe delay-di�erential in
lusions (1.1) with the set-valued initial 
onditions (1.2)under 
onsideration, we show that the extensions zN (t), t ∈ [a − ∆, b], of theabove dis
rete traje
tories 
onverge to x̄(t) in the L1-norm topology on [a−∆, a]and in the W 1,1-norm topology on [a, b]. The proof is 
omplete.
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ontrol of delay-di�erential in
lusions in in�nite dimensions 4033. Dis
rete approximations of the generalizedBolza problemOur next step is to 
onstru
t a sequen
e of well-posed dis
rete approximationsof the generalized Bolza problem (P ) governed by delay-di�erential in
lusions insu
h a way that optimal solutions to dis
rete approximation problems strongly
onverge in the sense spe
i�ed below to a given optimal solution to the originalproblem (P ).Let us �x an optimal solution x̄(t), a − ∆ ≤ t ≤ b, to problem (P ), and let
{zN(t)}, a − ∆ ≤ t ≤ b, be the sequen
e of the extended traje
tories to thedelay-di�eren
e in
lusions (2.5) approximating x̄(·) in the sense of Theorem 1.Denoting

ηN := max
t∈[a,b]

‖zN(t) − x̄(t)‖ → 0 as N → ∞,we 
onstru
t the sequen
e of dis
rete approximation problems (PN ) as follows:minimize JN [xN ] := ϕ(xN (a), xN (b)) + ‖xN(a) − x̄(a)‖2

+

−1∑

j=−N

∫ tj+1

tj

‖xN (tj) − x̄(t)‖2dt

+ hN

k∑

j=0

f
(
xN (tj), xN (tj − ∆),

xN (tj+1) − xN (tj)

hN

, tj

)

+
k∑

j=0

∫ tj+1

tj

∥∥∥
xN (tj+1) − xN (tj)

hN

− ˙̄x(t)
∥∥∥

2

dt

(3.1)
subje
t to the 
onstraints

xN (tj+1) ∈ xN (tj) + hNF (xN (tj), xN (tj − ∆), tj), j = 0, . . . , k, (3.2)
xN (tj) ∈ C(tj), j = −N, . . . ,−1, (3.3)
(xN (a), xN (b)) ∈ ΩN := Ω + ηNIB, (3.4)
‖xN (tj) − x̄(tj)‖ ≤ ǫ, j = 1, . . . , k + 1, (3.5)where ǫ > 0 is a small given number. In addition to the standing assumptions(H1)�(H3) on (C,F ) in (1.1) and (1.2) with some neighborhood U of x̄(t),

a ≤ t ≤ b, we impose the following hypotheses on the behavior of ϕ, f , and Ωaround the optimal traje
tory x̄(·) under 
onsideration:(H4) The 
ost fun
tion ϕ is 
ontinuous on U×U , the 
onstraint set Ω ⊂ X×Xis lo
ally 
losed around (x̄(a), x̄(b)), and for some ν > 0 the interse
tionset proj1Ω ∩ (x̄(a) + νIB) is 
ompa
t in X , where proj1Ω stands for theproje
tion of Ω on the �rst spa
e X in the produ
t X ×X .
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ontinuous for a.e. t ∈ [a, b] and boundeduniformly with respe
t to (x, y, v) ∈ U × (MCIB)× (MF IB); furthermore,there is µ > 0 su
h that f(·, ·, ·, t) is 
ontinuous on the set
Aµ(t) =

{
(x, y, v) ∈ U × (MCIB) × (MF + µ)IB

∣∣ v ∈ F (x, y, s)for some s ∈ (t− µ, t]
}uniformly in t ∈ [a, b].Along with the original problem (P ), we 
onsider its �relaxed� 
ounterpart
onstru
ted in the way well understood in optimal 
ontrol and variational anal-ysis; see, e.g., the books by Mordukhovi
h (2006b), Tolstonogov (2000), andWarga (1972). Roughly speaking, the relaxed problem is obtained from (P ) bya 
onvexi�
ation pro
edure with respe
t to the velo
ity variable. Let

fF (x, y, v, t) := f(x, y, v, t) + δ(v;F (x, y, t)),where δ(·; Θ) stands for the indi
ator fun
tion of the set in question equal to
0 on Θ and to ∞ otherwise. Denote by f̂F (x, y, v, t) the bi
onjugate (se
ond
onjugate) fun
tion to fF , i.e.,

f̂F (x, y, v, t) := (fF )∗∗v (x, y, v, t).The relaxed generalized Bolza problem (R) for the original problem (P ) governedby the delay-di�erential in
lusions under 
onsideration is de�ned as follows:minimize Ĵ [x] := ϕ(x(a), x(b)) +

∫ b

a

f̂F (x(t), x(t − ∆), ẋ(t), t) dt (3.6)over feasible traje
tories x(t), a − ∆ ≤ t ≤ b, of the same 
lass as for (P ) butto the 
onvexi�ed delay-di�erential in
lusion
ẋ(t) ∈ 
l
oF (x(t), x(t − ∆), t) a.e. t ∈ [a, b] (3.7)with the initial 
ondition (1.2) and the endpoint 
onstraints (1.3). As usual, thesymbol �
l
o� in (3.7) stands for the 
onvex 
losure of the set in question.Denoting by inf(P ) and inf(R) the optimal/in�mal values of the 
ost fun
-tionals in problem (P ) and (R), respe
tively, we 
learly have inf(R)≤ inf(P ). If
inf(P ) = inf(R),the original problem (P ) is said to be stable with respe
t to relaxation. Thisproperty, whi
h obviously holds under the 
onvexity assumptions with respe
tto velo
ity, turns out also to be natural for broad 
lasses of non
onvex problemsgoverned by delay-di�erential in
lusions due to the inherent hidden 
onvexityof su
h systems, related, in fa
t, to the 
onvexity of integrals for set-valuedmappings over nonatomi
 measures; see the afore-mentioned books by Mor-dukhovi
h, Tolstonogov, and Warga for more results, dis
ussions, and refer-en
es.
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ontrol of delay-di�erential in
lusions in in�nite dimensions 405The next theorem justi�es the existen
e of optimal solutions x̄N (·) to thedis
rete approximation problems (PN ) and their strong 
onvergen
e to the ref-eren
e optimal solution x̄(·) to the original problem (P ). The strong 
onvergen
e
x̄N (·) → x̄(·) is understood in the same sense as in Theorem 1, i.e., as the norm
onvergen
e in L1 on the initial tail interval [a− ∆, a] and as the norm 
onver-gen
e in W 1,1 on the main interval [a, b]. In fa
t, under the assumptions madein (H1) and (H2), the strong 
onvergen
e above 
an be equivalently repla
ed bythat in the norm of Lp on [a − ∆, a] and in the norm of W 1,p on [a, b] for any
p ≥ 1. We use this in what follows.In 
ontrast to Theorem 1 held in the general Bana
h state spa
e X , the mainpart (ii) of Theorem 2 established below requires additional geometri
 assump-tions imposed on the Bana
h spa
e X in question. Namely, we assume thatboth spa
es X and X∗ are Asplund, whi
h automati
ally holds if X is re�exive.Re
all that a Bana
h spa
e X is Asplund if every separable subspa
e of X hasa separable dual. This is a broad 
lass of Bana
h spa
es, well investigated ingeometri
 theory and widely applied to many aspe
ts of variational analysis andgeneralized di�erentiation; see the books by Borwein and Zhu (2005), Diesteland Uhl (1977), and Mordukhovi
h (2006a,b) for more details, numerous results,and dis
ussions. Note a remarkable fa
t from the geometri
 theory of Bana
hspa
es: X is Asplund if and only if the dual spa
e X∗ has the Radon-Nikodýmproperty.Furthermore, part (ii) of the next theorem requires additional assumptionson the initial data in the 
ase of set-valued initial 
onditions (1.2):(H6) either the set C(t) is a singleton {c(t)} for a.e. t ∈ [a − ∆, a]; or the set

C(t) is 
onvex for a.e. t ∈ [a− ∆, a], the mapping F (x, y, t) is linear in yfor a.e. t ∈ [a, a+ ∆], and the fun
tion f(x, y, v, t) is 
onvex in (y, v) fora.e. t ∈ [a, a+ ∆].Theorem 2 (strong 
onvergen
e of dis
rete optimal solutions). Let x̄(·)be the given optimal solution to the original Bolza problem (P) with the Bana
hstate spa
e X, let {(PN )} as N ∈ IN be a sequen
e of dis
rete approximationproblems 
onstru
ted above, and let the basi
 assumptions (H1)�(H5) be satis�ed.Then the following assertions hold:(i) For all N ∈ IN su�
iently large the problem (PN ) admits an optimalsolution.(ii) If, in addition, both spa
es X and X∗ are Asplund, problem (P) is stablewith respe
t to relaxation, and if, furthermore, the assumptions in (H6) aresatis�ed, then any sequen
e {x̄N (·)} of optimal solutions to (PN ) extendedto the 
ontinuous-time interval [a − ∆, b] 
onverges to x̄(·) as N → ∞in the L1-norm topology on [a − ∆, a] and in the W 1,1-norm topology on
[a, b].Proof. To justify (i), we take ǫ > 0 in (3.5) su
h that x̄(t) + ǫIB ⊂ U for all

t ∈ [a, b] and 
onsider numbers N ∈ IN so large that ηN < ǫ along the numeri
al
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e {ηN} used in the 
onstru
tion of problem (PN ). Note that for su
hlarge N ∈ IN ea
h problem (PN ) has feasible solutions, sin
e the traje
tory
zN (·) from Theorem 1 satis�es all the 
onstraints (3.2)�(3.5). The existen
e ofoptimal solutions to (PN ) follows now from the 
lassi
al Weierstrass existen
etheorem due to the 
ompa
tness and 
ontinuity assumptions made in (H1)�(H5).To justify the strong 
onvergen
e assertion (ii) of the theorem, 
onsider againthe sequen
e zN (·) that strongly approximates x̄(·) by Theorem 1. Sin
e ea
h
zN (·) is feasible to (PN ), we have

JN [x̄N ] ≤ JN [zN ] for all N ∈ IN.It 
an be shown similarly to the proof of Theorem 6.13 in Mordukhovi
h (2006b)given for the 
ase of nondelayed di�erential in
lusions that
JN [zN ] → J [x̄] as N → ∞by (H5) and by using the Lebesgue dominated 
onvergen
e theorem valid forthe Bo
hner integral in arbitrary Bana
h spa
es. The above two relationshipseasily yield that
lim sup
N→∞

JN [x̄N ] ≤ J [x̄] (3.8)under the the general assumptions of the theorem as in assertion (i).Let us show next that (3.8) implies the strong 
onvergen
e x̄N (·) → x̄(·)
laimed in (ii) under the additional assumptions made therein. Due the afore-mentioned equivalen
e between the L1/W 1,1 and L2/W 1,2 
onvergen
e in thetheorem, we need to prove that
ρN :=

∫ a

a−∆

‖x̄N (t) − x̄(t)‖2 dt+ ‖x̄N (a) − x̄(a)‖2

+

∫ b

a

‖ ˙̄xN (t) − ˙̄x(t)‖2 dt→ 0

(3.9)as N → ∞. Arguing by 
ontradi
tion, suppose that (3.9) does not hold. Thenthere is a limiting point ρ of {ρN} su
h that ρ > 0. Suppose, without loss ofgenerality, that ρN → ρ > 0 as N → ∞.To pro
eed further, observe that under the assumptions made in (ii) bothspa
es X and X∗ enjoy the Radon-Nikodým property (RNP). Indeed, the onefor X∗ is equivalent, as mentioned above, to the Asplund property of X , whilethe Asplund property of X∗ ensures the RNP of X due to the latter fa
t andthe in
lusion X ⊂ X∗∗. Note also that both sequen
es {x̄N (t)}, t ∈ [a −
∆, a], and { ˙̄xN (t)}, t ∈ [a, b], are uniformly bounded by the assumptions (H1)and (H2). Applying now to these sequen
es the Dunford theorem on the weak
ompa
tness in, respe
tively, the spa
es L1([a− ∆, b];X) and L1([a, b];X) (see,
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ontrol of delay-di�erential in
lusions in in�nite dimensions 407e.g., Theorem IV.1 in Diestel and Uhl, 1977), we �nd x̃(·) ∈ L1([a − ∆, b];X)and v(·) ∈ L1([a, b];X) su
h that
x̄N (·) → x̃(·) weakly in L1([a− ∆, a];X), (3.10)
˙̄xN (·) → v(·) weakly in L1([a, b];X) (3.11)along a subsequen
e of N → ∞, where all N ∈ IN 
an be taken without lossof generality. Note that ea
h xN (·), a ≤ t ≤ b, satis�es the Newton-Leibnizformulā
xN (t) = x̄N (a) +

∫ t

a

˙̄xN (s) ds for all t ∈ [a, b] and N ∈ IN. (3.12)Furthermore, by 
ompa
tness of the set {x̄N (a)| N ∈ IN} in X due to assump-tion (H4) and by taking into a

ount the relationships
˙̄xN (t) = ˙̄xN (tj) ∈ F (x̄N (tj), x̄N (tj − ∆), tj),

t ∈ [tj , tj+1), j = 0, . . . , k, N ∈ IN, (3.13)and assumptions (H2) and (H3) imposed on F , we 
on
lude that the sequen
e
{xN (·)} 
ontains a 
onvergent subsequen
e in the norm topology of C([a, b];X);see, e.g., Theorem 3.4.2 in Tolstonogov (2000). Sin
e the Bo
hner integral iswell known to be weakly 
ontinuous as an operator from L1([a, b];X) to X , wepass to the limit in (3.12) as N → ∞ and dedu
e from (3.11) and from theabove dis
ussions that there is x̃(·) ∈ C([a, b];X) su
h that

x̃(t) = x̃(a) +

∫ t

a

v(s) ds for all t ∈ [a, b], (3.14)whi
h immediately implies the absolute 
ontinuity and a.e. Fré
het di�erentia-bility of x̃(·) on [a, b] with v(t) = ˙̃x(t) for a.e. t ∈ [a, b].Thus now we have the ar
 x̃ : [a − ∆, b] → X built in (3.10) and (3.14)with v(·) 
onstru
ted in (3.11). Observe, �rst of all, that x̃(·) is a feasible ar
to the relaxed problem (R). Indeed, the 
lassi
al Mazur theorem in fun
tionalanalysis allows us to 
on
lude from the weak 
onvergen
e in (3.10) and (3.11)that there are 
onvex 
ombinations of elements from {x̄N (t)}, t ∈ [a − ∆, a],and { ˙̄xN (t)}, t ∈ [a, b], whi
h 
onverge to x̃(t) and v(t) = ˙̃x(t) strongly in
L1([a − ∆, a];X) and L1([a, b];X), respe
tively. Hen
e, some subsequen
es ofthese 
onvex 
ombinations (as usual we take the whole sequen
es without lossof generality) 
onverge almost pointwisely to x̃(t) and ˙̃x(t) on the 
orrespondingintervals. This immediately implies by passing to the limit in (3.3) for x̄N (·) dueto (H1) and the assumed 
onvexity of the sets C(t) in (H6) that x̃(t) satis�es(1.2), whi
h is the initial 
ondition for the relaxed problem (R). The ful�llmentof the endpoint 
onstraints (1.3) for x̃(·) 
an be easily justi�ed by passing to thelimit in (3.4) and taking into a

ount that ηN → 0 as N → ∞. Passing �nallyto the limit in the dis
rete in
lusions (3.13) and employing the a.e. pointwise
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onvergen
e of the 
onvex 
ombinations of {x̄N (·)} on [a − ∆, a] and { ˙̄xN (·)}on [a, b] justi�ed above as well as the 
onvexi�ed stru
ture of the relaxed delay-di�erential in
lusion (3.7) under the linearity assumption on F in (H6) in the
ase of the multivalued initial tail mapping C(·), we 
on
lude that x̃(·) satis�es(3.7) on [a, b], and hen
e it is a feasible ar
 to (R).Let us further pro
eed with the passage to the limit in the 
ost fun
tional(3.1) along the sequen
e {x̄N (·)}. By the identity
hN

k∑

j=0

f
(
x̄N (tj), x̄N (tj − ∆),

x̄N (tj+1) − x̄N (tj)

hN

, tj

)

=

k∑

j=0

∫ tj+1

tj

f(x̄N (tj), x̄N (tj − ∆), ˙̄xN (tj), tj) dt,by stru
ture (3.6) of the integrand in (R), by assumptions (H5) and (H6) on f ,and by the a.e. pointwise 
onvergen
e of the 
onvex 
ombinations above we get
∫ b

a

f̂F (x̃(t), x̃(t− ∆), ˙̃x(t), t) dt

≤ lim inf
N→∞

hN

k∑

j=0

f
(
x̄N (tj), x̄N (tj − ∆),

x̄N (tj+1) − x̄N (tj)

hN

, tj

)
.Observe further that the integral fun
tionals

I1[v] :=

∫ a

a−∆

‖v(t) − x̄(t)‖2dt and I2[v] :=

∫ b

a

‖v(t) − ˙̄x(t)‖2dtare lower semi
ontinuous in the weak topology of L1([a− ∆, a];X) and
L1([a, b];X), respe
tively, due to the 
onvexity of the integrands therein in v.Sin
e

−1∑

j=−N

∫ tj+1

tj

‖x̄N (tj) − x̄(t)‖2dt =

∫ a

a−∆

‖x̄N (t) − x̄(t)‖2dt and
k∑

j=0

∫ tj+1

tj

∥∥∥
x̄N (tj+1) − x̄N (tj)

hN

− ˙̄x(t)
∥∥∥

2

dt =

∫ b

a

‖ ˙̄xN (t) − ˙̄x(t)‖2dt,the afore-mentioned weak lower semi
ontinuity implies that
∫ a

a−∆

‖x̃(t) − x̄(t)‖2dt ≤ lim inf
N→∞

−1∑

j=−N

∫ tj+1

tj

‖x̄(tj) − x̄(t)‖2dt and
∫ b

a

‖ ˙̃x(t) − ˙̄x(t)‖2dt ≤ lim inf
N→∞

k∑

j=0

∫ tj+1

tj

∥∥∥
x̄N (tj+1) − x̄N (tj)

hN

− ˙̄x(t)
∥∥∥

2

dt.
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ontrol of delay-di�erential in
lusions in in�nite dimensions 409Thus, passing to the limit in (3.1) and taking into a

ount the 
onstru
tion of
ρN in (3.9) and the upper estimate (3.8) established above, we arrive at theinequalities

Ĵ [x̃] + ρ ≤ lim inf
N→∞

JN [x̄N ] ≤ lim sup
N→∞

JN [x̄N ] ≤ J [x̄],whi
h imply by the relaxation stability of (P ) and by assumed positivity of ρ > 0that
Ĵ [x̃] < J [x̄] = Ĵ [x̄]. (3.15)Sin
e the ar
 x̃(·) is proved to be feasible to the relaxed problem (R), the stri
tinequality in (3.15) obviously 
ontradi
ts the optimality of x̄(·) to (R) and to

(P ), and hen
e the positivity assumption on ρ was wrong. Thus we get the
onvergen
e ρN → 0 in (3.9), whi
h justi�es the strong 
onvergen
e of optimalsolutions x̄N (·) → x̄(·) as N → ∞ 
laimed in assertion (ii). This 
ompletes theproof of the theorem.4. Tools of generalized di�erentiationTheorem 2 on the strong 
onvergen
e of dis
rete approximationsmakes a bridgebetween the given optimal solution x̄(·) to the original Bolza problem (P )governed by the delay-di�erential in
lusion (1.1) and optimal solutions to itsdis
rete-time 
ounterparts (PN ). This determines our further strategy: to de-rive �rst the ne
essary 
onditions for the optimal solutions x̄N (·) to the approx-imating problems (PN ) and then get those for the given optimal solution x̄(·) tothe original problem (P ) by passing to the limit from the ones for the dis
reteapproximations.A 
hara
teristi
 feature of problems (P ) and (PN ) is their intrinsi
 nons-moothness that is inevitably generated by the dynami
 
onstraints in (1.1) and(2.5), even in the 
ase of smooth 
ost fun
tions and endpoint 
onstraints, al-though we do not restri
t our 
onsideration to the smooth data in any of theseparts. To deal with nonsmoothness, we use appropriate tools of generalized dif-ferentiation brie�y reviewed in this se
tion based on the book by Mordukhovi
h(2006a), where the reader 
an �nd more details and dis
ussions. We also referthe reader to the re
ent books by Borwein and Zhu (2005) and by S
hirotzek(2007) for related and additional material on generalized di�erentiation. Sin
ethe 
orresponding 
onstru
tions and properties are used in this paper in theAsplund spa
e framework, their de�nitions are adjusted to this setting.We start with generalized normals to nonempty sets that are lo
ally 
losedaround the referen
es points. Given Ω ⊂ X , de�ne the (basi
, limiting, Mor-dukhovi
h) normal 
one to Ω at x̄ ∈ Ω by
N(x̄; Ω) := Lim sup

x
Ω
→x̄

N̂(x; Ω) (4.1)
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het normal 
one to Ω at x ∈ Ω given by
N̂(x; Ω) :=

{
x∗ ∈ X∗

∣∣∣ lim sup
u

Ω
→x

〈x∗, u− x〉

‖u− x‖
≤ 0

}
, (4.2)where the symbol x Ω

→ x̄ indi
ates that x→ x̄ with x ∈ Ω. Note that for 
onvexsets Ω we have
N(x̄; Ω) = N̂(x̄; Ω) =

{
x∗ ∈ X∗

∣∣ 〈x∗, x− x̄〉 ≤ 0 for all x ∈ Ω
}
. (4.3)Given a set-valued mapping F : X →→ Y and a point (x̄, ȳ) ∈ gphF , de�nethe basi
 
oderivative of F at (x̄, ȳ) and the Fré
het 
oderivative of F at thispoint by, respe
tively,

D∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗

∣∣ (x∗,−y∗) ∈ N((x̄, ȳ); gphF )
}
, (4.4)

D̂∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗

∣∣ (x∗,−y∗) ∈ N̂((x̄, ȳ); gphF )
}
. (4.5)Note that both 
oderivatives (4.4) and (4.5) are positively homogeneous set-valued mappings from Y ∗ to X∗. They both are single-valued and linear

D∗F (x̄)(y∗) = D̂∗F (x̄)(y∗) =
{
∇F (x̄)∗y∗

} for all y∗ ∈ Y ∗if F : X → Y is single-valued and C1 around x̄, or merely stri
tly di�erentiableat this point.Given now an extended-real-valued fun
tion ϕ : X → IR := (−∞,∞] �niteat x̄, the (basi
, limiting, Mordukhovi
h) subdi�erential of ϕ at x̄ is de�ned by
∂ϕ(x̄) := Lim sup

x
ϕ
→x̄

∂̂ϕ(x), (4.6)where x ϕ
→ x̄ means that x→ x̄ with ϕ(x) → ϕ(x̄), and where ∂̂ϕ(x) stands forthe Fré
het subdi�erential of ϕ at x de�ned by

∂̂ϕ(x) :=
{
x∗ ∈ X∗

∣∣∣ lim inf
u→x

ϕ(u) − ϕ(x) − 〈x∗, u− x〉

‖u− x‖
≥ 0

}
. (4.7)In this paper, besides the generalized di�erential 
onstru
tions de�ned above,we also use some of their extended limiting versions for moving (parameter-dependent) obje
ts needed in the 
ase of nonautonomous systems. Given amoving set Ω: T →→ X , the extended normal 
one to Ω(t̄) at x̄ ∈ Ω(t̄) is de�nedby

N+(x̄; Ω(t̄)) := Lim sup

(x,t)
gph Ω
→ (x̄,t̄)

N̂(x; Ω(t)). (4.8)
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tion ϕ : X × T → IR �nite at (x̄, t̄), the ex-tended subdi�erential of ϕ(·, t̄) at x̄ is de�ned by
∂+ϕ(x̄, t̄) = Lim sup

(x,t)
ϕ
→(x̄,t̄)

∂̂ϕ(x, t), (4.9)where ∂̂ϕ(·, t) is taken with respe
t to x under �xed t. Obviously, the extendednormal 
one (4.8) and the extended subdi�erential (4.9) redu
e to the basi
obje
ts (4.1) and (4.6) if, respe
tively, Ω(·) and ϕ(·, t) are independent of t.It is important to emphasize that the limiting 
onstru
tions (4.1), (4.4),(4.6), (4.8), and (4.9), being generally non
onvex, enjoy full 
al
uli in the frame-work of Asplund spa
es, while the Fré
het-like 
onstru
tions (4.2), (4.5), and(4.7) satisfy �fuzzy 
al
ulus rules� used in the next se
tion. All these results arebased on the fundamental extremal/variational prin
iples of variational analysis.An important ingredient of variational analysis in in�nite-dimensional spa
esis the sequential normal 
ompa
tness (SNC) property of sets de�ned as follows:
Ω ⊂ X is SNC at x̄ ∈ Ω if, for any sequen
es {(xn, x

∗

n)} ⊂ X ×X∗ satisfying
xn

Ω
→ x̄ as n→ ∞ and x∗n ∈ N̂(xn; Ω) for all n ∈ IN ,we have the impli
ation

x∗n
w∗

→ 0 =⇒ ‖x∗n‖ → 0 as n→ ∞.This property automati
ally holds if either X is �nite-dimensional, or Ω is a
onvex set having nonempty relative interior with respe
t to its 
losed a�nehull of �nite 
odimension. More generally, Ω enjoys the SNC property at x̄ ifit is 
ompa
tly epi-Lips
hitzian (CEL) around this point in the sense of Bor-wein and Strójwas, whi
h is implied in turn by the epi-Lips
hitzian property inthe sense of Ro
kafellar; see Subse
tion 1.1.4 of the afore-mentioned book byMordukhovi
h (2006a) for more details, referen
es, and dis
ussions. A 
ru
ialfeature of SNC is full 
al
ulus (i.e., 
omprehensive rules ensuring the preser-vation of this property under various operations), whi
h is also based on theextremal/variational prin
iples.5. Ne
essary 
onditions for delay-di�eren
e in
lusionsIn this se
tion we obtain ne
essary 
onditions for optimal solutions to the dis-
rete optimization problems (PN ). We redu
e these dis
rete-time dynami
 opti-mization problems to problems of mathemati
al programming with fun
tional,operator, and many geometri
 
onstraints. To 
ondu
t a lo
al variational anal-ysis of the mathemati
al programs and dis
rete optimization problems under
onsideration, we to use the tools of generalized di�erentiation, dis
ussed inSe
tion 4.
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h dis
rete optimization problem (PN ), for any�xed N ∈ IN and the 
orresponding number k ∈ IN de�ned in (2.4), 
an beequivalently written as the following mathemati
al program (MP ):





minimize φ0(z) subje
t to
φj(z) ≤ 0, j = 1, . . . , s,
g(z) = 0,
z ∈ Θj ⊂ Z, j = 1, . . . , l,

(5.1)in the in�nite-dimensional spa
e Z := XN+2k+3 with respe
t to the �long�variable
z = (xN

−N , . . . , x
N
k+1, y

N
0 , . . . , y

N
k )

:= (xN (t−N ), . . . , xN (tk+1), y
N(t0), . . . , y

N(tk)) ∈ Z
(5.2)subje
t to, respe
tively, inequality 
onstraints de�ned by the fun
tions φj , op-erator 
onstraints de�ned by the mappings g whose image spa
e is in�nite-dimensional, and the in
reasing number of geometri
 
onstraints de�ned by thesets Θj parti
ularly generated by the delay-di�eren
e dynami
s. The initialdata (φj , g,Θj) in (5.1) are given by:

φ0(z) : = ϕ(xN
0 , x

N
k+1) + ‖xN

0 − x̄(a)‖2 +

−1∑

j=−N

∫ tj+1

tj

‖xN
j − x̄(t)‖2dt

+ hN

k∑

j=0

f(xN
j , x

N
j−N , y

N
j , tj) +

k∑

j=0

∫ tj+1

tj

‖yN
j − ˙̄x(t)‖2dt,

(5.3)
φj(z) := ‖xN

j − x̄(tj)‖ − ǫ, j = 1, . . . , k + 1, (5.4)
g(z) = (g0(z), . . . , gk(z)) with
gj(z) := xN

j+1 − xN
j − hNy

N
j , j = 0, . . . , k,

(5.5)
Θj :=

{
(xN

−N , . . . , y
N
k ) | xN

j ∈ C(tj)
}
, j = −N, . . . ,−1, (5.6)

Θj :=
{
(xN

−N , . . . , y
N
k ) | yN

j ∈ F (xN
j , x

N
j−N , tj)

}
, j = 0, . . . , k, (5.7)

Θk+1 :=
{
(xN

−N , . . . , y
N
k ) | (xN

0 , x
N
k+1) ∈ ΩN

}
. (5.8)The next theorem establishes the ne
essary 
onditions for optimal solutionsto ea
h problem (PN ). In 
ontrast to the 
ase of delay-di�eren
e systems with�nite-dimensional state spa
es as in Mordukhovi
h and L. Wang (2003), we nowobtain optimality 
onditions in fuzzy/approximate dis
rete-time forms of theEuler-Lagrange and transversality in
lusions, expressed in terms of the Fré
het-like generalized di�erential 
onstru
tions reviewed in Se
tion 4. The major rea-son for this is that the optimality 
onditions of the fuzzy type for dis
rete-timesystems 
an be obtained under fairly general and nonrestri
tive assumptions on
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h happens to be mu
h more 
onvenient to derive the mainresults of the paper on ne
essary optimality 
onditions for delay-di�erentialin
lusions in in�nite dimensions by passing to the limit from dis
rete approx-imations; see Se
tions 6 and 7. The proof of the fuzzy optimality 
onditionsin the next theorem is largely based on applying the fuzzy 
al
ulus rules forFré
het normals, subgradients, and 
oderivatives and on dual neighborhood 
har-a
terizations of the Lips
hitzian and metri
 regularity properties for nonsmoothmappings taken from Mordukhovi
h (2006a). Note that fuzzy 
al
ulus rulesprovide representations of the underlying normals/subgradients/
oderivativesof 
ompositions at the referen
e points via those at points that are arbitrary
lose to the referen
e ones. Just for notational simpli
ity and 
onvenien
e, wesuppose in the formulation and proof of the next theorem that these arbitrary
lose points redu
e to the referen
e ones in question. It makes no di�eren
e forthe limiting pro
edure to derive the main ne
essary optimality 
onditions fordelay-di�erential in
lusions in what follows.Theorem 3 (approximate Euler-Lagrange 
onditions for delay-di�eren
e in
lusions). Let z̄N(·) be an optimal solution to problem (PN ) withany �xed N ∈ IN su�
iently large under the standing hypotheses (H1)�(H3).Denote Fj := F (·, ·, tj) and fj := f(·, ·, ·, tj) and assume, in addition, that Xis Asplund and that the fun
tions ϕ and fj are Lips
hitz 
ontinuous around
(x̄N

0 , x̄
N
k+1) and (x̄N

j , x̄
N
j−N , ȳ

N
j ), respe
tively, for j = 0, . . . , k. Consider thequantities





θN
j := 2

∫ tj+1

tj

∥∥∥
x̄N

j+1 − x̄N
j

hN

− ˙̄x(t)
∥∥∥ dt, j = 0, . . . , k,

σN
j := 2

∫ tj+1

tj

‖x̄N
j − x̄(t)‖ dt, j = −N, . . . ,−1.

(5.9)Then there exists a number γ > 0 independent of N su
h that for any sequen
esof positive numbers εN → 0 as N → ∞ there are multipliers λN ≥ 0 andsequen
es of the dis
rete adjoint ar
s pN
j ∈ X∗ (j = 0, . . . , k + 1), and qN

j ∈
X∗ (j = −N, . . . , k + 1), satisfying the following relationships:�the nontriviality 
ondition

λN + ‖pN
k+1‖ ≥ γ, (5.10)� the approximate Euler-Lagrange in
lusion





(pN
j+1 − pN

j

hN

,
qN
j−N+1 − qN

j−N

hN

,−
λNθN

j

hN

aN
j + pN

j+1 + qN
j+1

)

∈ λN ∂̂f(x̄N
j , x̄

N
j−N , ȳ

N
j , tj) + N̂((x̄N

j , x̄
N
j−N , ȳ

N
j ); gphFj)

+εNIB
∗ with some aN

j ∈ IB∗, j = 0, . . . , k,

(5.11)
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onditions





−
qN
j+1 − qN

j

hN

− λN
σN

j

hN

bNj ∈ N̂(x̄N
j ;C(tj)) + εNIB

∗with some bNj ∈ IB∗, j = −N, . . . ,−1,

qN
j = 0, j = k −N + 1, . . . , k + 1,

(5.12)� and the approximate transversality in
lusion
(pN

0 + qN
0 ,−p

N
k+1) ∈ λN ∂̂ϕ(x̄N

0 , x̄
N
k+1) + N̂((x̄N

0 , x̄
N
k+1); ΩN ) + εNIB

∗.(5.13)Proof. Consider problem (PN ) in the equivalent mathemati
al programmingform (5.1) for the de
ision variable z ∈ Z in (5.2) with the initial data de-�ned in (5.3)�(5.8). Given ǫ > 0 in (3.5), take N ∈ IN so large that 
onstraints(3.5) hold as stri
t inequalities, whi
h is ensured by Theorem 2. Then all theinequality 
onstraints in (5.4) are ina
tive at the optimal solution
z̄N := (x̄N

−N , . . . , x̄
N
k+1, ȳ

N
0 , . . . , ȳ

N
k )

= (x̄N (t−N ), . . . , x̄N (tk+1), ȳ
N(t0), . . . , ȳ

N(tk))to (PN ), and thus the fun
tions φj , j = 1, . . . , k + 1, 
an be ignored in thearguments below.Let us examine the following two mutually ex
lusive 
ases in the proof of thetheorem, whi
h 
omplement ea
h other.Case 1. Assume that the operator 
onstraint mapping g : XN+2k+3 →
Xk+1 in (5.5) is metri
ally regular at z̄N relative to the set

Θ :=

k+1⋂

j=−N

Θj , (5.14)with Θj taken from (5.6)�(5.8), in the sense that there is a 
onstant µ > 0 anda neighborhood V of z̄N su
h that the distan
e estimatedist(z;S) ≤ µ ‖g(z)− g(z̄N)‖ for all z ∈ Θ ∩ Vwith S :=
{
z ∈ Θ | g(z) = g(z̄N)

} is satis�ed. Then, by Io�e's exa
t penal-ization theorem (see, e.g., Theorem 5.16 in Mordukhovi
h, 2006b), we 
on
ludethat z̄N is a lo
al optimal solution to the un
onstrained penalized problem:minimize φ0(z) + µ (‖g(z)‖ + dist(z; Θ))for all µ > 0 su�
iently large. It easily follows from 
onstru
tion (4.7) of theFré
het subdi�erential that the Fermat generalized stationary 
ondition
0 ∈ ∂̂

(
φ0(·) + µ‖g(·)‖ + µ dist(·,Θ)

)
(z̄N ) (5.15)
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e εN ↓ 0 as N → ∞ and employing in (5.15) thefuzzy sum rule and then the formula for 
omputing Fré
het subgradients of thedistan
e fun
tion from, respe
tively, Theorem 2.33(b) and Proposition 1.95 inMordukhovi
h (2006a), we get
0 ∈ ∂̂φ0(z̄

N) +
k∑

j=0

∇gj(z̄
N)∗e∗j + N̂(z̄N ; Θ) + εNhNIB

∗, (5.16)for some e∗j ∈ X∗ satisfying
k∑

j=0

∇gj(z̄
N)∗e∗j

=
(
0, . . . , 0,−e∗0, e

∗

0 − e∗1, . . . , e
∗

k−1 − e∗k, e
∗

k,−hNe
∗

0, . . . ,−hNe
∗

k

)
(5.17)due to the spe
i�
 stru
ture of the operator 
onstraints (5.5) and the simple
hain rule for the 
omposition ‖g(z)‖ = (ψ ◦ g)(z) with ψ(v) := ‖v‖ and thesmooth mapping g from (5.5).To pro
eed further, we apply to the set Θ in (5.14) the fuzzy interse
tionrule from Lemma 3.1 in Mordukhovi
h (2006a) ensuring that

N̂(z̄N ; Θ) ⊂ N̂(z̄N ; Θ−N) + . . .+ N̂(z̄N ; Θk+1) + εNhNIB
∗.Taking into a

ount the sum stru
ture of 
ost fun
tional φ0 in (5.3) and thespe
i�
 forms of the terms therein, we get from the afore-mentioned fuzzy sumrule that

∂̂φ0(z̄
N ) ⊂ ∂̂ϕ(x̄N

0 , x̄
N
k+1) + 2‖x̄N

0 − x̄(a)‖IB∗

+

−1∑

j=−N

[∫ tj+1

tj

2‖x̄N
j − x̄(t)‖ dt

]
IB∗ + hN

k∑

j=0

∂̂f(x̄N
j , x̄

N
j−N , ȳ

N
j , tj)

+
k∑

j=0

[∫ tj+1

tj

2‖ȳN
j − ˙̄x(t)‖ dt

]
IB∗ + εNhNIB

∗,where the Fré
het subdi�erential of the fun
tion f is 
onsidered with respe
t ofits all but t variables, and where the 
lassi
al relationship ∂‖ · ‖2(x) ⊂ 2‖x‖IB∗is used together with the subdi�erentiation formula under the integral sign in(5.3) well known from 
onvex analysis. Substituting the latter relationships into(5.16) and adjusting εN if ne
essary, we arrive at
0 ∈ ∂̂ϕ(x̄N

0 , x̄
N
k+1) + 2‖x̄N

0 − x̄(a)‖IB∗ +
−1∑

j=−N

[∫ tj+1

tj

2‖x̄N
j − x̄(t)‖ dt

]
IB∗

+hN

k∑

j=0

∂̂f(x̄N
j , x̄

N
j−N , ȳ

N
j , tj) +

k∑

j=0

[∫ tj+1

tj

2‖ȳN
j − ˙̄x(t)‖ dt

]
IB∗ (5.18)
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+

k∑

j=0

∇gj(z̄
N )∗e∗j +

k+1∑

j=−N

N̂(z̄N ; Θj) + εNhNIB
∗.To elaborate the relationships in (5.18), let z∗j = (x∗

−N,j , . . . , x
∗

k+1,j , y
∗

0,j , . . . ,

y∗k,j) and observe from the set stru
tures in (5.6) that for any z∗j ∈ N̂(z̄N ; Θj),
j = −N, . . . ,−1, all but one 
omponents of z∗j are zero with the remainingone satisfying x∗j,j ∈ N̂(x̄N

j ;C(tj)), j = −N, . . . ,−1. Similarly the relationships
z∗j ∈ N̂(z̄N ; Θj) for j = 0, . . . , k and z∗k+1 ∈ N̂(z̄N ; Θk+1) imply that

(x∗j,j , x
∗

j−N,j , y
∗

j,j) ∈ N̂((x̄N
j , x̄

N
j−N , ȳ

N
j ); gphFj) for j = 0, . . . , k,

(x∗0,k+1, x
∗

k+1,k+1) ∈ N̂((x̄N
0 , x̄

N
k+1); ΩN )

(5.19)with all the other 
omponents of z∗j , j = 0, . . . , k+ 1, equal to zero. Combiningthese relationships with (5.17) and (5.18) and using the notation
(uN

0 , u
N
k+1) ∈ ∂̂ϕ(x̄N

0 , x̄
N
k+1), (vN

j , κ
N
j−N , w

N
j ) ∈ ∂̂f(x̄N

j , x̄
N
j−N , ȳ

N
j , tj),and (5.9) for (θN

j , σ
N
j ) with ȳN

j = (x̄N
j+1 − x̄N

j )/hN due to g(z̄N) = 0 in (5.5),we arrive at





−x∗j,j − x∗j,j+N ∈ hNκ
N
j + σN

j IB
∗ + εNhNIB

∗, j = −N, . . . ,−1,

−x∗j,j − x∗j,j+N ∈ hNκ
N
j + hNv

N
j + e∗j−1 − e∗j + εNhNIB

∗,

j = 1, . . . , k −N,

−x∗j,j ∈ hNv
N
j + e∗j−1 − e∗j + εNhNIB

∗, j = k −N + 1, . . . , k,

−y∗j,j ∈ hNw
N
j + θN

j IB
∗ − hNe

∗

j + εNhNIB
∗, j = 0, . . . , k,

−x∗k+1,k+1 ∈ uN
k+1 + e∗k + εNhNIB

∗,

−x∗0,0 − x∗0,k+1 ∈ uN
0 + hNκ

N
0 + 2‖x̄N

0 − x̄(a)‖IB∗

+hNv
N
0 − e∗0 + εNhNIB

∗,

(5.20)
where (x∗j,j , x

∗

j−N,j , y
∗

j,j) and (x∗0,k+1, x
∗

k+1,k+1) satisfy (5.19). Further, let





p̃N
j := e∗j−1 for j = 1, . . . , k + 1,

q̃N
j := κN

j +
x∗j,j+N

hN

for j = −N, . . . , k −N,

q̃N
j := 0 for j = k −N + 1, . . . , k + 1

(5.21)and de�ne the the adjoint dis
rete traje
tories (pN
j , q

N
j ) by





qN
k+1 := 0, qN

j := qN
j+1 − q̃N

j hN for j = −N, . . . , k + 1,

pN
0 := uN

0 + x∗0,k+1 − qN
0 ,

pN
j := p̃N

j − qN
j hN for j = 1, . . . , k + 1.

(5.22)It is easy to 
he
k that qN
j = 0 for j = k −N + 1, . . . , k + 1. Combining �nallythe relationships and notation (5.19)�(5.22), we get the optimality 
onditions
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ontrol of delay-di�erential in
lusions in in�nite dimensions 417(5.10)�(5.13) of the theorem with λN = 1 along an arbitrarily 
hosen sequen
e
εN ↓ 0 as N → ∞. This 
ompletes the proof in Case 1.Case 2. It remains to 
onsider the situation when the mapping g from (5.5)is not metri
ally regular at z̄N relative to the set Θ. In this 
ase the restri
tionof g on Θ de�ned by

gΘ(z) :=

{
g(z) if z ∈ Θ,
∅ otherwise (5.23)is not metri
ally regular around z̄N in the standard sense. Pi
king again anarbitrary sequen
e εN ↓ 0 as N → ∞ and using the 
hara
terization of themetri
 regularity property from Theorem 4.5 in Mordukhovi
h (2006a), for any�xed N ∈ IN we �nd z ∈ z̄N + εNIB and e∗ = (e∗0, . . . , e

∗

k) ∈ (X∗)k satisfyingthe relationships
‖e∗‖ > 1 and 0 ∈ D̂∗gΘ(z)(e∗). (5.24)Taking now into a

ount the stru
ture of the mapping gΘ in (5.23) and applyingthe 
oderivative sum rule for (4.5) from Theorem 1.62 in Mordukhovi
h (2006a)and then the afore-mentioned interse
tion rule for Fré
het normals to Θ in (5.9),we get
0 ∈

k∑

j=0

∇gj(z)
∗e∗j +

k+1∑

j=−N

N̂(zj ; Θj) + εNhNIB
∗with some zj ∈ Θj∩(z+εNIB). Thus there are z∗j ∈ N̂(z̄N ; Θj), j = −N, . . . , k+

1, su
h that
−

k+1∑

j=−N

z∗j ∈
k∑

j=0

∇gj(z̄
N)∗e∗ + εNhNIB

∗ (5.25)It follows from (5.25), (5.17), and the 
orresponding arguments in Case 1 thatthere are (x∗j,j , x
∗

j−N,j , y
∗

j,j) and (x∗0,k+1, x
∗

k+1,k+1) satisfying (5.19), for whi
h




−x∗j,j − x∗j,j+N ∈ εNhNIB
∗, j = −N, . . . ,−1,

−x∗j,j − x∗j,j+N ∈ e∗j−1 − e∗j + εNhNIB
∗, j = 1, . . . , k −N,

−x∗j,j ∈ e∗j−1 − e∗j + εNhNIB
∗, j = k −N + 1, . . . , k,

−y∗j,j ∈ hNe
∗

j + εNhNIB
∗, j = 0, . . . , k,

−x∗k+1,k+1 ∈ e∗k + εNhNIB
∗,

−x∗0,0 − x∗0,k+1 ∈ −e∗0 + εNhNIB
∗.De�ning further the adjoint dis
rete traje
tories pN

j for j = 0, . . . , k + 1 and
qN
j for j = −N, . . . , k + 1 in the same way as in Case 1, we justify by similar



418 B. MORDUKHOVICH, D. WANG, L. WANGarguments the validity of the approximate Euler-Lagrange in
lusion (5.11), theapproximate tail 
onditions (5.12), and the approximate transversality in
lusion(5.13) with λN = 0. Let us now verify that the lo
al Lips
hitz 
ontinuity of Fassumed in (H2) implies the ful�llment of the nontriviality 
ondition (5.10).First we show that there exist two positive numbers α1 and α2 independentof N su
h that
‖pN

j ‖ ≤ α1‖p
N
k+1‖ + α2εN , j = 0, . . . , k. (5.26)Observe that the approximate Euler-Lagrange in
lusion (5.11) with λN = 0 
anbe equivalently written in terms of the 
oderivative (4.5) as

(pN
j+1 − pN

j

hN

,
qN
j−N+1 − qN

j−N

hN

)
∈ D̂∗F (x̄N

j , x̄
N
j−N , ȳ

N
j )(−pN

j+1−q
N
j+1)+εNIB

∗.Then, using the neighborhood 
hara
terization of the lo
al Lips
hitzian propertyfrom Theorem 4.7 in Mordukhovi
h (2006a), we get that
∥∥∥
(pN

j+1 − pN
j

hN

,
qN
j−N+1 − qN

j−N

hN

)∥∥∥ ≤ LF ‖p
N
j+1+q

N
j+1‖+εN , j = 0, . . . , k, (5.27)where LF is the Lips
hitz 
onstant of F from (2.2) in (H2). Noting that qN

j+1 = 0for j = k −N, . . . , k by (5.12), we have for these indi
es that
‖(pN

j , q
N
j−N )‖ ≤ LFhN‖pN

j+1‖ + ‖(pN
j+1, q

N
j−N+1)‖ + hNεN

≤ (LFhN + 1)‖(pN
j+1, q

N
j−N+1)‖ + hNεN

≤ (LFhN + 1)2‖(pN
j+2, q

N
j−N+2)‖ + (LFhN + 1)hNεN + hNεN

≤ . . .

≤ (LFhN + 1)k+1−j [‖pN
k+1‖ + εN/LF ]

≤ (LFhN + 1)N+1[‖pN
k+1‖ + εN/LF ] ≤ eLF ∆[‖pN

k+1‖ + εN/LF ].For the indi
es j = k− 2N, . . . , k−N − 1 we get from (5.27) and the estimatesabove that
‖(pN

j , q
N
j−N )‖ ≤ LFhN‖pN

j+1 + qN
j+1‖ + ‖(pN

j+1, q
N
j−N+1)‖ + hNεN

≤ (LFhN + 1)‖(pN
j+1, q

N
j−N+1)‖

+ LFhN (eLF ∆‖pN
k+1‖ + eLF ∆εN/LF ) + hNεN + (LFhN + 1)hNεN

+ (LFhN + 1)LFhN (eLF ∆‖pN
k+1‖ + eLF ∆εN/LF )

≤ . . .

≤ (LFhN + 1)k+1−j [‖(pN
k+1‖ + eLF ∆‖pN

k+1‖ + eLF ∆εN/LF + εN/LF ]

≤ eLF ∆(1 + eLF ∆)[‖pN
k+1‖ + εN/LF ].
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ontrol of delay-di�erential in
lusions in in�nite dimensions 419After repeating the above pro
ess �nitely many times we arrive at the desiredestimate (5.26).To 
on
lude now the proof of the nontriviality 
ondition (5.10) along with(5.11)�(5.13) and λN = 0, suppose the opposite and then, taking a sequen
e
γm ↓ 0 as m→ ∞, 
hoose numbers Nm ∈ IN and ε̃m := εNm

> 0 su
h that
km := [1/γm], ε̃m ≤ γ2

m, and ‖pNm

km+1‖ ≤ γ2
m as m ∈ IN,where km is 
omputed by (2.4) for Nm, and where [·] stands for the greatestinteger less than or equal to the given real number. Then by (5.26) we have

km+1∑

j=1

‖pNm

j ‖ ≤ α1(km +1)γ2
m+α2ε̃m(km +1) ≤ 2(α1+α2)γm ↓ 0 as m→ ∞,whi
h 
ontradi
ts the negation of metri
 regularity (5.24) imposed in Case 2 andthus 
ompletes the proof of the theorem.6. Euler-Lagrange 
onditions for delay-di�erentialin
lusionsIn this se
tion we derive ne
essary optimality 
onditions for the given optimal so-lution x̄(·) to the original Bolza problem (P ). The proof is based on the passingto the limit from the ne
essary optimality 
onditions for the dis
rete approxi-mation problems (PN ) obtained in Se
tion 5. We keep assumptions (H1�(H3)and (H6), but instead of (H4) and (H5) impose their following modi�
ations:(H4') ϕ is Lips
hitz 
ontinuous on U ×U ; Ω = Ωa ×Ωb ⊂ X ×X , where Ωa is
ompa
t around x̄(a) while Ωb is 
losed around x̄(b).(H5') The integrand f(x, y, v, ·) is 
ontinuous for a.e. t ∈ [a, b] and boundeduniformly with respe
t to (x, y, v) ∈ U × (MCIB)× (MF IB); furthermore,there are numbers µ > 0 and Lf ≥ 0 su
h that f(·, ·, ·, t) is Lips
hitz
ontinuous on the set Aµ(t) from (H5) with 
onstraint Lf uniformly in

t ∈ [a, b].The next theorem establishes ne
essary optimality 
onditions in the extendedEuler-Lagrange form for the given optimal solution to the original problem (P )in terms of the limiting normals and subgradients of Se
tion 4 for the initial dataof (P ) 
omputed with respe
t to all but time variables along the referen
e opti-mal solution. Note that the optimality 
onditions obtained in the general 
aseof geometri
 endpoint 
onstraints in in�nite-dimensional state spa
es requirethe sequential normal 
ompa
tness assumption imposed on Ωb at the optimalendpoint x̄(b).Theorem 4 (extended Euler-Lagrange 
onditions for delay-di�erentialin
lusions). Let x̄(·) be an optimal solution to (P ) under hypotheses (H1)�(H3), (H4'), (H5'), and (H6). Assume in addition that both spa
es X and X∗



420 B. MORDUKHOVICH, D. WANG, L. WANGare Asplund, that Ωb is SNC at x̄(b), and that (P ) is stable with respe
t to relax-ation. Then there exist a number λ ≥ 0 and two absolutely 
ontinuous adjointar
s p : [a, b] → X∗ and q : [a − ∆, b] → X∗ su
h that the following 
onditionshold:�the extended Euler-Lagrange in
lusion
(ṗ(t), q̇(t− ∆)) ∈ clco

{
(u,w) | (u,w, p(t) + q(t))

∈ λ∂+f(x̄(t), x̄(t− ∆), ˙̄x(t), t) (6.1)
+N+((x̄(t), x̄(t− ∆), ˙̄x(t)); gphF (·, ·, t))

}
a.e. t ∈ [a, b],where the norm-
losure operation �
l� 
an be omitted when the state spa
e X isre�exive;�the optimal tail 
onditions{

〈q̇(t), x̄(t)〉 = min
c∈C(t)

〈q̇(t), c〉 a.e. t ∈ [a− ∆, a),

q(t) = 0, t ∈ [b− ∆, b];
(6.2)�the transversality in
lusion

(p(a) + q(a),−p(b)) ∈ λ∂ϕ(x̄(a), x̄(b)) +N(x̄(a); Ωa) ×N(x̄(b); Ωb); (6.3)� the nontriviality 
ondition
λ+ ‖p(b)‖ > 0. (6.4)Proof. We derive the optimality 
onditions of the theorem by passing to thelimit in the ne
essary optimality 
onditions obtained in Theorem 3 and usingthe strong 
onvergen
e of dis
rete approximations established in Theorem 2. Wea
tually need more: to justify a suitable 
onvergen
e of adjoint/dual elementsin the ne
essary optimality 
onditions for dis
rete approximations. It is done inwhat follows by employing the afore-mentioned 
oderivative 
hara
terization ofLips
hitz 
ontinuity, robustness of our limiting generalized di�erential 
onstru
-tions, and the imposed SNC property of the endpoint 
onstraint set togetherwith appropriate fa
ts of fun
tional analysis.Re
all again that the Asplund property of both spa
esX and X∗ ensures theRadon-Nikodým property of these spa
es. This implies, in parti
ular, that theabsolute 
ontinuity of the primal and adjoint ar
s in the setting of the theoremis equivalent to the ful�llment of the Newton-Leibniz formula (1.4) for thesear
s. Note also that the assumptions made in this theorem ensure the validityof all the assumptions made in both Theorem 2 and Theorem 3.Employing the ne
essary optimality 
onditions for (PN ) obtained in Theo-rem 3, we �nd sequen
es of numbers λN ≥ 0 and adjoint dis
rete traje
tories

pN
j and qN

j−N satisfying in
lusions (5.10)-(5.13) with some εN ↓ 0 as N → ∞.Observe that without loss of generality the nontriviality 
ondition (5.10) 
an beequivalently written as
λN + ‖pN

k+1‖ = 1 for all N ∈ IN, (6.5)
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lusions in in�nite dimensions 421sin
e the number γ > 0 in (5.10) is independent of N .Suppose, without loss of generality, that λN → λ ≥ 0 as N → ∞. Asabove, the notation x̄N (t), pN(t), and qN (t − ∆) indi
ates the pie
ewise linearextensions of the dis
rete ar
s to the 
orresponding 
ontinuous-time intervalswith their pie
ewise 
onstant derivatives ˙̄xN (t), ṗN (t), and q̇N (t − ∆). Basedon (5.9), de�ne their pie
ewise 
onstant extensions
θN (t) :=

θN
j

hN

aN
j for t ∈ [tj , tj+1), j = 0, . . . , k,

σN (t) :=
σN

j

hN

bNj for t ∈ [tj , tj+1), j = −N, . . . ,−1,and 
on
lude from the strong 
onvergen
e results of Theorem 1 that
∫ b

a

‖θN (t)‖ dt =
k∑

j=0

‖θN
j ‖ ≤ 2

k∑

j=0

∫ tj+1

tj

∥∥∥
x̄N

j+1 − x̄N
j

hN

− ˙̄x(t)
∥∥∥ dt

= 2

∫ b

a

‖ ˙̄xN (t) − ˙̄x(t)‖ dt → 0,

∫ a

a−∆

‖σN (t)‖ dt =
−1∑

j=−N

‖σN
j ‖ ≤ 2

−1∑

j=−N

∫ tj+1

tj

‖x̄N
j − x̄(t)‖ dt

= 2

∫ a

a−∆

‖x̄N (t) − x̄(t)‖ dt→ 0as N → ∞. Sin
e the strong L1 
onvergen
e of {θN(·)} and {σN (·)}, establishedabove, implies the a.e. 
onvergen
e of their subsequen
es, we suppose withoutloss of generality that
θN (t) → 0 a.e. t ∈ [a, b], σN (t) → 0 a.e. t ∈ [a− ∆, a] as N → ∞. (6.6)Further, let us estimate (pN (t), qN (t − ∆)) for large N . It follows from theapproximate Euler-Lagrange 
ondition (5.11) that for all j = 0, . . . , k we havethe in
lusions

(pN
j+1 − pN

j

hN

− λNvN
j ,

qN
j−N+1 − qN

j−N

hN

− λNκN
j−N ,

−
λNθN

j

hN

aN
j + pN

j+1 + qN
j+1 − λNωN

j

)

∈ N̂((x̄N
j , x̄

N
j−N , ȳ

N
j ); gphFj) + εNIB

∗with some (vN
j , κ

N
j−N , ω

N
j ) ∈ ∂̂f(x̄N

j , x̄
N
j−N , ȳ

N
j , tj) and aN

j ∈ IB∗. This implies



422 B. MORDUKHOVICH, D. WANG, L. WANGby (4.5) that
(pN

j+1 − pN
j

hN

− λNvN
j ,

qN
j−N+1 − qN

j−N

hN

− λNκN
j−N

)

∈ D̂∗Fj(x̄
N
j , x̄

N
j−N , ȳ

N
j )

(
λNωN

j +
λNθN

j

hN

aN
j − pN

j+1 − qN
j+1

)
+ εNIB

∗for these indi
es j, whi
h gives by the 
oderivative 
ondition for Lips
hitzianstability taken from Theorem 1.43 in Mordukhovi
h (2006a) that
∥∥∥
(pN

j+1 − pN
j

hN

− λNvN
j ,

qN
j−N+1 − qN

j−N

hN

− λNκN
j−N

)∥∥∥

≤ LF

∥∥∥λNωN
j +

λNθN
j

hN

aN
j − pN

j+1 − qN
j+1

∥∥∥ + εN , j = 0, . . . , k.

(6.7)The subdi�erential spe
i�
ation of the latter result for the 
ase of lo
ally Lips-
hitzian fun
tions ensures the estimates ‖(vN
j , κ

N
j−N , ω

N
j )‖ ≤ Lf for j = 0, . . . , k,whi
h implies by (6.7) and the approximate tail 
onditions in (5.12) that

‖(pN
j , q

N
j−N )‖ ≤ LF ‖λ

NθN
j ‖ + LFλ

NhN‖ωN
j ‖ + LFhN‖pN

j+1 + qN
j+1‖

+ ‖(pN
j+1, q

N
j−N+1)‖ + λNhN‖(vN

j , κ
N
j−N )‖ + hNεN

≤ LF ‖θ
N
j ‖ + (LF + 1)hNLf + (LFhN + 1)‖(pN

j+1, q
N
j−N+1)‖ + hNεN

≤ LF ‖θ
N
j ‖ + (LFhN + 1)LF‖θ

N
j+1‖

+ (LF + 1)hNLf + (LFhN + 1)(LF + 1)hNLf

+ (LFhN + 1)2‖(pN
j+2, q

N
j−N+2)‖ + (LFhN + 1)hNεN + hNεN ≤ . . .

≤ exp[LF (b− a)](1 + Lf(LF + 1)/LF + LF νN )

+ [(LFhN + 1)N − 1]εN/LFfor j = k −N, . . . , k, where
νN :=

∫ b

a

‖ ˙̄x(t) − ˙̄xN (t)‖ dt→ 0 as N → ∞by Theorem 2, and where [(LFhN +1)N −1]εN/LF → 0 by εN → 0 as N → ∞.The latter implies the uniform boundedness of the sequen
e {(pN
j , q

N
j−N )| j =

k − N, . . . , k} with respe
t to N ∈ IN , i.e., there is M1 > 0 independent of Nsu
h that
‖(pN

j , q
N
j−N )‖ ≤M1 for all j = k −N, . . . , k and N ∈ IN. (6.8)Thus, the the pie
ewise linear extensions pN(t) and qN (t − ∆) are uniformlybounded on [b− ∆, b].
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lusions in in�nite dimensions 423For j = k − 2N, . . . , k −N − 1, it follows from (6.7) and (6.8) that
‖(pN

j , q
N
j−N )‖ ≤ LF ‖λ

NθN
j ‖ + LFλ

NhN‖ωN
j ‖ + LFhN‖pN

j+1 + qN
j+1‖

+ ‖(pN
j+1, q

N
j−N+1)‖ + λNhN‖(vN

j , κ
N
j−N )‖ + hNεN

≤ LF ‖θ
N
j ‖ + (LFhN + hN )Lf + LFhNM1 + LFhN‖pN

j+1‖

+ ‖(pN
j+1, q

N
j−N+1)‖ + hNεN

≤ LF ‖θ
N
j ‖ + (LF + 1)hNLf + LFhNM1

+ (LFhN + 1)‖(pN
j+1, q

N
j−N+1)‖ + hNεN ,whi
h implies the uniform boundedness of the sequen
e {(pN

j , q
N
j−N )| j = k −

2N, . . . , k −N + 1} as N ∈ IN and hen
e the uniform boundedness of {(pN (t),
qN (t−∆))} on the interval [b− 2∆, b−∆]. Repeating the above pro
edure, we
on
lude that the sequen
e {(pN (t), qN (t − ∆))} is uniformly bounded on thewhole interval [a, b].To estimate (ṗN (t), q̇N (t− ∆)), we have from (6.7) that

‖(ṗN (t), q̇N (t− ∆))‖ =
∥∥∥
(pN

j+1 − pN
j

hN

,
qN
j−N+1 − qN

j−N

hN

)∥∥∥ + εN

≤ LF

∥∥∥λNωN
j +

λNθN
j

hN

aN
j − pN

j+1 − qN
j+1

∥∥∥ + λN‖(vN
j , κ

N
j−N )‖ + εN

≤ (LF + 1)Lf + LF (‖θN (t)‖ + ‖pN
j+1‖ + ‖qN

j+1‖) + εN , t ∈ [tj , tj+1),

(6.9)for all j = 0, . . . , k and N ∈ IN . Taking into a

ount (6.6) and the uniformboundedness of {(pN (t), qN (t − ∆))} as well as the RNP of both X and X∗,we apply the afore-mentioned Dunford theorem on the (sequential) weak 
om-pa
tness in L1([a, b];X∗) and 
on
lude with no loss of generality that bothsequen
es {ṗN(t)} and {q̇N(t − ∆)} weakly 
onverge in L1([a, b];X∗). Further-more, by ‖pN(b)‖ ≤ 1 as N ∈ IN due to (6.5) and the Asplund property of Xwe have that {pN(b)} is sequentially weak∗ 
ompa
t in X∗. Arguing now as inthe proof of Theorem 2 by using the Newton-Leibniz formula for pN (·) and theweak 
ontinuity of the Bo
hner integral as a linear operator from L1([a, b];X∗)to X∗, we get an absolutely 
ontinuous ar
 p : [a, b] → X∗ su
h that
{
pN (t) → p(t) weak∗ in X∗ for all t ∈ [a, b],
ṗN (·) → ṗ(·) weakly in L1([a, b];X∗) as N → ∞.

(6.10)Similarly, by taking into a

ount the se
ond tail 
ondition in (5.12), we �nd anabsolutely 
ontinuous ar
 q : [a− ∆, b] → X∗ su
h that q(t) satis�es the se
ondtail 
ondition on [b − ∆, b] in (6.2) and
{
qN (t− ∆) → q(t− ∆) weak∗ in X∗ for all t ∈ [a, b],
q̇N (· − ∆) → q̇(· − ∆) weakly in L1([a, b];X∗) as N → ∞.

(6.11)The �rst tail 
ondition on [a − ∆, a] in (6.2) follows by passing to the limit inthe 
orresponding one from (5.12), taking into a

ount the 
onvergen
e in (6.11)
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i�
 stru
ture of the normal 
one to 
onvexsets given in (4.3).To prove the extended Euler-Lagrange in
lusion (6.1) by passing to the limitin the approximate one (5.11), we rewrite the latter as
(ṗN (t), q̇N (t− ∆)) ∈

{
(u, v) |

(
u, v, pN(tj+1) + qN (tj+1) − λNθN

j a
N
j /hN

)

∈ λN ∂̂f(x̄(tj), x̄(tj − ∆), ˙̄xN (tj), tj) (6.12)
+N̂

(
(x̄N (tj), x̄

N (tj − ∆), ˙̄xN (t)); gphF (·, ·, tj)
)}

+ εNIB
∗for t ∈ [tj , tj+1), j = 0, . . . , k, and N ∈ IN . Observe that the weak 
onvergen
ein L1([a, b];X∗) of the derivatives ṗN (·) and q̇N (· − ∆) from (6.10) and (6.11)implies by the 
lassi
al Mazur theorem the strong 
onvergen
e in L1([a, b];X∗)of their 
onvex 
ombinations and hen
e the a.e. pointwise 
onvergen
e of (somesubsequen
es of) these 
ombinations on [a, b]. Using this, the weak∗ pointwise
onvergen
e in X∗ of {(pN (t), qN (t−∆))} from (6.10) and (6.11), the pointwise
onvergen
e of {θN (t)} from (6.6), the strong 
onvergen
e of { ˙̄xN (t)} from The-orem 2, and the 
onstru
tions of extended limiting normals and subgradientsfrom (4.8) and (4.9), we pass to the limit in (6.12) as N → ∞ and arrive at theextended Euler-Lagrange in
lusion (6.1).If X is re�exive, the 
losure operation in (6.1) 
an be omitted. Indeed, in there�exive 
ase weak and weak∗ topology agree and, furthermore, every boundedand 
onvex set is weakly 
ompa
t in X∗, being therefore automati
ally 
losedin the norm topology of X∗ due the afore-mentioned Mazur theorem. Hen
e,the arguments above allow us to drop the 
losure operation in the limiting
onvexi�
ation pro
edure due to the derivative estimates in (6.9).To derive the transversality in
lusion in (6.3), we pass to the limit in theapproximate one from (5.13) as N → ∞. Sin
e ΩN = Ω + ηIB in (5.13) with

ηN → 0 as N → ∞ by Theorem 1, we �rst employ the sum rule for Fré
hetnormals from Theorem 3.7(i) in Mordukhovi
h (2006a) and then pass to limitingnormals and subgradients in (6.3) by using the weak∗ 
onvergen
e of {pN(a)}and of {pN (b)} in X∗ and the simple formula for basi
 normals to the Cartesianprodu
t of sets.To 
omplete the proof of the theorem, it remains to verify the nontrivial-ity 
ondition (6.4) under the SNC assumption on Ωb at x̄(b). Suppose, on the
ontrary, that λ = 0 and p(b) = 0 for the limiting elements in the above pro
e-dure. Without loss of generality, assume that λN = 0 for all N ∈ IN . It followsfrom the arguments above that pN (b)
w∗

→ 0 as N → ∞ in this 
ase. By theapproximate transversality 
ondition (5.13) with λN = 0 we have that
−pN(b) ∈ N̂(x̄N (b); Ωb + ηNIB) + εNIB

∗.Applying then the afore-mentioned sum rule for Fré
het normals to the latterin
lusion and taking into a

ount its stru
ture, we �nd a sequen
e {p̃N} ⊂ X∗
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−p̃N ∈ N̂(x̄N (b); Ωb) and ‖p̃N − pN (b)‖ → 0 as N → ∞. (6.13)Thus, p̃N w∗

→ 0 and, by the assumed SNC property of Ωb at x̄(b), we get fromthe �rst relationship in (6.13) that ‖p̃N‖ → 0 as N → ∞. This implies by these
ond relationship in (6.13) that ‖pN(b)‖ = ‖pN(tk+1)‖ → 0 as N → ∞, whi
h
learly 
ontradi
ts the nontriviality 
ondition (6.5) for dis
rete approximations.This 
ompletes the proof of the theorem.7. Delay systems with fun
tional endpoint 
onstraintsIn the last se
tion of the paper we 
onsider a version of the generalized Bolzaproblem (P ) formulated in Se
tion 1, where endpoint 
onstraints of the geomet-ri
 type (1.3) are repla
ed by their fun
tional 
ounterpart given by �nitely manyequalities and inequalities with Lips
hitz 
ontinuous fun
tions. Let us denotethis problem by (P0) and des
ribe as follows, where for simpli
ity we 
on�neourselves to the 
ase of delay-di�erential in
lusions with �xed left endpoints:minimize J [x] := ϕ0(x(b)) +

∫ b

a

f(x(t), x(t − ∆), ẋ(t), t) dtover feasible ar
s x : [a−∆, b] → X as for (P ) in Se
tion 1 with ∆ > 0, subje
tto
ẋ(t) ∈ F (x(t), x(t − ∆), t) a.e. t ∈ [a, b], x(a) = x0 ∈ X,

x(t) ∈ C(t) a.e. t ∈ [a− ∆, a),

ϕi(x(b)) ≤ 0, i = 1, . . . ,m,

ϕi(x(b)) = 0, i = m+ 1, . . . ,m+ r.Given an optimal solution x̄(·) to (P0), we keep assumptions (H1)�(H3), (H5'),and (H6) while repla
e (H4) and (H4') by the following:(H4�) The 
ost fun
tion ϕ0 and all the endpoint 
onstraint fun
tions ϕi, i =
1, . . . ,m+ r, are lo
ally Lips
hitzian around x̄(b).The next theorem provides ne
essary optimality 
onditions for the givenoptimal solution x̄(·) to (P0) in the extended Euler-Lagrange form with thetransversality in
lusion expressed via the basi
 subgradients of the endpointfun
tions. Observe the di�erent subdi�erential treatments therein of the equality
onstraints versus those for the 
ost/inequality ones given by nonsmooth fun
-tions and also the fa
t that all multipliers λi, i = 0, . . . ,m+ r, are nonnegative.The main distin
tion between the results obtained for (P0) and those in Theo-rem 4 for (P ) is that we now do not impose the SNC assumption on the endpoint
onstraints. This is a remarkable spe
i�
 feature of the 
onstraints des
ribedby �nitely many equalities and inequalities with Lips
hitzian fun
tions.



426 B. MORDUKHOVICH, D. WANG, L. WANGTheorem 5 (extended Euler-Lagrange 
onditions for delay-di�erentialin
lusions with fun
tional endpoint 
onstraints). Let x̄(·) be an opti-mal solution to problem (P0) under hypotheses (H1)�(H3), (H4�), (H5'), and(H6). Assume in addition that both spa
es X and X∗ are Asplund and thatproblem (P0) is stable with respe
t to relaxation. Then there are multipliers
(λ0, . . . , λm+r) ∈ IRm+r+1 and absolutely 
ontinuous dual ar
s p : [a, b] → X∗and q : [a− ∆, b] → X∗ satisfying the following relationships:�the sign and nontriviality 
onditions

λi ≥ 0 for all i = 0, . . . ,m+ r, and m+r∑

i=0

λi 6= 0;�the 
omplementary sla
kness 
onditions
λiϕi(x̄(b)) = 0 for i = 1, . . . ,m;�the extended Euler-Lagrange in
lusion

(ṗ(t), q̇(t− ∆)) ∈ clco
{
(u,w) | (u,w, p(t) + q(t)) ∈ λ∂+f(x̄(t), x̄(t− ∆), ˙̄x(t), t)

+N+((x̄(t), x̄(t− ∆), ˙̄x(t)); gphF (·, ·, t))
}

a.e. t ∈ [a, b],where the norm-
losure operation 
an be omitted when the state spa
e X isre�exive;�the optimal tail 
onditions
{

〈q̇(t), x̄(t)〉 = min
c∈C(t)

〈q̇(t), c〉 a.e. t ∈ [a− ∆, a),

q(t) = 0, t ∈ [b− ∆, b];�the transversality in
lusion
−p(b) ∈

m∑

i=0

λi∂ϕi(x̄(b)) +

m+r∑

i=m+1

λi

[
∂ϕi(x̄(b)) ∪ ∂(−ϕi)(x̄(b))

]
.Proof. (Sket
h of the proof) Let us dis
uss the following two s
hemes to justifythe formulated optimality 
onditions. The �rst one goes in the dire
tion devel-oped by Mordukhovi
h (2007) for the 
ase of nondelayed autonomous problemsgoverned by evolution/di�erential in
lusions in in�nite dimensions. It is basedon the 
onstru
tion of dis
rete approximations that largely exploits the Lips-
hitzian nature of the �nitely many equality and inequality endpoint 
onstraintsimposed in (P0) and then on passing to the limit from dis
rete approximationswith taking into a

ount spe
i�
 features of subgradients of Lips
hitzian fun
-tions. Implementing this s
heme in the 
ase of the delay-di�erential systemsunder 
onsideration and employing the above developments of this paper forthe delayed in
lusions, we arrive at the ne
essary optimality 
onditions for (P0)formulated in the theorem.
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ond s
heme exploited in the proof of Corollary 6.24 in Mordukhovi
h(2006b) for the 
ase of nondelayed systems is based on employing SNC 
al
ulusresults for endpoint 
onstraint sets given by �nitely many equalities and inequal-ities. It is proved in fa
t that su
h sets do exhibit the SNC property (whi
h isstrongly related to the more 
onventional �nite 
odimension property in thissetting) under some quali�
ation 
onditions that are extensions of the 
lassi-
al Mangasarian-Fromovitz 
onstraint quali�
ation to the 
ase of Lips
hitzianfun
tions. On the other hand, the absen
e of the afore-mentioned 
onstraintquali�
ation (when the SNC property may be violated) leads us to the abnor-mal 
ase of the transversality in
lusion also 
overed by the theorem.Referen
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