Control and Cybernetics

vol. 37 (2008) No. 2

Optimal control of delay-differential inclusions with
multivalued initial conditions in infinite dimensions*

by
Boris S. Mordukhovich', Dong Wang? and Lianwen Wang?

! Department of Mathematics, Wayne State University,
Detroit, MI, 48202, USA
2 Department of Mathematics and Computer Science,
Fayetteville State University,

Fayetteville, NC, 28301, USA
3Department, of Mathematics and Computer Science,
University of Central Missouri,
Warrensburg, MO, 64093, USA

e-mail: boris@math.wayne.edu, lwang@ucmo.edu, dwang@uncfsu.edu

Abstract: This paper is devoted to the study of a general class
of optimal control problems described by delay-differential inclu-
sions with infinite-dimensional state spaces, endpoints constraints,
and multivalued initial conditions. To the best of our knowledge,
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approximate in an appropriate sense the original continuous-time
problem of dynamic optimization; (b) deriving necessary optimal-
ity conditions for the approximating discrete-time problems by re-
ducing them to infinite-dimensional problems of mathematical pro-
gramming and employing then generalized differential calculus; (c)
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1. Introduction, problem formulation, and discussions

The primary objective of this paper is to study a general class of optimal con-
trol problems governed by constrained delay-differential inclusions in infinite-
dimensional spaces. The main problem of our study is the generalized Bolza
problem (P) governed by delay-differential inclusions in infinite dimensions with
endpoint constraints and multivalued initial conditions formulated as follows.
Let X be a Banach state space, let [a,b] C IR be a fixed time interval, and let
x: [a—A,b] — X be a feasible trajectory/arc of the delay-differential inclusion

z(t) € Fz(t),z(t — A),t) a.e.t € [a,bl, (1.1)
z(t) € C(t) ae. tela—A,a),
(z(a), (b)) € Q C X2 (1.3)

with a given time delay A > 0, where F: X X X X [a,b] = X and C: [a —
A, a] = X are set-valued mappings defining the system dynamics and the initial
state conditions, respectively, and where the set Q C X? defines the endpoint
constraints. By a feasible arc above we mean a mapping x: [a — A, b] — X that
is summable on [a — A, a], Fréchet differentiable for a.e. t € [a, 1], satisfying the
Newton-Leibniz formula

z(t) = z(a) + /t #(s)ds for all t € [a,b] (1.4)

and all the constraints in (1.1)—(1.3), where the integral in (1.4) is taken in the
Bochner sense. It is well known that for X = IR" the a.e. Fréchet differentia-
bility and Newton-Leibnitz requirements on z(t),a < ¢ < b, can be equivalently
replaced by its absolute continuity in the standard sense. In fact, there is a full
description of Banach spaces, where this equivalence holds true: they are spaces
satisfying the so-called Radon-Nikodym property (RNP); see, e.g., Diestel and
Uhl (1977). The latter property is fulfilled, in particular, in any reflexive space.

Given now the endpoint/Mayer cost function ¢: X x X — IR and the inte-
grand/Lagrangian f: X x X x X x [a,b] — IR, we consider the Bolza functional

b
J[z] :== ¢(z(a), z(b)) +/ flz(t),z(t — A),&(t),t)dt (1.5)

and formulate the dynamic optimization/optimal control problem (P) as
minimize J[z| subject to (1.1) — (1.3) (1.6)

over feasible arcs z: [a— A, b] — X assuming that J[x] > —oo for all the feasible
arcs and there is at least one feasible z(-) with J[z] < oco.

Note that the generalized Bolza problem (P) unifies a number of particular
problems of dynamic optimization (of Mayer type, of Lagrange type, etc.) and
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contains conventional parameterized forms of optimal control problems governed
by controlled delay-differential equations of the type

x(t) = glx(t), z(t — A),u,t), welU, ae.t€lab]. (1.7)

Besides other advantages and, of course, higher level of generality of model (1.1)
in comparison with that of (1.7), the direct inclusion description (1.1) allows
us to cover the closed-loop case U = U(x) in (1.7), which is among the most
challenging in control theory and the most important for applications. Note
also that the presence of the set-valued mapping C(-) defined on the initial
time interval [a — A, a) in (1.2) is a specific feature of delay-differential systems
providing an additional source for optimizing the cost functional (1.5) by a
choice of the initial condition z(t) € C(t) on [a — A, a).

The problem (P) under consideration has been studied by Mordukhovich and
L. Wang (2003) in the case of finite-dimensional state spaces X = IR"™; see also
the references therein for previous developments on finite-dimensional delay-
differential inclusions as well as the books by Mordukhovich (2006b), Smirnov
(2002), and Vinter (2000) for more discussions of various approaches and re-
sults on nondelayed counterparts of problem (P) and related finite-dimensional
control systems.

We are not familiar with any results on necessary optimality conditions for
optimal control problems governed by delay-differential inclusions and related
control systems with infinite-dimensional state spaces, even in the case of fixed
initial conditions C(t) = {c(t)} in (1.2). On the other hand, there are recent
developments by Mordukhovich (2006b, 2007) on infinite-dimensional control
systems governed by nondelayed evolution/differential inclusions of type (1.1)
with A = 0. We also refer the reader to related (while different) developments in
Mordukhovich and D. Wang (2005) concerning semilinear evolution inclusions
of the type

(t) € Ax(t) + F(z(t), 1), (1.8)

where A: X — X is an unbounded generator of a Cy-semigroup, and where
solutions to (1.8) are understood in the mild sense. The main approach used
in this paper to derive necessary conditions for optimal solutions to the dy-
namic optimization problem (P) under consideration is the method of discrete
approzimations suggested and implemented by Mordukhovich (2005) in the case
of nondelayed differential inclusions in finite-dimensional spaces. This method
was extended in Mordukhovich and L. Wang (2003, 2004) to various classes
of hereditary functional-differential inclusions in finite dimensions and then in
Mordukhovich (2006b, 2007) and in Mordukhovich and D. Wang (2005) to non-
delayed differential and evolution inclusions in infinite-dimensional spaces. The
version of the discrete approximation method developed in this paper for the
problem (P) under consideration consists of the following three major parts each
of which is certainly of its own interest:

(a) To construct a sequence of well-posed discrete approzimations of the
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given optimal solution to the original problem (P) in such a way that the ap-
proximating discrete-time problems admit optimal solutions, which strongly (a.e.
pointwisely with respect to derivatives) converge to the designated minimizer for
the original problem (P). This part of our method is closely related to sensitivity
analysis of the continuous-type optimization problem (P) for delay-differential
inclusions under consideration with respect to discrete approximations, involves
not only qualitative but also quantitative aspects of finite-difference approxima-
tions, and essentially relies on the possibility to strongly (and constructively)
approximate any feasible trajectory to the delay-differential inclusion by feasible
trajectories to its finite-difference counterparts.

(b) To derive necessary optimality conditions for approximating discrete-
time problems arising in the well-posed discrete approximation procedure de-
veloped in part (a). For any fixed step of approximation, the discrete-time ap-
proximating problems can be reduced to non-dynamic problems of constrained
mathematical programming formulated in infinite-dimensional spaces, since the
state space in the original problem (P) is infinite-dimensional. A characteristic
feature of each of these mathematical programming problems is a specific struc-
ture of the involved constraints that are generated by the dynamic constraints
of the original problem (P) in the process of discrete approximations. Due to
the essential infinite-dimensional nature of the mathematical programs under
consideration and in order to avoid additional assumptions in the subsequent
procedure of passing to the limit from discrete approximations, we concentrate
on deriving fuzzy necessary optimality conditions in the obtained problems of
mathematical programming and their discrete-time counterparts. This is done
on the basis of advanced tools of variational analysis and generalized differenti-
ation in infinite-dimensional spaces.

(c) The final step in the method of discrete approximations is the passage
to the limit from the obtained necessary optimality conditions in the approxi-
mating problems to derive verifiable ezact/pointbased necessary conditions for
the reference optimal solution to the original problem (P). This step, besides
employing and unifying the convergence/stability results of part (a) and the
fuzzy optimality conditions of part (b), requires the justification of an appro-
priate pointwise convergence of adjoint trajectories. This is also done on the
basis of advanced tools of infinite-dimensional variational analysis and robust
generalized differentiation; see below for more details.

The rest of the paper is organized as follows. In Section 2 we formu-
late and discuss the (fairly general) standing assumptions on the nonconvex
delay-differential inclusion (1.1) and the initial condition (1.2), then construct
a sequence of discrete approximations to (1.1) and (1.2) by delay-difference
inclusions and establish, in an arbitrary Banach space setting, a principal re-
sult on the strong W'!-approzimation of any feasible trajectory to the delay-
differential system (1.1) and (1.2) by a sequence of feasible trajectories to the
delay-difference inclusions constructed above.
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Section 3 concerns discrete approximations of the whole problem (P) deal-
ing not only with the underlying delay-differential inclusion, but also with the
endpoint constraints (1.2) and the cost functional (1.5). Assuming a certain
relazation stability of the original problem and given the reference optimal solu-
tion Z(-) to (P), we construct a well-posed sequence of discrete approximations
{(Pn)},N =1,2,..., to (P) in such a way, that each (Py) admits an optimal
solution Zy (), and the sequence {Zy(t)}, naturally extended to the whole inter-
val [a — A, b], Wht-strongly converges to Z(t) as N — oo. This result requires
appropriate geometric assumptions on the Banach state space X in question
that hold, in particular, when X is reflezive.

In Section 4 we briefly overview the basic constructions of dual-space gen-
eralized differentiation (normals to sets, coderivatives of set-valued mappings,
and subdifferentials of extended-real-valued functions) playing a fundamental
role in the subsequent variational analysis and deriving necessary optimality
conditions in discrete-time and continuous-time optimization problems under
consideration, since both classes are intrinsically nonsmooth. We also define
and discuss the so-called sequential normal compactness (SNC) property of sets,
which is automatic in finite dimensions while occurs to be a crucial element of
variational analysis in infinite-dimensional spaces.

Section 5 is devoted to deriving necessary optimality conditions for the dis-
crete approximation problems constructed in Section 3, which are governed
by delay-difference inclusions with endpoint constraints in infinite-dimensional
spaces. As mentioned above, we reduce these problems to mathematical pro-
grams in Banach spaces with specific types of constraints containing, in par-
ticular, an increasing number of set/geometric constraints with possibly empty
interiors generated by the discrete-time dynamics. The necessary optimality
conditions for such mathematical programs and delay-difference inclusions are
obtained in this section in approzimate/fuzzy forms, in contrast to the ex-
act/pointbased forms as in our earlier developments in finite dimensions. The
fuzzy results obtained do not require restrictive assumptions on the initial data
and are essentially more convenient for the subsequent passage to the limit while
deriving the main results of the paper on necessary optimality conditions for the
original delay-differential problem (P) in infinite-dimensional spaces. The de-
vice developed to establish these fuzzy necessary conditions for delay-difference
inclusions is rather involved in comparison, e.g., with the corresponding results
in finite dimensions and/or in the nondelayed case. Our approach is based on
using advanced tools of generalized differential calculus, coderivative character-
izations of metric regularity, etc.

In Sections 6 and 7 we establish the main results of the paper on neces-
sary optimality conditions of the extended Euler-Lagrange type for the original
generalized Bolza problem (P) governed by the constrained delay-differential
inclusions with infinite-dimensional state spaces. The final results obtained in
these sections are given in the required ezact/pointbased forms via the robust
generalized differential constructions reviewed in Section 4. These conditions
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are derived by passing to the limit from the fuzzy optimality conditions for the
approximating delay-difference problems obtained in Section 5 by using the con-
vergence/stability results for discrete approximations established in Sections 2
and 3. Along with these ingredients, the passage to the limit in the approxi-
mating necessary optimality conditions requires a delicate variational analysis
on the appropriate convergence of adjoint arcs; this is mainly done on the ba-
sis of generalized differential calculus and dual coderivative characterizations of
Lipschitzian stability.

The major difference between the frameworks and results of Section 6 and
Section 7 is that the former addresses the original problem (P) with endpoint
constraints of the general geometric type, while the latter/last section deals
with the particular (and more conventional in dynamic optimization) version of
the original problem, where endpoint constraints are given explicitly by finitely
many equalities and inequalities defined by Lipschitz continuous (in particular,
smooth) functions. The underlying result of Section 6 establishes the extended
Euler-Lagrange necessary optimality conditions for the general problem (P)
under the SNC assumption on the endpoint constraint set €2, while the result
of Section 7 does not impose this assumption or the like on the corresponding
constraint set described by Lipschitzian equalities and inequalities.

Our notation is basically standard; see Mordukhovich (2006a,b). Unless
otherwise stated, all the spaces considered are Banach with the norm ||-|| and the
canonical pairing (-, -) between the space in question, say X, and its topological
dual X* whose weak* topology is denoted by w*. We use the symbols B and IB*
to signify the closed unit balls of the space in question and its dual, respectively.
Given a set-valued mapping F': X = X7, its sequential Painlevé-Kuratowski
upper/outer limit at T is

Limsup F(x) = {x* € X*|EI sequences T — T, T wS o* with
xy € F(xy) as ke IN := {1,2,...}}.

2. Discrete approximations of delay-differential
inclusions

The main goal of this section is to construct well-posed discrete approxima-
tions of the original problem (P) that ensure the strong convergence of optimal
trajectories in the L'-norm on the “initial tail” interval [a — A,a] and in the
Whlnorm on the main interval [a,b]. Such a strong convergence plays a cru-
cial role in the subsequent study of delay-differential inclusions via their discrete
approximations.

Let Z(-) be a feasible trajectory to (1.1) with the initial condition (1.2). We
impose the following standing assumptions on the set-valued mappings F' and
C used through the whole paper:
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(H1) The mapping C: [a — A, a] = X is compact-valued, uniformly bounded
C(t) C McIB on [a— A, a] with some Mg > 0,
and Hausdorff continuous for a.e. t € [a — A, a].

(H2) There are an open set U C M¢IB and two positive numbers Ly and Mp
such that Z(t) € U for any t € [a, b], the sets F(z,y,t) are nonempty and
compact for all (z,y,t) € U x (McIB) X [a, b], and the following inclusions

F(z,y,t) C MpB for all (z,y,t) € U x (McIB) X [a,b], (2.1)
F(:Eluylat) - F(:I:27y27t) + LF(HJ;I - :I:2|| + ||y1 - y2||)B7 (22)

hold whenever (z1,41), (z2,y2) € U X (McIB) and t € [a,b].

(H3) F(z,y,-) is Hausdorff continuous for a.e. t € [a, b] uniformly in (z,y) €
U x (Mc]B)

Note that (2.2) signifies the local Lipschitz continuity of F(-,-,t) around
(Z(t),z(t — A)). To clarify the meaning of (H3), consider the so-called averaged
modulus of continuity T[F; h] for F(z,y,t) int € [a,b] when (z,y) € U x (McIB)
defined by

T[F;h] = /b o(F;t, h)dt, (2.3)

where o(F;t,h) := sup{w(F;z,y,t,h)| (x,y) € U x (McIB)} with

W(F; ‘I7y) t7 h)
= sup {haus(F(a:,y, t1), F(x, y,tg))‘ ti,t2 € [t —h/2,t+ h/2]N]a, b]},

and where haus(-,-) stands for the standard Hausdorff metric on the space of
nonempty and compact subsets of X. It follows from the result by Dontchev
and Farkhi (1989) (given in finite dimensions, while their proof works practically
without change in the infinite-dimensional setting under consideration) that if
F(x,y,-) is Hausdorff continuous for a.e. t € [a,b] uniformly in (z,y) € U x
(McIB), then 7[F;h] — 0 as h — 0. Of course, a simplified version of the
above definition applies to the average modulus of continuity 7[C;h] of the
multifunction C(-) on [a — A, a.

Let us now construct a discrete approxzimation of the delay-differential inclu-
sion (1.1) by replacing the time-derivative in (1.1) by the uniform Euler finite
difference:

i(t) ~ w, h— 0.
h
To formalize this procedure, for any natural number N € IN take t; := a+ jhy
for j =—N,...,k and tg41 := b, where hy := A/N and k € IN is defined by

a+khy <b<a+ (k+1)hy. (2.4)
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Note that t_y =a — A, tg = a, and hy — 0 as N — oo. Then the sequence of
delay-difference inclusions approximating (1.1) is constructed as follows:

{ $N(tj+1) € :EN(tj) + hNF(:EN(tj),IN(tj — A),tj) fOI“j =0,...,k,

ex(t;) € C(t;) forj = —N,...,—1. (2.5)

The collection of vectors {zn(¢;) | j = —N, ...,k + 1} satisfying (2.5) is called
a discrete trajectory. The corresponding collection

{xN(th})LN— xy(t;) i—o0,.. .7,{}

is called a discrete velocity. We also consider the extended discrete velocities
defined by

oy (tjt1) — an(t))

hn ’
It follows from the definition of the Bochner integral that the corresponding
extended discrete trajectories are given by

un (t) =

te [tj,tj+1), ]:0,,]{3

t
zn(t) = z(a) —|—/ un(s)ds, t€ [a,b],
on the main interval [a, b] and by

,TN(t) = ,TN(tj), te [tj,tj+1), ] = —N,...,—l,

on the initial tail interval [a — A,a). Observe that ©n(t) = vn(t) for a.e.
t € la,b].

The next theorem ensures the strong approximation of any feasible trajec-
tory Z(-) to the original delay-differential inclusion given in (1.1) and (1.2) by
extended feasible trajectories to its delay-difference counterpart (2.5) in the fol-
lowing sense: the approximation/convergence in the W1 ([a, b]; X )-norm

b
|z(-) w1 := max [|z(t)]| +/ ()| dt
t€la,b] a

on the main interval [a,b] and the one in the L'([a — A,a]; X)-norm on the
initial tail interval [a — A, a]. Note that the state space X in Theorem 1 is
arbitrary Banach and that the strong W' !-convergence of extended discrete
trajectories on [a,b] implies the not only their uniform convergence on this
interval but also the a.e. pointwise convergence of their derivatives on [a,b]
along some subsequence of {N} as N — oo.

THEOREM 1 (strong approximation by discrete trajectories). Let Z(-)
be a feasible trajectory to (1.1) and (1.2) under assumptions (H1)—(H3), where
X is an arbitrary Banach space. Then there is a sequence of solutions {zn(t;) |
j=—N,....,k+ 1} to the delay-difference inclusions (2.5) with zn(to) = Z(a)
such that the extended discrete trajectories zn(t), t € [a— A, b], converge to T(-)
strongly in L' on [a — A, a] and strongly in Wbt on [a,b] as N — oo.
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Proof. Given a feasible solution Z(t), t € [a — A, b], to the delay-differentiable
system (1.1) and (1.2), we have that z(-) € L'([a — A,a]; X) and that Z(-)
satisfies the Newton-Leibniz formula (1.4). Hence Z(-) and Z(-) are strongly
measurable on [a — A,a] and [a,b], respectively. Therefore, rearranging the
mesh points t;, if necessary, we can find a sequence of simple/step mappings
{wn ()} on [a — A,b] with wy(a) = Z(a) such that each wx(-) is constant on
the intervals [tj,t;41) as j = —N,...,k, that wn(-) — Z(-) on [a — A,qa] in
the norm of L!([a — A, a]; X), and that wy(-) — Z(-) on [a,b] in the norm of
L'([a,b]; X) as N — oo. In the estimates below we use the sequence

a b
Ex = /_A I2(t) - wn (0)] dt+/ 1#(t) —wn (D) dt — 0 as N — oo. (2.6)

Combining the afore-mentioned convergence of {wy(-)} with assumptions (H1)—
(H3), we easily find a constant M > 0 such that

b
/ lwn (t)]| dt < M for all N € IN.
a—A

Further, for each N € IN define the collection {un(t;) | j = —N,...,k+ 1} by
’U,N(tj) = ’U}N(tj), jZ—N,...,O,
un(tj+1) = un(tj) + hvwn(t;), §=0,...,k

The corresponding extensions of (2.7) to the intervals [a — A,a) and [a,b] are
given by

(2.7)

uN(t)

uN(t)

U]N(t), IEE [tjatj+l)5 .]: _Na' "5_15
(2.8)

i(a)—k/ wy(s)ds, tela,b].

a

To proceed, we observe that the Lipschitzian condition (2.2) can be equiva-
lently written via the distance function on X as

dist(w; F(z1,y1,t)) < dist(w; F(22,y2,t)) + Lr(([|z1 — 22| + [[y1 — v2l))
whenever w € X, x1,22 € U, y1,y2 € McIB, and ¢ € [a,b]. Furthermore, we
always have

dist(w; F'(z,y,t1)) < dist(w; F(x,y,t2)) + haus(F(z,y,t1), F(z,y,t2))

for any w € X, x € U, y € McIB and t1,t2 € [a,b]. Using now the average
modulus of continuity (2.3), we get the relationships

~1
ay :=hy Z diSt(’wN(tj);C(tj))
j=—N
k
+hy Y dist(wn (t;); Fun (t;), un (t; — A), ;)

=0



402 B. MORDUKHOVICH, D. WANG, L. WANG

+Z/”1 dist(wn (t;); Fun (t;), un(t; — A), 1)) dt

+7[C;hN]+ T[F;hN], N € IN.

Taking the constructions of {wy (), un ()} and the above estimates into account,
we arrive at

ay < (1+2Lp) Z s (t) — (0)] dt
j=—N "t

tit1

+;/tj

S(1+2LF)§N+2LF§N(b—a)+T[C;hN]+T[F;hN], N e N,

and conclude that ay — 0 as N — oo due to {y — 0 by (2.6), 7(C;hy) — 0
by (H1), and 7[F;hn] — 0 by (H3).

To continue the proof of the theorem, note that the collections {un(¢;)} built
upon {wn(t;)} in (2.7) may not be trajectories to the delay-difference inclusions
(2.5). Let us correct them in such a way that the resulting collections zn(t;)
satisfy (2.5) and possess the convergence properties stated in the theorem. We
construct the desired trajectories {zn(t;) | j = —N,...,k+ 1} for all N € IN
by using the following prozimal algorithm:

ZN(tj) = UN]. with ’UNj S O(tj),
|vn, —wn ()| = dist(wn (t;); C(t5)), j=—N,...,—1,
zn(to) = Z(a),

(Ihow(t5) = 3] + 2L ) dt +7(C3 h) + 7{Fs ]

2N (tjv1) = zan(tj) + hvon, with vn, € F(an(t)), 2n(t; — A),t5) (2.9)
and [lun, —wn (t))| = dist(wn (t)); F(zn(t5), 2n (t; = A), 1)),
j= O,...,k.

Obviously, zn(-) in (2.9) are feasible trajectories to (2.5). Now following the
proof of Theorem 6.4 in Mordukhovich (2006b) and adapting it to the case of
the delay-differential inclusions (1.1) with the set-valued initial conditions (1.2)
under consideration, we show that the extensions zn(t), t € [a — A, b], of the
above discrete trajectories converge to z(t) in the L!-norm topology on [a— A, a]
and in the W' '-norm topology on [a,b]. The proof is complete. "
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3. Discrete approximations of the generalized
Bolza problem

Our next step is to construct a sequence of well-posed discrete approximations
of the generalized Bolza problem (P) governed by delay-differential inclusions in
such a way that optimal solutions to discrete approximation problems strongly
converge in the sense specified below to a given optimal solution to the original
problem (P).

Let us fix an optimal solution Z(t), a — A <t < b, to problem (P), and let
{zn(®)}, a = A < t < b, be the sequence of the extended trajectories to the
delay-difference inclusions (2.5) approximating Z(-) in the sense of Theorem 1.
Denoting

NN = rn[a)z] lzn(t) —Z(t)|| — 0 as N — oo,

we construct the sequence of discrete approximation problems (Py) as follows:

minimize JN[xN] = p(zn(a), 2N (b)) + ||lzn(a) — Z(a)|?

tit1

+Z AR ORECIR

+ hy Z f(éUN(tj)axN(fj - A4), xN(th})”; xN(tj)afj) )

J+1)J\7 an(tj) j:(t)Hth

+z/

subject to the constraints

zn(tjr1) € an(t;) + AnF(zn(t)), zn(t; — A),t5), 5 =0,...,k,
zn(tj) € C(t;), j=—N,...,—1,

(zn(a),zn (b)) € Qn = Q+ v B,

lzn(ty) =zl <€, j=1,....k+1,

W W w w
U W N
T o ~—

(3.
(3.
(3.
(3.

where € > 0 is a small given number. In addition to the standing assumptions
(H1)-(H3) on (C,F) in (1.1) and (1.2) with some neighborhood U of Z(t),
a <t < b, we impose the following hypotheses on the behavior of ¢, f, and Q
around the optimal trajectory Z(-) under consideration:

(H4) The cost function ¢ is continuous on U x U, the constraint set 2 C X x X
is locally closed around (Z(a),Z(b)), and for some v > 0 the intersection
set proj;Q N (Z(a) + vIB) is compact in X, where proj; {2 stands for the
projection of 2 on the first space X in the product X x X.
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(H5) The integrand f(z,y,v,-) is continuous for a.e. t € [a,b] and bounded
uniformly with respect to (x,y,v) € U x (McIB) x (MpIB); furthermore,
there is p > 0 such that f(-,-,-, ) is continuous on the set

Au(t) = {(z,y,v) €U x (McBB) x (Mp + p)B| v € F(z,y,s)
for some s € (t — p,t]}

uniformly in ¢ € [a, b].

Along with the original problem (P), we consider its “relaxed” counterpart
constructed in the way well understood in optimal control and variational anal-
ysis; see, e.g., the books by Mordukhovich (2006b), Tolstonogov (2000), and
Warga (1972). Roughly speaking, the relaxed problem is obtained from (P) by
a convezification procedure with respect to the velocity variable. Let

fr(z,y,v,t) = f(z,y,v,t) + §(v; F(z,y,t)),

where §(-;0) stands for the indicator function of the set in question equal to
0 on © and to oo otherwise. Denote by fr(z,y,v,t) the biconjugate (second
conjugate) function to fr, i.e.,

fF(xvya vvt) = (fF)i*(%ya vvt)'

The relazed generalized Bolza problem (R) for the original problem (P) governed
by the delay-differential inclusions under consideration is defined as follows:

~

b ~
minimize J[z] := p(z(a), z(b)) —I—/ frz(t),z(t — A),z(t),t)dt (3.6)

over feasible trajectories z(t), a — A <t < b, of the same class as for (P) but
to the converified delay-differential inclusion

&(t) € clecoF (z(t),z(t — A),t) a.e. t € [a,b (3.7)

with the initial condition (1.2) and the endpoint constraints (1.3). As usual, the

symbol “clco” in (3.7) stands for the convex closure of the set in question.
Denoting by inf(P) and inf(R) the optimal/infimal values of the cost func-

tionals in problem (P) and (R), respectively, we clearly have inf(R) <inf(P). If

inf(P) = inf(R),

the original problem (P) is said to be stable with respect to relazation. This
property, which obviously holds under the converity assumptions with respect
to velocity, turns out also to be natural for broad classes of nonconvex problems
governed by delay-differential inclusions due to the inherent hidden convexity
of such systems, related, in fact, to the convexity of integrals for set-valued
mappings over nonatomic measures; see the afore-mentioned books by Mor-
dukhovich, Tolstonogov, and Warga for more results, discussions, and refer-
ernces.



Optimal control of delay-differential inclusions in infinite dimensions 405

The next theorem justifies the existence of optimal solutions Zx(-) to the
discrete approximation problems (Py) and their strong convergence to the ref-
erence optimal solution Z(-) to the original problem (P). The strong convergence
Zn(-) — Z(-) is understood in the same sense as in Theorem 1, i.e., as the norm
convergence in L' on the initial tail interval [a — A, a] and as the norm conver-
gence in W%t on the main interval [a,b]. In fact, under the assumptions made
in (H1) and (H2), the strong convergence above can be equivalently replaced by
that in the norm of L on [a — A, a] and in the norm of W1 on [a,b] for any
p > 1. We use this in what follows.

In contrast to Theorem 1 held in the general Banach state space X, the main
part (ii) of Theorem 2 established below requires additional geometric assump-
tions imposed on the Banach space X in question. Namely, we assume that
both spaces X and X* are Asplund, which automatically holds if X is reflexive.
Recall that a Banach space X is Asplund if every separable subspace of X has
a separable dual. This is a broad class of Banach spaces, well investigated in
geometric theory and widely applied to many aspects of variational analysis and
generalized differentiation; see the books by Borwein and Zhu (2005), Diestel
and Uhl (1977), and Mordukhovich (2006a,b) for more details, numerous results,
and discussions. Note a remarkable fact from the geometric theory of Banach
spaces: X is Asplund if and only if the dual space X* has the Radon-Nikodym
property.

Furthermore, part (ii) of the next theorem requires additional assumptions
on the initial data in the case of set-valued initial conditions (1.2):

(H6) either the set C(t) is a singleton {c(t)} for a.e. t € [a — A, a]; or the set
C(t) is convex for a.e. t € [a — A, al], the mapping F(x,y,t) is linear in y
for a.e. t € [a,a + A], and the function f(z,y,v,t) is convex in (y,v) for
a.e. t € a,a+ Al

THEOREM 2 (strong convergence of discrete optimal solutions). Let Z(-)
be the given optimal solution to the original Bolza problem (P) with the Banach
state space X, let {(Pn)} as N € IN be a sequence of discrete approzimation
problems constructed above, and let the basic assumptions (H1)—(H5) be satisfied.
Then the following assertions hold:
(i) For all N € IN sufficiently large the problem (Py) admits an optimal
solution.

(ii) If, in addition, both spaces X and X* are Asplund, problem (P) is stable
with respect to relazation, and if, furthermore, the assumptions in (H6) are
satisfied, then any sequence {Tn(-)} of optimal solutions to (Py) extended
to the continuous-time interval [a — A,b] converges to (1) as N — oo

in the L'-norm topology on [a — A, a] and in the W-norm topology on
[a, b].

Proof. To justify (i), we take ¢ > 0 in (3.5) such that Z(t) + eB C U for all
t € [a,b] and consider numbers N € IN so large that 7y < € along the numerical
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sequence {ny} used in the construction of problem (Py). Note that for such
large N € IN each problem (Py) has feasible solutions, since the trajectory
zn(+) from Theorem 1 satisfies all the constraints (3.2)—(3.5). The existence of
optimal solutions to (Py) follows now from the classical Weierstrass existence
theorem due to the compactness and continuity assumptions made in (H1)-(H5).

To justify the strong convergence assertion (ii) of the theorem, consider again
the sequence zy(-) that strongly approximates Z(-) by Theorem 1. Since each
zn(+) is feasible to (Py), we have

JN[,’EN] < JN[ZN] for all N € IN.

It can be shown similarly to the proof of Theorem 6.13 in Mordukhovich (2006b)
given for the case of nondelayed differential inclusions that

JInlzn] — J[Z] as N — oo

by (H5) and by using the Lebesgue dominated convergence theorem valid for
the Bochner integral in arbitrary Banach spaces. The above two relationships
easily yield that

limsup Jy[Zn] < J[Z] (3.8)

N—o0

under the the general assumptions of the theorem as in assertion (i).

Let us show next that (3.8) implies the strong convergence Zn(-) — Z(:)
claimed in (ii) under the additional assumptions made therein. Due the afore-
mentioned equivalence between the L'/W11 and L?/W1? convergence in the
theorem, we need to prove that

PN = /“ 1z (t) = 2(@)|* dt + ||zx (a) — 2(a)|®
a—A (39)

b
+/ llzn(t) —z(t)||*dt — 0

as N — oo. Arguing by contradiction, suppose that (3.9) does not hold. Then
there is a limiting point p of {px} such that p > 0. Suppose, without loss of
generality, that py — p > 0as N — oo.

To proceed further, observe that under the assumptions made in (ii) both
spaces X and X* enjoy the Radon-Nikodgm property (RNP). Indeed, the one
for X* is equivalent, as mentioned above, to the Asplund property of X, while
the Asplund property of X* ensures the RNP of X due to the latter fact and
the inclusion X C X**. Note also that both sequences {Zn(t)}, t € [a —
A,a], and {Zn(t)}, t € [a,b], are uniformly bounded by the assumptions (H1)
and (H2). Applying now to these sequences the Dunford theorem on the weak
compactness in, respectively, the spaces L!([a — A, b]; X) and L([a, b]; X) (see,
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e.g., Theorem IV.1 in Diestel and Uhl, 1977), we find Z(-) € L'(Ja — A, b]; X)
and v(-) € L*([a,b]; X) such that

zn () — Z(-) weakly in L*([a — A, a]; X), (3.10)
zn(-) — v(-) weakly in L'([a, b]; X) (3.11)

along a subsequence of N — oo, where all N € IN can be taken without loss
of generality. Note that each xy(-), a < t < b, satisfies the Newton-Leibniz
formula

t
a‘:N(t):j:N(a)—F/ Tn(s)ds for all t € [a,b] and N € IN. (3.12)

Furthermore, by compactness of the set {Zny(a)] N € IN} in X due to assump-
tion (H4) and by taking into account the relationships

Tn(t) =Zn(tj) € F(Tn(ty), Tn(t; — A), L)),
tE[tj,tj+1), jZO,...,k, NEW, (313)

and assumptions (H2) and (H3) imposed on F, we conclude that the sequence
{zn(-)} contains a convergent subsequence in the norm topology of C([a,b]; X);
see, e.g., Theorem 3.4.2 in Tolstonogov (2000). Since the Bochner integral is
well known to be weakly continuous as an operator from L*([a,b]; X) to X, we
pass to the limit in (3.12) as N — oo and deduce from (3.11) and from the
above discussions that there is Z(-) € C([a, b]; X) such that

Z(t) = Z(a) + /t v(s)ds for all t € [a,b], (3.14)

which immediately implies the absolute continuity and a.e. Fréchet differentia-
bility of Z(-) on [a, b] with v(¢) = Z(¢) for a.e. ¢ € [a,]].

Thus now we have the arc Z: [a — A,b] — X built in (3.10) and (3.14)
with v(-) constructed in (3.11). Observe, first of all, that Z(-) is a feasible arc
to the relazed problem (R). Indeed, the classical Mazur theorem in functional
analysis allows us to conclude from the weak convergence in (3.10) and (3.11)
that there are convex combinations of elements from {Zn(t)}, t € [a — A, a],
and {Zy(t)}, t € [a,b], which converge to Z(t) and v(t) = Z(t) strongly in
LY(Ja — A,a); X) and L*([a, b]; X), respectively. Hence, some subsequences of
these convex combinations (as usual we take the whole sequences without loss
of generality) converge almost pointwisely to #(t) and Z(t) on the corresponding
intervals. This immediately implies by passing to the limit in (3.3) for Z () due
to (H1) and the assumed convezity of the sets C(¢) in (H6) that Z(t) satisfies
(1.2), which is the initial condition for the relaxed problem (R). The fulfillment
of the endpoint constraints (1.3) for Z(-) can be easily justified by passing to the
limit in (3.4) and taking into account that ny — 0 as N — oco. Passing finally
to the limit in the discrete inclusions (3.13) and employing the a.e. pointwise
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convergence of the convex combinations of {Zy(-)} on [a — A,a] and {Zn(-)}
on [a, b] justified above as well as the convewified structure of the relaxed delay-
differential inclusion (3.7) under the linearity assumption on F in (H6) in the
case of the multivalued initial tail mapping C(-), we conclude that Z(-) satisfies
(3.7) on [a,b], and hence it is a feasible arc to (R).

Let us further proceed with the passage to the limit in the cost functional
(3.1) along the sequence {Zn(:)}. By the identity

S et

= Z/ a f@n(ty), an(t; — A), zn(ty), t;) dt,
j=0"1i

by structure (3.6) of the integrand in (R), by assumptions (H5) and (H6) on f,
and by the a.e. pointwise convergence of the convex combinations above we get

b
/ Fe(F(0), 5(t — A),5(0), ¢) dt

<hmmthZf(xN . _A)va_:N(thrl)—fN(tj),tj).

h
Jj=0 N

Observe further that the integral functionals

L] = /aA llo(t) —z(t)||?dt and Isv / [lo( (t)||*dt

are lower semicontinuous in the weak topology of L'([a — A, a]; X) and
L'([a,b]; X), respectively, due to the convewity of the integrands therein in v.
Since

_Z_ /:Hl ||jN(tj) - i‘(t)”?dt = /aiA ||fN(t) _ j(t)Hth and

i

the afore-mentioned weak lower semicontinuity implies that

/ﬂn’f() #(0)] dt<hmmfz/ |t and

/ |Z(t) — z(t)]| dt<hm1nf2/

a+1 N (1) —:z‘:(t)H2dt: /ab 2N (t) — Z(t)||*dt,

hn

_ 7 . 2
J“ v () —:f(t)H dt.
N
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Thus, passing to the limit in (3.1) and taking into account the construction of
pn in (3.9) and the upper estimate (3.8) established above, we arrive at the
inequalities
J#@ + p <liminf Jy[zn] < limsup Jy[zn] < J[7],
N—oo N—o0
which imply by the relazation stability of (P) and by assumed positivity of p > 0
that

~

J[7 < Jjz] = J]z). (3.15)

Since the arc Z(+) is proved to be feasible to the relaxed problem (R), the strict
inequality in (3.15) obviously contradicts the optimality of Z(-) to (R) and to
(P), and hence the positivity assumption on p was wrong. Thus we get the
convergence py — 0 in (3.9), which justifies the strong convergence of optimal
solutions Ty (-) — Z(+) as N — oo claimed in assertion (ii). This completes the
proof of the theorem. [

4. Tools of generalized differentiation

Theorem 2 on the strong convergence of discrete approximations makes a bridge
between the given optimal solution Z(-) to the original Bolza problem (P)
governed by the delay-differential inclusion (1.1) and optimal solutions to its
discrete-time counterparts (Py). This determines our further strategy: to de-
rive first the necessary conditions for the optimal solutions Zy (-) to the approx-
imating problems (Py) and then get those for the given optimal solution Z(-) to
the original problem (P) by passing to the limit from the ones for the discrete
approximations.

A characteristic feature of problems (P) and (Py) is their intrinsic nons-
moothness that is inevitably generated by the dynamic constraints in (1.1) and
(2.5), even in the case of smooth cost functions and endpoint constraints, al-
though we do not restrict our consideration to the smooth data in any of these
parts. To deal with nonsmoothness, we use appropriate tools of generalized dif-
ferentiation briefly reviewed in this section based on the book by Mordukhovich
(2006a), where the reader can find more details and discussions. We also refer
the reader to the recent books by Borwein and Zhu (2005) and by Schirotzek
(2007) for related and additional material on generalized differentiation. Since
the corresponding constructions and properties are used in this paper in the
Asplund space framework, their definitions are adjusted to this setting.

We start with generalized normals to nonempty sets that are locally closed
around the references points. Given Q C X, define the (basic, limiting, Mor-
dukhovich) normal cone to Q at € Q by

N(z;9Q) := Limsup N (; Q) (4.1)

Q _
r—x
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via the sequential Painlevé-Kuratowski outer/upper limit (1.9) of the prenor-
mal/Fréchet normal cone to Q at x € Q given by

timsup 0 < g, (12)

N(z;Q) = {3:* e X”
S

where the symbol x £ 7 indicates that z — 7 with = € . Note that for convex
sets 2 we have

N(,’E;Q)ZN(.’E;Q)Z{LL'* e X”

(", 2 —z) <0 forallz € Q}. (4.3)

Given a set-valued mapping F: X =Y and a point (Z,y) € gph F, define
the basic coderivative of F at (Z,y) and the Fréchet coderivative of F at this
point by, respectively,

D*F(z,7)(y") := {a* € X*| (¢, ~y*) € N((z,7);gph F)}, (4.4)
D*F(z,3)(y*) = {a* € X*| (¢*, —y*) € N((z,7): gph F)}. (4.5)

Note that both coderivatives (4.4) and (4.5) are positively homogeneous set-
valued mappings from Y* to X*. They both are single-valued and linear

D*F(z)(y*) = D*F(z)(y*) = {VF(z)*y"} forall y* € Y*

if F: X — Y is single-valued and C! around Z, or merely strictly differentiable
at this point.

Given now an ertended-real-valued function p: X — IR := (—oo, 00| finite
at Z, the (basic, limiting, Mordukhovich) subdifferential of ¢ at T is defined by

dp(z) := Limsup 0p(x), (4.6)

@ -
5T

where z 5 2 means that z — 2 with () — ¢(z), and where dy(z) stands for
the Fréchet subdifferential of ¢ at x defined by

liminf £ = 0@ = @hu=o) o}. (4.7)

e ]

-~

Op(z) = {:E* e X

In this paper, besides the generalized differential constructions defined above,
we also use some of their extended limiting versions for moving (parameter-
dependent) objects needed in the case of nonautonomous systems. Given a
moving set Q: T'= X, the extended normal cone to Q(t) at T € Q(¢) is defined
by

N, (z; Q1)) := Limsup N(a;Q(t)). (4.8)

(2,6)*5%(z,8)
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Given a parameter-dependent function ¢: X x T — IR finite at (Z,7), the ea-
tended subdifferential of o(-,t) at Z is defined by

a+90(557{> = Limsup 5¢($7t)7 (49)

(z,t)5(z,1)

where 0y(-, t) is taken with respect to z under fixed ¢. Obviously, the extended
normal cone (4.8) and the extended subdifferential (4.9) reduce to the basic
objects (4.1) and (4.6) if, respectively, () and ¢(-,t) are independent of ¢.

It is important to emphasize that the limiting constructions (4.1), (4.4),
(4.6), (4.8), and (4.9), being generally nonconvez, enjoy full calculi in the frame-
work of Asplund spaces, while the Fréchet-like constructions (4.2), (4.5), and
(4.7) satisfy “fuzzy calculus rules” used in the next section. All these results are
based on the fundamental extremal/variational principles of variational analysis.

An important ingredient of variational analysis in infinite-dimensional spaces
is the sequential normal compactness (SNC) property of sets defined as follows:
QC X is SNC at T € Q if, for any sequences {(z,,x})} C X x X* satisfying

Q =
Tp, — T as n— oo and ), € N(z,;Q) forall ne N,

we have the implication

2t 0= ||lz%|| = 0 as n — oo

This property automatically holds if either X is finite-dimensional, or € is a
conver set having nonempty relative interior with respect to its closed affine
hull of finite codimension. More generally, 2 enjoys the SNC property at T if
it is compactly epi-Lipschitzian (CEL) around this point in the sense of Bor-
wein and Strojwas, which is implied in turn by the epi-Lipschitzian property in
the sense of Rockafellar; see Subsection 1.1.4 of the afore-mentioned book by
Mordukhovich (2006a) for more details, references, and discussions. A crucial
feature of SNC is full calculus (i.e., comprehensive rules ensuring the preser-
vation of this property under various operations), which is also based on the
extremal/variational principles.

5. Necessary conditions for delay-difference inclusions

In this section we obtain necessary conditions for optimal solutions to the dis-
crete optimization problems (Py). We reduce these discrete-time dynamic opti-
mization problems to problems of mathematical programming with functional,
operator, and many geometric constraints. To conduct a local variational anal-
ysis of the mathematical programs and discrete optimization problems under
consideration, we to use the tools of generalized differentiation, discussed in
Section 4.
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It is easy to observe that each discrete optimization problem (Py), for any
fixed N € IN and the corresponding number k& € IN defined in (2.4), can be
equivalently written as the following mathematical program (M P):

minimize ¢o(z) subject to
¢](2) < 07 j: 17"'787

g(z) =0, (5.1)
2€0;CZ, j=1,...,1,
in the infinite-dimensional space Z := XNT2k+3 with respect to the “long”
variable
N N N N
2= (aNy, . N Ly, oy
(22n k+1>Y0 k) (5.2)

= (‘IN(t*N)a ceey :EN(tk+l)7yN(t0)a ceey yN(tk)) €z
subject to, respectively, inequality constraints defined by the functions ¢;, op-
erator constraints defined by the mappings g whose image space is infinite-
dimensional, and the increasing number of geometric constraints defined by the
sets ©; particularly generated by the delay-difference dynamics. The initial
data (¢;,9,0;) in (5.1) are given by:

—1 ti+1
do(2) : = (e apr) + oy —2(@)|*+ Y /t i — @ (t)]|*dt
Jj=—N""4

(5.3)
k k ti+1 .
b S pa )+ 30 [ I - #old
=0 j=0"ti
¢i(2) = |z} —2(t)| —e j=1,....k+1, (5.4)
9(2) = (90(2), ..., gk(2)) with
N N N (5.5)
gi(2) =x —r; —hyy), §=0,..k,
0, = {(QJZ_VN,,y,iV) | I;V eC(tj)}, j=-N,...,—1, (5.6)
0; = {@y,...,u0) | yfeF(xf,xﬂN,tj)}, j=0,...,k, (5.7)
®k+1 = {('IZ—VNV' 1yliv) | (Iévaka—i-l) € QN} (58)

The next theorem establishes the necessary conditions for optimal solutions
to each problem (Py). In contrast to the case of delay-difference systems with
finite-dimensional state spaces as in Mordukhovich and L. Wang (2003), we now
obtain optimality conditions in fuzzy/approxzimate discrete-time forms of the
Euler-Lagrange and transversality inclusions, expressed in terms of the Fréchet-
like generalized differential constructions reviewed in Section 4. The major rea-
son for this is that the optimality conditions of the fuzzy type for discrete-time
systems can be obtained under fairly general and nonrestrictive assumptions on
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the initial data, which happens to be much more convenient to derive the main
results of the paper on necessary optimality conditions for delay-differential
inclusions in infinite dimensions by passing to the limit from discrete approx-
imations; see Sections 6 and 7. The proof of the fuzzy optimality conditions
in the next theorem is largely based on applying the fuzzy calculus rules for
Fréchet normals, subgradients, and coderivatives and on dual neighborhood char-
acterizations of the Lipschitzian and metric regularity properties for nonsmooth
mappings taken from Mordukhovich (2006a). Note that fuzzy calculus rules
provide representations of the underlying normals/subgradients/coderivatives
of compositions at the reference points via those at points that are arbitrary
close to the reference ones. Just for notational simplicity and convenience, we
suppose in the formulation and proof of the next theorem that these arbitrary
close points reduce to the reference ones in question. It makes no difference for
the limiting procedure to derive the main necessary optimality conditions for
delay-differential inclusions in what follows.

THEOREM 3 (approximate Euler-Lagrange conditions for delay-

difference inclusions). Let 2V (-) be an optimal solution to problem (Py) with
any fired N € IN sufficiently large under the standing hypotheses (H1)—(H3).
Denote F; := F(-,-,t;) and f; :== f(-,-,-,t;) and assume, in addition, that X
is Asplund and that the functions ¢ and f; are Lipschitz continuous around

2N, 2N ) and (2N, 2N gN), respectively, for j = 0,...,k. Consider the
0> Yk+1 J =N I
quantities
tiv1 o gN o — N
9§V:=2/ %—i(f)“dt, j=0,.. ..k
, N
t]tj+1 (5.9)
N ._ =N _ s ;.
o! ._2/ |2¥ —z()|dt, j=-N,... -1

tj

Then there exists a number v > 0 independent of N such that for any sequences
of positive numbers ey — 0 as N — oo there are multipliers AN > 0 and
sequences of the discrete adjoint arcs pév eX*(j=0,....k+1), and qjv €
X* (j=—=N,...,k+1), satisfying the following relationships:

—the nontriviality condition

AV (Rl = s (5.10)

— the approzimate Fuler-Lagrange inclusion

(pé‘\.c,q _pé\/ qJN—N-',-l - qév—N _>‘N9§v
hn 7 hn " hn

e \Nof (@, 2y, gy ty) + N((2), 2,97 ); gph Fy)
+enIB* with some aév eB*, j=0,...,k,

aY +p + )
(5.11)
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— the approxzimate tail conditions

qN —(JN oN —~
5+l J AN pN ¢ N(jN;O(tj))+€NB*
hn hy 7 J
with some b;v €eB*, j=—-N,...,—1, (5.12)

N =0, j=k—-N+1,... k+1,
— and the approximate transversality inclusion
(06 + @b —pien) € A0 (a(, 2) + N, 21): ) + exB(5.13)

Proof. Consider problem (Py) in the equivalent rmathematical programming
form (5.1) for the decision variable z € Z in (5.2) with the initial data de-
fined in (5.3)—(5.8). Given € > 0 in (3.5), take N € IN so large that constraints
(3.5) hold as strict inequalities, which is ensured by Theorem 2. Then all the
inequality constraints in (5.4) are inactive at the optimal solution

N ._ (=N N N _N
20 = (@0, T 1 Y0 - Uk )

= (i'N(t—N)v s 7jN(tk+1)7gN(t0)v s 7gN(tk))

to (Pn), and thus the functions ¢;, j = 1,...,k + 1, can be ignored in the
arguments below.

Let us examine the following two mutually exclusive cases in the proof of the
theorem, which complement each other.

Case 1. Assume that the operator constraint mapping g : XV+2k+3
Xk+1in (5.5) is metrically reqular at zV relative to the set

k+1
o= () O (5.14)
j=—N

with ©; taken from (5.6)—(5.8), in the sense that there is a constant p > 0 and
a neighborhood V of z¥ such that the distance estimate
dist(z;8) < u|lg(z) — g(zN)| forall zeONV

with S := {2z € © | g(z) = g(z")} is satisfied. Then, by loffe’s ezact penal-
ization theorem (see, e.g., Theorem 5.16 in Mordukhovich, 2006b), we conclude
that 2% is a local optimal solution to the unconstrained penalized problem:

minimize ¢o(z) + 1 (]|g(2)|| + dist(z; ©))

for all p > 0 sufficiently large. It easily follows from construction (4.7) of the
Fréchet subdifferential that the Fermat generalized stationary condition

0€ d(go(-) + pllg () + pdist(-, ©)) (V) (5.15)
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holds. Taking any sequence ey | 0 as N — oo and employing in (5.15) the
fuzzy sum rule and then the formula for computing Fréchet subgradients of the
distance function from, respectively, Theorem 2.33(b) and Proposition 1.95 in
Mordukhovich (2006a), we get

k
0€dgo(2Y) + > Vg;(zV)"e; + N(2V:0) + enhnIB*, (5.16)
j=0

for some €} € X™ satisfying

k
Vg (zV)e;
;0 ’ (5.17)

* * * * * * * *
= (O,...,O, —€0,€0 — €1+, Ch_1 —ek,ek,—hNeo,...,—hNek)

due to the specific structure of the operator constraints (5.5) and the simple
chain rule for the composition [|g(z)|| = (¢ o g)(2) with ¥ (v) := ||v|| and the
smooth mapping g from (5.5).

To proceed further, we apply to the set © in (5.14) the fuzzy intersection
rule from Lemma 3.1 in Mordukhovich (2006a) ensuring that

NGEY0) c NV, 0_N) + ...+ N(ZY:0ps1) + enhy B

Taking into account the sum structure of cost functional ¢g in (5.3) and the
specific forms of the terms therein, we get from the afore-mentioned fuzzy sum
rule that

0¢0(z") C Do(a), @) + 2|20 — 2(a) | B*

—1 tit1 k R
+ 30 [ 2 — s ) B+ SO 2 )
j=—-N "1 5=0

J

k L+t
e[ 2 - a) de] B 4 e,
j=0 "t

where the Fréchet subdifferential of the function f is considered with respect of
its all but ¢ variables, and where the classical relationship 9| - ||*(z) C 2||=|/B*
is used together with the subdifferentiation formula under the integral sign in
(5.3) well known from convex analysis. Substituting the latter relationships into
(5.16) and adjusting ey if necessary, we arrive at

¢

J

~ —1 J+1
0€ dptad o) + 2t — s+ 3 [ 2le —ato)) ae] B
j=—-N "t

k N k tia
iy S0 g )+ [ 2 —awl B 6ag)
=0

§=0 J
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k k+1
+ngj(2 Z —|—€NhN]B>~<
§=0 j=—N
To elaborate the relationships in (5.18), let 27 = (2 v ..., ¥}, @ Yo J, ce
Yx ;) and observe from the set structures in (5. 6) that for any 27 € N( ;109;5),
J = —N,...,—1, all but one components of z7 are zero Wlth the remaining
one sa‘msfymg T} € N( T; N:.C(ty)), 7= —N,...,—1. Similarly the relationships

27 € ]V(ZN;@J») for j=0,...,kand 2z, € N(zV:O)1) imply that

(I;,jv'x;—N)jay}j) EN(( _] ’ ijay_] ) gphFj) fOI‘j:O,...,k,

’ ) (5.19)
(T6 k415 Thy1 k41) € N((Io ,l’k+1) Qn)

*

with all the other components of 27, j =0,...,k + 1, equal to zero. Combining
these relationships with (5.17) and (5.18) and using the notation

(ué\/7u;€\[+l) € 890(:%6\[5:%2[4-1)7 (v]]va ;V Ny W ) € af( ] ) _7 Nay_] ) )a

and (5.9) for (0),07) with g = (z},, — z}¥)/hn due to g(zV) = 0 in (5.5),
we arrive at

* * N N * * .
—xi; a5y € vk +0o)B* +enhyB*, j=-N,...,—1,
—x¥ =k N N per  —e* *

x¥ ;=% i n € hney 4+ hyv + ey —ef +enhy B,

j=1,...,k—N,
—ai ;e hyv) +e5_ | —ef+eyhyB*, j=k—-N+1,...k,
_y;j S thj»V +9§VB* — hNe;‘ +enhyB*, j=0,...,k,
—Zp e € uivﬂ + e +enhyIB*,
—T0,0 ~ T k1 € u +hyep + 2|z — z(a)|| B*
+hyvd — el + enhyIB*,

(5.20)

* * *
350 Tj—N,j2 Y5,

'pvj. ]1for]—1 k41,

@N._nj+“hj—“v for j=—N,...,k—N, (5.21)
N

g =0 for j=k—N+1,...,k+1

where (x ) and (24541, Thyq gy1) satisty (5.19). Further, let

and define the the adjoint discrete trajectories (pév, qJN) by
qucv+1 =0, qJN = Qﬁl —%NhN for j=—-N,...,k+1,
P =+ — (522)
py =Dy —q)hy for j=1,... k+1.

It is easy to check that qév =0forj=k—N+1,...,k+ 1. Combining finally
the relationships and notation (5.19)—(5.22), we get the optimality conditions



Optimal control of delay-differential inclusions in infinite dimensions 417

(5.10)—(5.13) of the theorem with AN = 1 along an arbitrarily chosen sequence
en | 0as N — oo. This completes the proof in Case 1.

Case 2. It remains to consider the situation when the mapping ¢ from (5.5)
is not metrically regular at zV relative to the set ©. In this case the restriction
of g on © defined by

_J og(z) if z€0O,
90(2) := { 0 otherwise (5.23)

is not metrically regular around zV in the standard sense. Picking again an
arbitrary sequence ey | 0 as N — oo and using the characterization of the
metric regularity property from Theorem 4.5 in Mordukhovich (2006a), for any
fixed N € IN we find z € 2¥ + exyB and e = (ef,...,e}) € (X*)F satisfying
the relationships

le*|]l > 1 and 0 € D*go(z)(e*). (5.24)

Taking now into account the structure of the mapping ge in (5.23) and applying
the coderivative sum rule for (4.5) from Theorem 1.62 in Mordukhovich (2006a)
and then the afore-mentioned intersection rule for Fréchet normals to © in (5.9),
we get

k k+1
OEZng(z)*e;—l— Z N(z;;0;) +enhyB*
§=0 j=—N

with some z; € ©;N(z+¢enB). Thus there are 2} € ]\AI(EN; ©;),j=—N,... k+
1, such that

k+1 k
=Yz e Vgi(EV) e +enhyB* (5.25)
j=—N j=0

It follows from (5.25), (5.17), and the corresponding arguments in Case 1 that
there are (2 ;,27_n ;,v5 ;) and (2§ 511, Tf g 41) satisfying (5.19), for which

IxE
* * * .

—a; ;=¥ iy €eENhnBY, j=—-N,..., -1,
* * * % .

-, —xi .y €€y —€f+tenhyB*, j=1,....,k—N,

—af;€eiy —ef tenhnB*, j=k—N+1,...k,
—y;; € hnel +enhyB*, j=0,... k,

—Zpy1 k41 € € TENANIBT,

_IS,O - ‘Taqu S —66 +enhyIB*.

Defining further the adjoint discrete trajectories pév for j =0,...,k+ 1 and
q) for j = —N,...,k+ 1 in the same way as in Case 1, we justify by similar
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arguments the validity of the approzimate Euler-Lagrange inclusion (5.11), the
approzimate tail conditions (5.12), and the approximate transversality inclusion
(5.13) with AV = 0. Let us now verify that the local Lipschitz continuity of F
assumed in (H2) implies the fulfillment of the nontriviality condition (5.10).

First we show that there exist two positive numbers oy and as independent
of N such that

I3[ < erllpRa | + azen, G =0,....k. (5.26)

Observe that the approximate Euler-Lagrange inclusion (5.11) with AV = 0 can
be equivalently written in terms of the coderivative (4.5) as

N N N N
(pj+1 —P; 4G-N+1 4N

I N DN € DR 1)) o — ) en B

Then, using the neighborhood characterization of the local Lipschitzian property
from Theorem 4.7 in Mordukhovich (2006a), we get that

N N N N
H (Pj+1 — b G-N+1 ™ 9-N

N N .
hN 9 hN )H S LF||pj+1+qj+1||+EN7 J= 07"'7k7 (527)

where L is the Lipschitz constant of F' from (2.2) in (H2). Noting that qj\_’H =0
for j=k—N,...,k by (5.12), we have for these indices that

1) 3~ I < Lebn|[pXall + 107 /- vl + hven
< (Lrhn + D01, 4 ny) |l + hen
(Lrphy + 1)2||(p§\;2, qu_N+2)|| + (Lrhy + 1)hneny + hyen

IN A

IN

(Lrhy + DM IpR || + en /L]
< (Lrhy + )N HIpRo | +en/Lr) < eB7 2 |lpy || + en/Lp).

For the indices j =k —2N,...,k — N — 1 we get from (5.27) and the estimates
above that

1Y, @ Il < Lehnllpiy + @il + 10, ¢ vl + hven

< (Lrhn + 1)||(ij\£r1=Q§V—N+1)||
+ Lphn(e" 2 |pi || + e*"2en/Lr) + hyen + (Lrhy + 1)hyen
+ (Lphy + 1) Lehn (€72 |pRy || + €7 2en /L)

A

< (Lrhy + D) (0R |l + €572 lpi || + €57 2en/Lr + en /L]
<elrA(1+ e )[Rl +en /L)
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After repeating the above process finitely many times we arrive at the desired
estimate (5.26).

To conclude now the proof of the nontriviality condition (5.10) along with
(5.11)~(5.13) and AV = 0, suppose the opposite and then, taking a sequence
Ym | 0 as m — oo, choose numbers N,,, € IN and &,, := ey,, > 0 such that

Em = [1/Ym], &m <72, and ||piv:+1|| <42 as me NN,

where k,, is computed by (2.4) for N,,, and where [-] stands for the greatest
integer less than or equal to the given real number. Then by (5.26) we have

km+1
S AP < ar(km+1)77, 4 @28m (km +1) < 2(1+a2)ym L0 as m — oo,
j=1

which contradicts the negation of metric regularity (5.24) imposed in Case 2 and
thus completes the proof of the theorem. [

6. Euler-Lagrange conditions for delay-differential
inclusions

In this section we derive necessary optimality conditions for the given optimal so-
lution Z(-) to the original Bolza problem (P). The proof is based on the passing
to the limit from the necessary optimality conditions for the discrete approxi-
mation problems (Py) obtained in Section 5. We keep assumptions (H1-(H3)
and (H6), but instead of (H4) and (H5) impose their following modifications:

(H4’) ¢ is Lipschitz continuous on U x U; ) = Q, x ) C X x X, where Q, is
compact around Z(a) while €y is closed around Z(b).

(H5’) The integrand f(z,y,v,-) is continuous for a.e. ¢ € [a,b] and bounded
uniformly with respect to (z,y,v) € U x (McIB) x (MpIB); furthermore,
there are numbers p > 0 and Ly > 0 such that f(-,-,-,¢) is Lipschitz
continuous on the set A,(¢) from (H5) with constraint Ly uniformly in
t € la,b].

The next theorem establishes necessary optimality conditions in the extended
Euler-Lagrange form for the given optimal solution to the original problem (P)
in terms of the limiting normals and subgradients of Section 4 for the initial data
of (P) computed with respect to all but time variables along the reference opti-
mal solution. Note that the optimality conditions obtained in the general case
of geometric endpoint constraints in infinite-dimensional state spaces require
the sequential normal compactness assumption imposed on €2, at the optimal
endpoint Z(b).

THEOREM 4 (extended Euler-Lagrange conditions for delay-differential
inclusions). Let Z(-) be an optimal solution to (P) under hypotheses (H1)—
(H3), (H4’), (H5"), and (H6). Assume in addition that both spaces X and X*
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are Asplund, that Qp, is SNC at (), and that (P) is stable with respect to relaz-
ation. Then there exist a number A > 0 and two absolutely continuous adjoint
arcs p: [a,b] = X* and q: [a — A,b] — X* such that the following conditions
hold:

—the extended Euler-Lagrange inclusion

(p(t),4(t —A)) € clco{(u, w) | (u, w, p(t) + q(¢))
+N+((j(t)7'f(t - A)vj t) 7gphF(7 7t))} a.e. te [CL,b],

— =

where the norm-closure operation “cl” can be omitted when the state space X is
reflexive;
—the optimal tail conditions

{ (g(®), 2(t) = min (q(t),c) ae tela—A,a)

(6.2)
qt) =0, teb—Ab;

—the transversality inclusion
(p(a) +q(a), —p(b)) € Adp(Z(a), Z(b)) + N(Z(a); Qa) X N(Z(b); 2); (6.3)
— the nontriviality condition

A+ [p®)]] > 0. (6.4)

Proof. We derive the optimality conditions of the theorem by passing to the
limit in the necessary optimality conditions obtained in Theorem 3 and using
the strong convergence of discrete approximations established in Theorem 2. We
actually need more: to justify a suitable convergence of adjoint/dual elements
in the necessary optimality conditions for discrete approximations. It is done in
what follows by employing the afore-mentioned coderivative characterization of
Lipschitz continuity, robustness of our limiting generalized differential construc-
tions, and the imposed SNC property of the endpoint constraint set together
with appropriate facts of functional analysis.

Recall again that the Asplund property of both spaces X and X* ensures the
Radon-Nikodym property of these spaces. This implies, in particular, that the
absolute continuity of the primal and adjoint arcs in the setting of the theorem
is equivalent to the fulfillment of the Newton-Leibniz formula (1.4) for these
arcs. Note also that the assumptions made in this theorem ensure the validity
of all the assumptions made in both Theorem 2 and Theorem 3.

Employing the necessary optimality conditions for (Py) obtained in Theo-
rem 3, we find sequences of numbers A > 0 and adjoint discrete trajectories
pY and ¢V 5 satisfying inclusions (5.10)-(5.13) with some ey | 0 as N — oo.
Observe that without loss of generality the nontriviality condition (5.10) can be
equivalently written as

AN 4+ pR | =1 forall N € NN, (6.5)
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since the number v > 0 in (5.10) is independent of N.

Suppose, without loss of generality, that AN — X\ > 0 as N — oo. As
above, the notation z% (t), p™¥(t), and ¢~ (t — A) indicates the piecewise linear
extensions of the discrete arcs to the corresponding continuous-time intervals
with their piecewise constant derivatives zV(t), p™V(t), and ¢~ (t — A). Based

n (5.9), define their piecewise constant extensions

oN
ON(t) = Lall for teltjtjy1), j=0,....k
hy;
O'N(t) = hNbN for te [tj,tj+1), j: —N,...,—l,

and conclude from the strong convergence results of Theorem 1 that

[ 1w = Z||9N||<2Z/
—Z/Hx #(t)| dt — 0,
| e wlar- Z||aN||<2Z/ I~ 2(6) ) de

j=—N

—o[" e -z —
2 a0 -l -0

=N
— T .
”1 g a—;(t)H dt

as N — oo. Since the strong L' convergence of {67V (-)} and {o™V(-)}, established
above, implies the a.e. convergence of their subsequences, we suppose without
loss of generality that

ON(t) — 0 ae. t€lab], cV(t) =0 ae. t€la—Aa] as N —oco. (6.6)

Further, let us estimate (p™ (t), ¢ (t — A)) for large N. It follows from the
approximate Euler-Lagrange condition (5.11) that for all j = 0,...,k we have
the inclusions

N N
(pj+1 _pj NN q; N+1 ~ 4G-N NN
hn Ui hy i=N
)\NHN
hn
e N((zl,2) n,yY);gph F) + enB*

a5 + P+ G — )\ijv)

with some (v}, kY v, wl) € of (&N N, 2N, yY,t;) and oY € IB*. This implies
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by (4.5) that

N N

(pj+1 py — ANy, Ging — Gon NN )

hy hy i=N

NN
J

hn

A
e D*Fy(a) oy, 5) (Aol + ol —

p]+1 qﬁrl) +enB*

for these indice