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430 H.J. OBERLE, R. ROSENDAHLIt should be remarked that a similar type of optimal ontrol problems,namely multiproess ontrol problems or multi-stage ontrol problems, havebeen treated in the literature, see Clark, Vinter (1989), and Augustin, Maurer(2000). However, for this kind of optimal ontrol problems the swithing timesbetween di�erent stages are determined in a di�erent way. Either these pointsare �xed or they are determined by boundary onditions. In this paper, how-ever, we are interested in the optimal juntion onditions, whih are aused bythe use of swithing funtions.In a reent paper, Oberle and Rosendahl (2006), the authors have onsid-ered nonsmooth optimal ontrol problems of the above type and have given anappliation to eonomis. However, only swithing funtions of order one havebeen treated and neessary optimality onditions have been derived. Espeiallythe ase of a so-alled singular-state subar has been onsidered.In the present paper, we extend these results inluding the ase of an order-zero swithing funtion and give neessary optimality onditions for regular andsingular OCPs of this type. Further, we onsider two lassial examples. The�rst example desribes the optimal ontrol of an eletri iruit whih inludes adiode and a apaitor. This problem has already been investigated in the bookof Clarke (1983). It is a nonsmooth OCP with a swithing funtion of order zero.We apply the neessary onditions and present regular and singular solutionsto this problem. By a slight modi�ation we obtain a nonsmooth OCP with anorder-two swithing funtion. For this problem we present regular solutions.The seond example is the lassial Zermelo's navigation problem. Here,one has to determine optimal ontrol funtions for a time-minimal horizontalplane �ight of an airraft within a presribed spae-depending wind �eld. If weassume that the wind �eld ontains ertain lines of disontinuities (atmospherifronts), we end up with a nonsmooth OCP with a swithing funtion of orderone. We apply the neessary onditions and present numerial solutions as wellfor the regular as for the singular ase.The paper is organized as follows: In the �rst part we onsider a generalnonsmooth OCP and derive orresponding neessary onditions in the form of amultipoint boundary value problem. In setion two, we further assume that theswithing funtion along the solution trajetory hanges sign only at isolatedpoints (regularity assumption). The neessary onditions, we derive, di�er forontrol dependent swithing funtions (order zero), on the one hand, and forswithing funtions whih only depend on the state (positive order), on the otherhand. In setion three, in addition, we admit singular state subars. Here, theneessary onditions an be derived only for order zero and order one problems.In the remaining three setions we investigate the examples, mentioned before.2. Nonsmooth optimal ontrol problems, regular aseWe onsider a general OCP with a pieewise de�ned state di�erential equation.The problem has the following form:



On singular ars in nonsmooth optimal ontrol 431Problem (P) Determine a pieewise ontinuous ontrol funtion u : [a, b] →
R

m, suh that the funtional
I = g(x(b)) (1)is minimized, subjet to the following onstraints (state equations, boundaryonditions, and ontrol onstraints)

x′(t) = f(x(t), u(t)) , t ∈ [a, b] a.e., (2a)
r(x(a), x(b)) = 0 , (2b)
u(t) ∈ U ⊂ R

m. (2)The ontrol region U is assumed to be a ompat and onvex uboid of theform U = Πi[ui,min, ui,max]. Further, we assume that the right-hand side of thestate equation (2a) is of the speial form
f(x, u) =





f1(x, u), if S(x, u) < 0,
fs(x, u), if S(x, u) = 0,
f2(x, u), if S(x, u) > 0,

(3)where the funtions S : R
n × R

m → R, fk : R
n × R

m → R
n (k = 1, 2, s), and

r : R
n × R

n → R
ℓ, ℓ ∈ {0, . . . , 2n}, are su�iently smooth.

S is alled the swithing funtion of Problem (P). Note that in many asesthe dynamis fs � the index s stands for singular � along the singular surfae
S = 0 will be given either by fs := f1 or by fs := f2.Our aim is to derive neessary onditions for Problem (P). To this end, let
(x0, u0) denote a solution of the problem with a pieewise ontinuous optimalontrol funtion u0. Pieewise ontinuity is understood in the sense that thereexists a �nite partition a < t1 < . . . < tq < b suh that u0 is ontinuous in eahopen subinterval and at a and b as well, and that all one-sided limits u0(t±j ),
j = 1, . . . , q, exist.We assume that the problem is regular with respet to the minimum prini-ple, that is: For suitable λ, x ∈ R

n the Hamiltonians
Hj(x, u, λ) := λTfj(x, u), j = 1, 2, s (4)possess a unique minimum u0

j with respet to the ontrol u ∈ U .Finally, for this setion, we assume that the following regularity assumptionholds.Regularity Condition (R) There exists a �nite grid a =: t0 < t1 <
. . . < tq < tq+1 := b suh that the optimal swithing funtion S[t] :=
S(x0(t), u0(t)) is either positive or negative in eah open subinterval ]tj−1, tj [,
j = 1, . . . , q + 1.In the following, we distinguish two ases. On the one hand, if the swithingfuntion is independent of the ontrol u, the swithing funtion along the solu-tion, S[·] := S(x0(·)), is a ontinuous funtion, so that tj is an isolated root of
S[·]. We indiate this ase by p > 0.



432 H.J. OBERLE, R. ROSENDAHLOn the other hand, if the swithing funtion depends expliitly on the on-trol, S[·] := S(x0(·), u0(·)) may have disontinuities at the tj . In this ase, wesay that the swithing funtion is of order zero, p = 0.Now, we an summarize the neessary onditions for the OCP (P). Here, oneah subinterval [tj , tj+1], we denote H(x, u, λ) := Hj(x, u, λ) where j ∈ {1, 2}is hosen aording to the sign of S in the orresponding (open) subinterval. Thefollowing theorem is a generalization of our previous results in the related paperOberle and Rosendahl (2006).Theorem 1 With the assumptions above the following neessary onditionshold. There exist an adjoint variable λ : [a, b] → R
n, whih is a piee-wise C1�funtion, and Lagrange multipliers ν0 ∈ {0, 1}, ν ∈ R

ℓ, κ ∈ R
q, suhthat (x0, u0) satis�es (t ∈ [a, b])

λ′(t) = −Hx(x0(t), u0(t), λ(t)), a.e., (5a)
u0(t) = argmin{H(x0(t), u, λ(t)) : u ∈ U}, (5b)
λ(a) = −

∂

∂x0(a)
[νTr(x0(a), x0(b))], (5)

λ(b) =
∂

∂x0(b)
[ν0 g(x0(b)) + νTr(x0(a), x0(b))], (5d)

λ(t+j ) =

{
λ(t−j ), if p = 0, j = 1, . . . , q,

λ(t−j ) + κj ∇xS(x0(tj)), if p > 0,
(5e)

H[t+j ] = H[t−j ], j = 1, . . . , q. (5f)Proof. We assume that there is just one point t1 ∈ ]a, b[, where the swithingfuntion S[·] hanges sign. Moreover, we assume that the following swithingstruture holds
S[t]

{
< 0, if a ≤ t < t1
> 0, if t1 < t ≤ b.

(6)We ompare the optimal solution (x0, u0) with those admissible solutions (x, u)of (P) whih have the same swithing struture. Eah andidate of this typean be assoiated with its separated parts (τ ∈ [0, 1])
x1(τ) := x(a + τ(t1 − a)), x2(τ) := x(t1 + τ(b − t1)),
u1(τ) := u(a + τ(t1 − a)), u2(τ) := u(t1 + τ(b − t1)).

(7)Now, (x1, x2, t1, u1, u2) is an admissible and (x0
1, x

0
2, t

0
1, u

0
1, u

0
2) an optimal solu-tion of the following auxilliary optimal ontrol problem.Problem (P') Determine a pieewise ontinuous ontrol funtion u =

(u1, u2) : [0, 1] → R
2 m, suh that the funtional

I = g(x2(1)) (8)



On singular ars in nonsmooth optimal ontrol 433is minimized, subjet to the onstraints (τ ∈ [0, 1])
x′

1(τ) = (t1 − a) f1(x1(τ), u1(τ)) , a.e., (9a)
x′

2(τ) = (b − t1) f2(x2(τ), u2(τ)), a.e., (9b)
t′1(τ) = 0, (9)
r(x1(0), x2(1)) = 0 , (9d)
x2(0) − x1(1) = 0, (9e)
S(x1(1)) = 0, only if p > 0, (9f)
u1(τ), u2(τ) ∈ U ⊂ R

m. (9g)Problem (P') is a lassial optimal ontrol problem with a smooth right-hand side, and (x0
1, x

0
2, t

0
1, u

0
1, u

0
2) is a solution of this problem. Therefore, wean apply the well�known neessary onditions of optimal ontrol theory: Thereexist ontinuous and pieewise ontinuously di�erentiable adjoint variables λj :

[0, 1] → R
n, j = 1, 2, and Lagrange-multipliers ν0 ∈ {0, 1}, ν ∈ R

ℓ, ν1 ∈ R
n,and κ ∈ R, suh that, with the Hamiltionian

H̃ := (t1 − a)λT1 f1(x1, u1) + (b − t1)λT2 f2(x2, u2), (10)and the augmented performane index
Φ := ν0 g(x2(1)) + νTr(x1(0), x2(1)) + νT1 (x2(0)−x1(1)) + κS(x1(1)), (11)(κ = 0, if p = 0) the following onditions hold

λ′

1 = −H̃x1
= −(t1 − a)

(
λT1 f1(x1, u1)

)
x1

, (12a)
λ′

2 = −H̃x2
= −(b − t1)

(
λT2 f2(x2, u2)

)
x2

, (12b)
λ′

3 = −H̃t1 = −λT1 f1(x1, u1) + λT2 f2(x2, u2), (12)
uk(τ) = argmin{λk(τ)Tfk(xk(τ), u) : u ∈ U}, k = 1, 2, (12d)
λ1(0) = −Φx1(0) = −(νTr)x1(0), λ1(1) = Φx1(1) = −ν1 + κ Sx(x1(1)), (12e)
λ2(0) = −Φx2(0) = −ν1, λ2(1) = Φx2(1) = (ν0 g + νT r)x2(1), (12f)
λ3(0) = λ3(1) = 0. (12g)Due to the autonomy of the state equations and due to the regularity as-sumptions above, both parts λT1 f1 and λT2 f2 of the Hamiltonian are onstanton [0, 1]. Thus, λ3 is a linear funtion whih vanishes due to the boundaryonditions (12g). Together with the relation (12) one obtains the ontinuity ofthe Hamiltonian (5f).If one reombines the adjoints

λ(t) :=






λ1

( t − a

t1 − a

)
, t ∈ [a, t1[,

λ2

( t − t1
b − t1

)
, t ∈ [t1, b],

(13)



434 H.J. OBERLE, R. ROSENDAHLone obtains the adjoint equation (5a) from Eqs. (12a-b), the minimum priniple(5b) from Eq. (12d), and the natural boundary onditions and the ontinuityand jump onditions (5-e) from Eqs. (12e-f).It should be remarked that the results of Theorem 1 easily an be extended tononautonomous OCPs with nonsmooth state equations and to problems withfree �nal-time tb. This holds too, if the performane index ontains an additionalintegral term, i.e.
I = g(tb, x(tb)) +

∫ tb

a

f0(t, x(t), u(t))dt. (14)These extensions an be treated by standard transformation tehniques, whihtransform the problems into the form of Problem (P). The result is that for theextended problems one has to rede�ne the Hamiltonian by
H(t, x, u, λ, ν0) := ν0 f0(t, x, u) + λTf(t, x, u). (15)3. Nonsmooth optimal ontrol problems, singular aseIn this setion we ontinue the investigation of the general optimal ontrol prob-lem (P). However, we drop the regularity ondition (R). We assume that a so-lution (x0, u0) of (P) ontains a �nite number of nontrivial subars, where theswithing funtion vanishes identially. More preisely:Singularity Condition (S) We assume that there exists a �nite grid

a =: t0 < t1 < . . . < tq < tq+1 := b suh that in eah open subinterval ]tj−1, tj [,
j = 1, . . . , q +1, the optimal swithing funtion S[t] = S(x0(t), u0(t)) is eithertotally positive, totally negative, or vanishes identially. The later subars arealled singular state subars, see Bell, Jaobson (1975) and Bryson, Ho (1969),for the analogous situation of singular ontrol subars.Thus, the grid points tj are either isolated points, where the swithing fun-tion S[·] hanges sign, or they are entry or exit points of a singular state subar.By Jreg we denote the set of indies of grid points tj where the swithingfuntion hanges sign, by Jentry those of the entry points, and by Jexit those ofthe exit points of the singular state subars.We give a more preise de�nition of the order of a singular state subar, inanalogy to the order of state variable inequality onstraint. To this end, we usethe following reursive de�nition
S(0)(x, u) := S(x, u), S(k)(x, u) := S(k−1)

x (x, u)Tfs(x, u), k = 1, 2, . . . (16)We say that, for the solution (x0, u0), the swithing funtion S is of order p ≥ 0,if the �rst total time derivatives S(k), k = 0, . . . , p − 1, are independent of



On singular ars in nonsmooth optimal ontrol 435the ontrol u, and further, if S(p) satis�es the following regularity ondition(onstraint quali�ation)
∂

∂u
S(p)(x0(t), u0(t)) 6= 0, ∀ t ∈ [tj , tj+1], j ∈ Jentry . (17)Order Condition (O) We assume that the swithing funtion is eitherof order zero, p = 0, or of order one, p = 1, with respet to the �xed solution

(x0, u0) of problem (P), i.e.for p = 0 : Su(x0(t), u0(t)) 6= 0,for p = 1 : S = S(x), S
(1)
u (x0(t), u0(t)) 6= 0

(18)may hold along eah singular state subar.Now, we introdue the extended Hamiltonian (here also denoted by H)
H(x, u, λ, µ) := Hk(x, u, λ, µ) := λTfk(x, u) + µ S(p)(x, u), (19)where k ∈ {1, 2, s} is hosen aording to the sign of S in the orrespondingsubinterval, and µ denotes a Lagrange multiplier. We set µ := 0 for k = 1, 2.Again, we assume regularity with respet to the minimum priniple.In the following, we summarize the neessary onditions for Problem (P).Theorem 2 With the assumptions above the following neessary onditionshold. There exist an adjoint variable λ : [a, b] → R

n, whih is a piee-wise C 1�funtion, and Lagrange multipliers ν0 ∈ {0, 1}, ν ∈ R
ℓ, κj ∈ R (j ∈

Jreg ∪ Jentry), and a pieewise ontinuous Lagrange multiplier µ : [a, b] → R ,suh that (x0, u0) satis�es the onditions (t ∈ [a, b])
λ′(t) = −Hx(x0(t), u0(t), λ(t), µ(t)), a.e. (20a)
u0(t) = argmin{H(x0(t), u, λ(t), µ(t)) : u ∈ U}, (20b)
µ(t) S(x0(t), u0(t)) = 0, (20)
λ(a) = −

∂

∂x0(a)
[νTr(x0(a), x0(b))], (20d)

λ(b) =
∂

∂x0(b)
[ν0 g(x0(b)) + νTr(x0(a), x0(b))], (20e)

λ(t+j ) =

{
λ(t−j ) + κj ∇xS(x0(tj)), for p = 1, j ∈ Jreg ∪ Jentry,

λ(t−j ), for p = 0,
(20f)

H[t+j ] = H[t−j ], j = 1, . . . , q. (20g)Proof. For simpliity, we assume that the swithing funtion S[·] along the op-timal trajetory has just one singular state subar [t1, t2] ⊂ ]a, b[, and that thefollowing swithing struture holds
S[t]





< 0, if a ≤ t < t1,
= 0, if t1 ≤ t ≤ t2,
> 0, if t2 < t ≤ b.

(21)



436 H.J. OBERLE, R. ROSENDAHLAgain, we ompare the optimal solution (x0, u0) with those admissible solutions
(x, u) of the problem whih have the same swithing struture. Eah andidateis assoiated with its separated parts (τ ∈ [0, 1])

x1(τ) := x(a + τ(t1 − a)), u1(τ) := u(a + τ(t1 − a)),
xs(τ) := x(t1 + τ(t2 − t1)), us(τ) := u(t1 + τ(t2 − t1)),
x2(τ) := x(t2 + τ(b − t2)), u2(τ) := u(t2 + τ(b − t2)).

(22)Now, (x1, xs, x2, t1, t2, u1, us, u2) performs an admissible and (x0
1, x

0
s, x

0
2, t

0
1, t

0
2, u

0
1,

u0
s, u

0
2) an optimal solution of the following auxilliary optimal ontrol problem.Problem (P�). Determine a pieewise ontinuous ontrol funtion u =

(u1, us, u2) : [0, 1] → R
3m, suh that the funtional

I = g(x2(1)) (23)is minimized, subjet to the onstraints (τ ∈ [0, 1])
x′

1(τ) = (t1 − a) f1(x1(τ), u1(τ)), a.e., (24a)
x′

s(τ) = (t2 − t1) fs(xs(τ), us(τ)), a.e., (24b)
x′

2(τ) = (b − t2) f2(x2(τ), u2(τ)), a.e., (24)
t′k(τ) = 0, k = 1, 2, (24d)
r(x1(0), x2(1)) = 0 , (24e)
xs(0) − x1(1) = x2(0) − xs(1) = 0, (24f)
S(xs(τ), us(τ)) = 0 , (24g)
u1(τ), us(τ), u2(τ) ∈ U . (24h)Problem (P�) again is a lassial OCP with a smooth right-hand side. However,it ontains, depending on the order p, a (regular) ontrol equality onstraint, ora pure state equality onstraint of �rst order, respetively. We an apply thelassial neessary onditions of optimal ontrol theory, see Hestenes (1966). Ifthe onstraint quali�ation (18) is satis�ed, there exist a ontinuous Lagrangemultiplier µ̃, and ontinuously di�erentiable adjoint variables λk, k = 1, s, 2, 3, 4,suh that with the Hamiltonian

H̃ := (t1 − a) λT1 f1(x1, u1) + (t2 − t1) λTs fs(xs, us)

+ (b − t2) λT2 f2(x2, u2) + µ̃ (t2 − t1) S(p)(xs, us),
(25)and the augmented performane index (with κ = 0 for p = 0)

Φ := ν0g(x2(1)) − κS(xs(0), us(0)) + νTr(x1(0), x2(1))
+ νT1 (xs(0) − x1(1)) + νT2 (x2(0) − xs(1)),

(26)



On singular ars in nonsmooth optimal ontrol 437the following onditions hold (τ ∈ [0, 1])
λ′

1 = −H̃x1
= −(t1 − a)

(
λT1 f1

)
x1

, (27a)
λ′

s = −H̃xs
= −(t2 − t1)

[
(λTs fs)xs

+ µ̃(τ)S(p)
xs

(xs, us)
]
, (27b)

λ′

2 = −H̃x2
= −(b − t2) (λT2 f2)x2

, (27)
λ′

3 = −H̃t1 = −λT1 f1 + λTs fs + µ̃(τ) S(p)(xs, us), (27d)
λ′

4 = −H̃t2 = −λTs fs + λT2 f2 − µ̃(τ) S(p)(xs, us), (27e)
uj(τ) = argmin{λj(τ)Tfj(xj(τ), u) : u ∈ U}, j = 1, 2, (27f)
us(τ) = argmin{λs(τ)Tfs(xs(τ), u) + µ̃(τ) S(p)(xs(τ), u) : u ∈ U}, (27g)
λ1(0) = −Φx1(0) = −(νTr)x1(0), λ1(1) = Φx1(1) = −ν1, (27h)
λs(0) = −Φxs(0) = −ν1 + κ Sxs(0), λs(1) = Φxs(1) = −ν2, (27i)
λ2(0) = −Φx2(0) = −ν2, λ2(1) = Φx2(1) = (ℓ0 g + νTr)x2(1), (27j)
λ3(0) = λ3(1) = λ4(0) = λ4(1) = 0. (27k)Due to the autonomy of the optimal ontrol problem, all three parts λT1 f1,

λTs fs, and λT2 f2 of the Hamiltonian are onstant. Due to Eq. (24g) we get
S(p)(xs(τ), us(τ)) = 0, τ ∈ [0, 1]. Beause of Eqs. (27d), (27e), and (27k), theadjoints λ3 and λ4 vanish and we obtain the global ontinuity of the augmentedHamiltonian (19).If one reombines the adjoints

λ(t) :=





λ1

( t − a

t1 − a

)
, t ∈ [a, t1[,

λs

( t − t1
t2 − t1

)
, t ∈ [t1, t2],

λ2

( t − t2
b − t2

)
, t ∈ ]t2, b],

(28)and the state and ontrol variables aordingly, one obtains all the neessaryonditions of the theorem.Again, we mention that the results of Theorem 2 an be easily extendedto nonautonomous nonsmooth OCPs, to problems with free �nal-time, and tooptimal ontrol problems with performane index of Bolza type, as well.4. A nonsmooth OCP of order zeroThe following example is taken from the well-known book of Clarke (1983).It desribes the ontrol of an eletroni iruit, whih inludes a diode anda ondenser. The diode is treated as a resistor with two values of resistanedepending on the diretion of the urrent.If u := U denotes the initializing voltage (ontrol), and x := UC denotes thevoltage at the ondenser (state), one obtains the following nonsmooth OCP.
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U(t) ~

U
D

(t)

U
C

(t)Figure 1. Eletri iruit with a diode and a apaitorProblem (D1). Minimize the funtional
I(u) =

1

2

∫ 2

0

u(t)2 dt (29)with respet to the state equation
x′(t) =

{
α (u − x), if S = x − u ≤ 0,
β (u − x), if S = x − u > 0,

(30)and the boundary onditions x(0) = 4, x(2) = 3.In the smooth ase, we hoose α = β = 2, the (unique) solution easily anbe found applying the lassial optimal ontrol theory, see Fig. 2.
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Figure 2. Problem (D1): Smooth ase, α = β = 2.For the nonsmooth ase, α 6= β, we assume that there is just one point
t1 ∈ ]0, 2[ where the swithing funtion hanges sign. Further, due to theresults for the smooth ase, we assume the solution struture
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S[t]

{
> 0, if 0 ≤ t < t1,
< 0, if t1 < t ≤ 2.

(31)Aording to Theorem 1 we obtain the following neessary onditions:(i) t ∈ [0, t−1 ] : H = H2 =
1

2
u2 + β λ (u − x),

λ′ = β λ, u = −β λ.(ii) t ∈ [t+1 , 2] : H = H1 =
1

2
u2 + α λ (u − x),

λ′ = α λ, u = −α λ.The ontinuity ondition (5f) yields
H[t+1 ] −H[t−1 ] = (β − α) λ(t1)

[
α + β

2
λ(t1) + x(t1)

]
= 0.Thus, we obtain the following three-point boundary value problem.

x′ =

{
−β (β λ + x) : t ∈ [0, t−1 ],
−α (α λ + x) : t ∈ [t+1 , 2],

λ′ =

{
β λ : t ∈ [0, t−1 ],
α λ : t ∈ [t+1 , 2],

x(0) = 4, x(2) = 3,
α + β

2
λ(t1) + x(t1) = 0.

(32)
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Figure 3. Problem (D1): Nonsmooth and regular ase, α = 4, β = 2.In Fig. 3 the numerial solution for the parameters α = 4 and β = 2is shown. The result is obtained via the multiple shooting ode BNDSCO,see Oberle, Grimm (1989), and Stoer, Bulirsh (1996). One observes that the



440 H.J. OBERLE, R. ROSENDAHLpreassumed sign distribution of the swithing funtion is satis�ed. Further, theoptimal ontrol and the optimal swithing funtion are disontinuous at theswithing point.For parameters α < β the solution of the boundary value problem (32)does not satisfy the preassumed sign distribution of the swithing funtion, seeFig. 4.
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Figure 4. Problem (D1): Nonadmissible solution, α = 2, β = 4.So, for this hoie of parameters we have to onsider the singular ase, i.e.the swithing funtion vanishes along a nontrivial subar. If we assume thatthere is exatly one singular state subar,
S[t]






> 0, if 0 ≤ t < t1,
= 0, if t1 ≤ t ≤ t2,
< 0, if t2 < t ≤ 2,

(33)we obtain the following neessary onditions due to Theorem 2.(i) t ∈ [0, t1] : H = H2 =
1

2
u2 + β λ (u − x),

λ′ = β λ, u = −β λ.(ii) t ∈ [t1, t2] : H = Hs =
1

2
u2 + α λ (u − x) + µ (x − u),

λ′ = αλ − µ, u = −α λ + µ = x.(iii) t ∈ [t2, 2] : H = H1 =
1

2
u2 + α λ (u − x),

λ′ = α λ, u = −α λ.The ontinuity of the Hamiltonian, say at t1, yields with
H[t−1 ] = H2[t

−

1 ] =
1

2
β2 λ(t1)

2 + β λ(t1) (−β λ(t1) − x(t1))

= −
1

2
β λ(t1) (β λ(t1) + 2 x(t1))

H[t+1 ] = Hs[t
+
1 ] =

1

2
x(t1)

2the interior boundary ondition x(t1) + β λ(t1) = 0. The analogous onditionholds at the seond swithing point t2.



On singular ars in nonsmooth optimal ontrol 441Altogether we obtain the following multipoint boundary value problem.
x′ =





−β (β λ + x) : t ∈ [0, t1],
0 : t ∈ [t1, t2],
−α (α λ + x) : t ∈ [t2, 2],

λ′ =






β λ : t ∈ [0, t1],
−x : t ∈ [t1, t2],
α λ : t ∈ [t2, 2],

x(0) = 4, x(2) = 3,
x(t1) + β λ(t1) = 0, x(t2) + α λ(t2) = 0.

(34)
For the parameters α = 2, β = 4 the numerial solution is shown in Fig. 5.One observes a singular state subar with the swithing points t1 =̇ 0.632117,
t2 =̇ 0.882117.
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Figure 5. Problem (D1): Nonsmooth and singular ase, α = 2, β = 4.In di�erene to the regular ase, one observes that for the singular-state subarthe ontrol and adjoint variable are ontinuous funtions. This is a onsequeneof the neessary onditions when treating linear-quadrati OCPs, see Rosendahl(2008).5. A modi�ation of Clarke's exampleIn the following setion we onsider an OCP for a modi�ed eletri iruit, whihontains a diode, a apaitor and a oil.The relations between the initializing voltage U , the urrent I, and thevoltages at the eletri elements are given by
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U(t) ~

U
D

(t)

U
L
(t)

U
C

(t)Figure 6. Eletri iruit with a diode, a apaitor, and a oil
U(t) = UD(t) + UC(t) + UL(t), (35a)
I(t) =

{
UD(t)/R1, if UD ≥ 0,
UD(t)/R2, if UD < 0,

(35b)
I(t) = C U̇C(t), (35)
İ(t) = UL(t)/L. (35d)By di�erentiation of Kirhho�'s law (35a) and using the abbreviations u :=

U̇ , x1 := I, x2 := İ , α := R1/L, β := R2/L, and γ := 1/(L C), we obtainthe following OCP.Problem (D2). Minimize the funtional
I(u) =

1

2

∫ 2

0

u(t)2 dt (36)with respet to the state equation
x′

1(t) = x2, (37a)
x′

2(t) =

{
u − α x2 − γ x1, if S := x1 ≥ 0,
u − β x2 − γ x1, if S := x1 < 0,

(37b)and the boundary onditions
x1(0) = 1, x2(0) = −4, x1(2) = x2(2) = 0. (38)One observes that the swithing funtion of this nonsmooth OCP S := x1 is ofthe order p = 2. For this situation, only the regular ase is tratable with ourtheory above. If we use this regularity assumption (R) and apply Theorem 1 forone swithing point, we get the following three-point boundary value problem:
x′

1 = x2, (39a)
x′

2 = u − δ x2 − γ x1, u = −λ2, (39b)
λ′

1 = γ λ2, δ :=

{
α, if t ∈ [0, t1],
β, if t ∈ ]t1, 2],

(39)
λ′

2 = −λ1 + δ λ2, (39d)
λ1(t

+
1 ) = λ1(t

−

1 ) + (β − α) λ2(t1), λ2(t
+
1 ) = λ2(t

−

1 ), (39e)
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x1(t1) = 0, (39f)
x1(0) = 1, x2(0) = −4, x1(2) = x2(2) = 0. (39g)This boundary value problem an be solved numerially. For both ases α< βand α>β we obtain admissible solutions, whih satisfy the regularity assump-tion.In Fig. 7 the solution of the boundary-value problem (39) for the parameters

α = 2, β = 3 is shown. Fig. 8 gives the solution for α = 3, β = 2.
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444 H.J. OBERLE, R. ROSENDAHL6. The nonsmooth Zermelo's problemIn this setion we onsider a modi�ation of the lassial problem of Zermelo,see Arrow (1949), Zermelo (1930, 1931). In the literature of optimal ontrol theproblem is well known as the ship navigation problem. In its original notation,however, the problem is given as follows. One has to determine the headingontrol for the horizontal plane �ight of an airraft within a presribed spae-depending horizontal wind �eld suh that the transfer time from a given initial-to a given endpoint is minimized.In mathematial notation the problem an be formulated as an optimalontrol problem.Problem (Z) Determine the transfer time tf and a pieewise ontinuousontrol funtion Θ(t), 0 ≤ t ≤ tf , suh that
I(Θ, tf) := tf (40)is minimized, subjet to following state equations and boundary onditions:

x′(t) = v0 cos(Θ(t)) + u(x(t), y(t)), (41a)
y′(t) = v0 sin(Θ(t)) + v(x(t), y(t)), (41b)
x(0) = x0, x(tf ) = xf , (41)
y(0) = y0, y(tf ) = yf . (41d)Here, v0 is the (onstant) magnitude of the airraft veloity relative to the wind�eld, Θ is the heading angle (ontrol funtion), (u, v) is the veloity of the wind�eld relative to the ground. For simpliity, we assume that (u, v) depends onlyon the state (x, y), the position of the airraft.Further modi�ations of this problem, inluding, for example, wind �eldswhih vary in spae and time, or a three-dimensional modelling, are more orless straightforward.6.1. The smooth aseFirst, we summarize the neessary onditions for the smooth ase, i.e. the wind�eld may be a smooth funtion of (x, y). The Hamiltonian is given by

H = λ1 (v0 cos(Θ) + u) + λ2 (v0 sin(Θ) + v). (42)By the minimum priniple we obtain the following optimal ontrol law
cos(Θ) = −

λ1√
λ2

1 + λ2
2

, sin(Θ) = −
λ2√

λ2
1 + λ2

2

, (43)and, thus, together with the adjoint equations, we obtain the following two-point boundary value problem with respet the independent variable τ ∈ [0, 1]:
x′ = tf (v0 cos(Θ) + u(x, y)), (44a)
y′ = tf (v0 sin(Θ) + v(x, y)), (44b)
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λ′

1 = tf (−λ1 ux(x, y) − λ2 vx(x, y)), (44)
λ′

2 = tf (−λ1 uy(x, y) − λ2 vy(x, y)), (44d)
t′f = 0, (44e)
x(0) = x0, x(1) = xf , (44f)
y(0) = y0, y(1) = yf , (44g)
H[1] = [−v0

√
λ2

1 + λ2
2 + λ1 u + λ2 v]|τ=1 = −1. (44h)Following Bryson, Ho (1969), we hoose the wind �eld (shear wind)

u(x, y) := − vs y, v(x, y) := 0 (45)and the parameters
v0 := 1, vs := 0.8, x0 := 3.66, y0 := −1.86, xf := 0, yf := 1. (46)Fig. 9 shows the optimal �ight path. The airraft heading is indiated at sev-eral points along the path. For the minimal �ight time we obtain tf =̇4.9257352.
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Figure 9. Problem (Z): Minimum time path for a smooth wind �eld; v0 =
1, vs = 0.8.6.2. The nonsmooth aseNext, we onsider the ase of a nonsmooth wind �eld. With this ansatz anatmospheri front may be modeled. Again, we simplify the pratial problemand hoose the time-independent front line y = 0. Note, however, that thegeneral theory allows to handle the ase of time variant front lines too.We hoose the following wind �eld;

u(x, y) :=

{
−vs y, if y ≥ 0,
vs, if y < 0,

v(x, y) := 0, (47)



446 H.J. OBERLE, R. ROSENDAHLi.e., for y < 0, there is a onstant head wind, whereas, for y ≥ 0, there is aspae-dependent rear wind. The swithing funtion is given by S(x, y, Θ) := y.Obviously, S is of the order p = 1. If we hoose the data and boundaryonditions as before, we may expet a regular solution with one swithing point
t1, 0 < t1 < tf .For the neessary onditions we apply Theorem 1. Thus, a solution of thenonsmooth optimal ontrol problem must satisfy the same boundary value prob-lem (44) as before, however, augmented by the following jump and swithingonditions

λ1(t
+
1 ) = λ1(t

−

1 ), λ2(t
+
1 ) = λ2(t

−

1 ) + κ1 (48a)
y(t1) = 0, H[t+1 ] = H[t−1 ]. (48b)Note that, ompared with the smooth ase, the boundary value problem ontainstwo additional unknowns, the swithing time t1 and the Lagrange multiplier κ1.Both are determined by the swithing onditions (48b).The numerial solution of the resulting multipoint boundary value problemhas been obtained by the multiple shooting ode BNDSCO. In Fig. 10a theoptimal �ight path for the nonsmooth wind �eld is shown. The resulting minimal�ight time is tf =̇ 4.9875063.
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Figure 10a. Problem (Z): Minimum time path for the nonsmooth wind �eld(47).In Fig. 10b the optimal state variables (x, y), the adjoint variable λ2 orre-sponding to the state y, and the optimal ontrol funtion on the saled timeinterval [0, 1] are given. One observes the disontinuity of the ontrol and theadjoint variable λ2 at the (nonsaled) swithing point t1 =̇ 1.9912720.6.3. The singular aseIf one substitutes the rear wind for y ≥ 0 by a time variant head wind, thesolution of this nonsmooth optimal ontrol problem may ontain a singular-
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Control θ(t)Figure 10b. Problem (Z): Corresponding optimal state, adjoint, and ontrolfuntions.state subar. We hoose the following wind �eld.
u(x, y) :=

{
vs y, if y ≥ 0,
vs, if y < 0,

v(x, y) := 0, (49)The analysis of the singular subar aording to Theorem 2 yields the extendedHamiltonian
H = λ1 (v0 cos(Θ) + u) + (λ2 + µ) (v0 sin(Θ) + v) (50)and the orresponding optimal ontrol
cos(Θ) = −

λ1√
λ2

1 + (λ2 + µ)2
, sin(Θ) = −

λ2 + µ√
λ2

1 + (λ2 + µ)2
. (51)The adjoint equations remain unhanged, see Eqs. (44). On the regular subars,we have µ = 0, whereas on the singular subars, we have S(x, y) = y = 0, and

S(1)(x, y, Θ) = v0 sin Θ = 0, so that λ2 + µ = 0, sin Θ = 0, and cosΘ = −1.If we hoose the data and boundary onditions as in (46), we may expet asolution with one singular state subar [t1, t2]. Due to Theorem 2, a solutionof this nonsmooth optimal ontrol problem must satisfy the same boundaryvalue problem (44) as before, however, augmented by the following jump andswithing onditions
λ1(t

+
j ) = λ1(t

−

j ), j = 1, 2, (52a)
λ2(t

+
1 ) = λ2(t

−

1 ) + κ1, λ2(t
+
2 ) = λ2(t

−

2 ), (52b)
y(t1) = 0, H[t+j ] = H[t−j ], j = 1, 2. (52)



448 H.J. OBERLE, R. ROSENDAHLAdditional parameters of the boundary value problem are the swithing times
t1, t2, and the Lagrange multiplier κ1. They are determined by the swithingonditions (52).
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Figure 11a. Problem (Z): Minimum time path for the nonsmooth wind �eld(49).In Fig. 11a the optimal �ight path for the nonsmooth wind �eld is shown.The resulting minimal �ight time is tf =̇ 7.3819697. The saled optimal state,adjoint and ontrol variables are given in Fig. 11b.
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