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s in nonsmooth optimal 
ontrol∗byHans Joa
him Oberle and Ri
ki RosendahlDepartment of Mathemati
s, University of HamburgHamburg, GermanyAbstra
t: In this paper we 
onsider general optimal 
ontrolproblems (OCP) whi
h are 
hara
terized by a nonsmooth ordinarystate di�erential equation. However, we allow only mild types of non-smoothness. More pre
isely, we assume that the right-hand side ofthe state equation is pie
ewise smooth and that the swit
hing points,whi
h separate these pie
es, are determined as points, where a state-and possibly 
ontrol-dependent (smooth) swit
hing fun
tion 
hangessign. For this kind of optimal 
ontrol problems ne
essary optimality
onditions are developed. Attention is paid to the situation whenthe swit
hing fun
tion vanishes identi
ally along a nontrivial subar
.Su
h subar
s, whi
h we 
all singular state subar
s, are investigatedwith respe
t to ne
essary 
onditions and to jun
tion 
onditions. Inextension to earlier results of the authors, Oberle and Rosendhal(2006), in this paper nonsmooth OCPs are 
onsidered with respe
tto the order of the swit
hing fun
tion. Espe
ially, the 
ase of a zero-order swit
hing fun
tion is in
luded and examples of order zero, oneand two are treated.Keywords: nonsmooth optimal 
ontrol problems, ne
essary
onditions, singular state subar
s, Zermelo's problem.1. Introdu
tionThe paper is 
on
erned with general optimal 
ontrol problems (OCP) whi
hare 
hara
terized by a nonsmooth ordinary state di�erential equation. Morepre
isely, we assume that the right-hand side of the state equation is pie
ewisesmooth and that the swit
hing points, whi
h separate these pie
es, are deter-mined as those points where a state- and possibly 
ontrol-dependent (smooth)swit
hing fun
tion 
hanges sign. Nonsmooth optimal 
ontrol problems of thistype rarely have been mentioned in the literature, see for example Baumann(2002), Chudej (1995), and Moyer (2002). Of 
ourse, they are spe
ial examplesfor the rather general theory of Clarke (1983). Su
h problems sometimes o

urin appli
ations.
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430 H.J. OBERLE, R. ROSENDAHLIt should be remarked that a similar type of optimal 
ontrol problems,namely multipro
ess 
ontrol problems or multi-stage 
ontrol problems, havebeen treated in the literature, see Clark, Vinter (1989), and Augustin, Maurer(2000). However, for this kind of optimal 
ontrol problems the swit
hing timesbetween di�erent stages are determined in a di�erent way. Either these pointsare �xed or they are determined by boundary 
onditions. In this paper, how-ever, we are interested in the optimal jun
tion 
onditions, whi
h are 
aused bythe use of swit
hing fun
tions.In a re
ent paper, Oberle and Rosendahl (2006), the authors have 
onsid-ered nonsmooth optimal 
ontrol problems of the above type and have given anappli
ation to e
onomi
s. However, only swit
hing fun
tions of order one havebeen treated and ne
essary optimality 
onditions have been derived. Espe
iallythe 
ase of a so-
alled singular-state subar
 has been 
onsidered.In the present paper, we extend these results in
luding the 
ase of an order-zero swit
hing fun
tion and give ne
essary optimality 
onditions for regular andsingular OCPs of this type. Further, we 
onsider two 
lassi
al examples. The�rst example des
ribes the optimal 
ontrol of an ele
tri
 
ir
uit whi
h in
ludes adiode and a 
apa
itor. This problem has already been investigated in the bookof Clarke (1983). It is a nonsmooth OCP with a swit
hing fun
tion of order zero.We apply the ne
essary 
onditions and present regular and singular solutionsto this problem. By a slight modi�
ation we obtain a nonsmooth OCP with anorder-two swit
hing fun
tion. For this problem we present regular solutions.The se
ond example is the 
lassi
al Zermelo's navigation problem. Here,one has to determine optimal 
ontrol fun
tions for a time-minimal horizontalplane �ight of an air
raft within a pres
ribed spa
e-depending wind �eld. If weassume that the wind �eld 
ontains 
ertain lines of dis
ontinuities (atmospheri
fronts), we end up with a nonsmooth OCP with a swit
hing fun
tion of orderone. We apply the ne
essary 
onditions and present numeri
al solutions as wellfor the regular as for the singular 
ase.The paper is organized as follows: In the �rst part we 
onsider a generalnonsmooth OCP and derive 
orresponding ne
essary 
onditions in the form of amultipoint boundary value problem. In se
tion two, we further assume that theswit
hing fun
tion along the solution traje
tory 
hanges sign only at isolatedpoints (regularity assumption). The ne
essary 
onditions, we derive, di�er for
ontrol dependent swit
hing fun
tions (order zero), on the one hand, and forswit
hing fun
tions whi
h only depend on the state (positive order), on the otherhand. In se
tion three, in addition, we admit singular state subar
s. Here, thene
essary 
onditions 
an be derived only for order zero and order one problems.In the remaining three se
tions we investigate the examples, mentioned before.2. Nonsmooth optimal 
ontrol problems, regular 
aseWe 
onsider a general OCP with a pie
ewise de�ned state di�erential equation.The problem has the following form:



On singular ar
s in nonsmooth optimal 
ontrol 431Problem (P) Determine a pie
ewise 
ontinuous 
ontrol fun
tion u : [a, b] →
R

m, su
h that the fun
tional
I = g(x(b)) (1)is minimized, subje
t to the following 
onstraints (state equations, boundary
onditions, and 
ontrol 
onstraints)

x′(t) = f(x(t), u(t)) , t ∈ [a, b] a.e., (2a)
r(x(a), x(b)) = 0 , (2b)
u(t) ∈ U ⊂ R

m. (2
)The 
ontrol region U is assumed to be a 
ompa
t and 
onvex 
uboid of theform U = Πi[ui,min, ui,max]. Further, we assume that the right-hand side of thestate equation (2a) is of the spe
ial form
f(x, u) =





f1(x, u), if S(x, u) < 0,
fs(x, u), if S(x, u) = 0,
f2(x, u), if S(x, u) > 0,

(3)where the fun
tions S : R
n × R

m → R, fk : R
n × R

m → R
n (k = 1, 2, s), and

r : R
n × R

n → R
ℓ, ℓ ∈ {0, . . . , 2n}, are su�
iently smooth.

S is 
alled the swit
hing fun
tion of Problem (P). Note that in many 
asesthe dynami
s fs � the index s stands for singular � along the singular surfa
e
S = 0 will be given either by fs := f1 or by fs := f2.Our aim is to derive ne
essary 
onditions for Problem (P). To this end, let
(x0, u0) denote a solution of the problem with a pie
ewise 
ontinuous optimal
ontrol fun
tion u0. Pie
ewise 
ontinuity is understood in the sense that thereexists a �nite partition a < t1 < . . . < tq < b su
h that u0 is 
ontinuous in ea
hopen subinterval and at a and b as well, and that all one-sided limits u0(t±j ),
j = 1, . . . , q, exist.We assume that the problem is regular with respe
t to the minimum prin
i-ple, that is: For suitable λ, x ∈ R

n the Hamiltonians
Hj(x, u, λ) := λTfj(x, u), j = 1, 2, s (4)possess a unique minimum u0

j with respe
t to the 
ontrol u ∈ U .Finally, for this se
tion, we assume that the following regularity assumptionholds.Regularity Condition (R) There exists a �nite grid a =: t0 < t1 <
. . . < tq < tq+1 := b su
h that the optimal swit
hing fun
tion S[t] :=
S(x0(t), u0(t)) is either positive or negative in ea
h open subinterval ]tj−1, tj [,
j = 1, . . . , q + 1.In the following, we distinguish two 
ases. On the one hand, if the swit
hingfun
tion is independent of the 
ontrol u, the swit
hing fun
tion along the solu-tion, S[·] := S(x0(·)), is a 
ontinuous fun
tion, so that tj is an isolated root of
S[·]. We indi
ate this 
ase by p > 0.



432 H.J. OBERLE, R. ROSENDAHLOn the other hand, if the swit
hing fun
tion depends expli
itly on the 
on-trol, S[·] := S(x0(·), u0(·)) may have dis
ontinuities at the tj . In this 
ase, wesay that the swit
hing fun
tion is of order zero, p = 0.Now, we 
an summarize the ne
essary 
onditions for the OCP (P). Here, onea
h subinterval [tj , tj+1], we denote H(x, u, λ) := Hj(x, u, λ) where j ∈ {1, 2}is 
hosen a

ording to the sign of S in the 
orresponding (open) subinterval. Thefollowing theorem is a generalization of our previous results in the related paperOberle and Rosendahl (2006).Theorem 1 With the assumptions above the following ne
essary 
onditionshold. There exist an adjoint variable λ : [a, b] → R
n, whi
h is a pie
e-wise C1�fun
tion, and Lagrange multipliers ν0 ∈ {0, 1}, ν ∈ R

ℓ, κ ∈ R
q, su
hthat (x0, u0) satis�es (t ∈ [a, b])

λ′(t) = −Hx(x0(t), u0(t), λ(t)), a.e., (5a)
u0(t) = argmin{H(x0(t), u, λ(t)) : u ∈ U}, (5b)
λ(a) = −

∂

∂x0(a)
[νTr(x0(a), x0(b))], (5
)

λ(b) =
∂

∂x0(b)
[ν0 g(x0(b)) + νTr(x0(a), x0(b))], (5d)

λ(t+j ) =

{
λ(t−j ), if p = 0, j = 1, . . . , q,

λ(t−j ) + κj ∇xS(x0(tj)), if p > 0,
(5e)

H[t+j ] = H[t−j ], j = 1, . . . , q. (5f)Proof. We assume that there is just one point t1 ∈ ]a, b[, where the swit
hingfun
tion S[·] 
hanges sign. Moreover, we assume that the following swit
hingstru
ture holds
S[t]

{
< 0, if a ≤ t < t1
> 0, if t1 < t ≤ b.

(6)We 
ompare the optimal solution (x0, u0) with those admissible solutions (x, u)of (P) whi
h have the same swit
hing stru
ture. Ea
h 
andidate of this type
an be asso
iated with its separated parts (τ ∈ [0, 1])
x1(τ) := x(a + τ(t1 − a)), x2(τ) := x(t1 + τ(b − t1)),
u1(τ) := u(a + τ(t1 − a)), u2(τ) := u(t1 + τ(b − t1)).

(7)Now, (x1, x2, t1, u1, u2) is an admissible and (x0
1, x

0
2, t

0
1, u

0
1, u

0
2) an optimal solu-tion of the following auxilliary optimal 
ontrol problem.Problem (P') Determine a pie
ewise 
ontinuous 
ontrol fun
tion u =

(u1, u2) : [0, 1] → R
2 m, su
h that the fun
tional

I = g(x2(1)) (8)



On singular ar
s in nonsmooth optimal 
ontrol 433is minimized, subje
t to the 
onstraints (τ ∈ [0, 1])
x′

1(τ) = (t1 − a) f1(x1(τ), u1(τ)) , a.e., (9a)
x′

2(τ) = (b − t1) f2(x2(τ), u2(τ)), a.e., (9b)
t′1(τ) = 0, (9
)
r(x1(0), x2(1)) = 0 , (9d)
x2(0) − x1(1) = 0, (9e)
S(x1(1)) = 0, only if p > 0, (9f)
u1(τ), u2(τ) ∈ U ⊂ R

m. (9g)Problem (P') is a 
lassi
al optimal 
ontrol problem with a smooth right-hand side, and (x0
1, x

0
2, t

0
1, u

0
1, u

0
2) is a solution of this problem. Therefore, we
an apply the well�known ne
essary 
onditions of optimal 
ontrol theory: Thereexist 
ontinuous and pie
ewise 
ontinuously di�erentiable adjoint variables λj :

[0, 1] → R
n, j = 1, 2, and Lagrange-multipliers ν0 ∈ {0, 1}, ν ∈ R

ℓ, ν1 ∈ R
n,and κ ∈ R, su
h that, with the Hamiltionian

H̃ := (t1 − a)λT1 f1(x1, u1) + (b − t1)λT2 f2(x2, u2), (10)and the augmented performan
e index
Φ := ν0 g(x2(1)) + νTr(x1(0), x2(1)) + νT1 (x2(0)−x1(1)) + κS(x1(1)), (11)(κ = 0, if p = 0) the following 
onditions hold

λ′

1 = −H̃x1
= −(t1 − a)

(
λT1 f1(x1, u1)

)
x1

, (12a)
λ′

2 = −H̃x2
= −(b − t1)

(
λT2 f2(x2, u2)

)
x2

, (12b)
λ′

3 = −H̃t1 = −λT1 f1(x1, u1) + λT2 f2(x2, u2), (12
)
uk(τ) = argmin{λk(τ)Tfk(xk(τ), u) : u ∈ U}, k = 1, 2, (12d)
λ1(0) = −Φx1(0) = −(νTr)x1(0), λ1(1) = Φx1(1) = −ν1 + κ Sx(x1(1)), (12e)
λ2(0) = −Φx2(0) = −ν1, λ2(1) = Φx2(1) = (ν0 g + νT r)x2(1), (12f)
λ3(0) = λ3(1) = 0. (12g)Due to the autonomy of the state equations and due to the regularity as-sumptions above, both parts λT1 f1 and λT2 f2 of the Hamiltonian are 
onstanton [0, 1]. Thus, λ3 is a linear fun
tion whi
h vanishes due to the boundary
onditions (12g). Together with the relation (12
) one obtains the 
ontinuity ofthe Hamiltonian (5f).If one re
ombines the adjoints

λ(t) :=






λ1

( t − a

t1 − a

)
, t ∈ [a, t1[,

λ2

( t − t1
b − t1

)
, t ∈ [t1, b],

(13)



434 H.J. OBERLE, R. ROSENDAHLone obtains the adjoint equation (5a) from Eqs. (12a-b), the minimum prin
iple(5b) from Eq. (12d), and the natural boundary 
onditions and the 
ontinuityand jump 
onditions (5
-e) from Eqs. (12e-f).It should be remarked that the results of Theorem 1 easily 
an be extended tononautonomous OCPs with nonsmooth state equations and to problems withfree �nal-time tb. This holds too, if the performan
e index 
ontains an additionalintegral term, i.e.
I = g(tb, x(tb)) +

∫ tb

a

f0(t, x(t), u(t))dt. (14)These extensions 
an be treated by standard transformation te
hniques, whi
htransform the problems into the form of Problem (P). The result is that for theextended problems one has to rede�ne the Hamiltonian by
H(t, x, u, λ, ν0) := ν0 f0(t, x, u) + λTf(t, x, u). (15)3. Nonsmooth optimal 
ontrol problems, singular 
aseIn this se
tion we 
ontinue the investigation of the general optimal 
ontrol prob-lem (P). However, we drop the regularity 
ondition (R). We assume that a so-lution (x0, u0) of (P) 
ontains a �nite number of nontrivial subar
s, where theswit
hing fun
tion vanishes identi
ally. More pre
isely:Singularity Condition (S) We assume that there exists a �nite grid

a =: t0 < t1 < . . . < tq < tq+1 := b su
h that in ea
h open subinterval ]tj−1, tj [,
j = 1, . . . , q +1, the optimal swit
hing fun
tion S[t] = S(x0(t), u0(t)) is eithertotally positive, totally negative, or vanishes identi
ally. The later subar
s are
alled singular state subar
s, see Bell, Ja
obson (1975) and Bryson, Ho (1969),for the analogous situation of singular 
ontrol subar
s.Thus, the grid points tj are either isolated points, where the swit
hing fun
-tion S[·] 
hanges sign, or they are entry or exit points of a singular state subar
.By Jreg we denote the set of indi
es of grid points tj where the swit
hingfun
tion 
hanges sign, by Jentry those of the entry points, and by Jexit those ofthe exit points of the singular state subar
s.We give a more pre
ise de�nition of the order of a singular state subar
, inanalogy to the order of state variable inequality 
onstraint. To this end, we usethe following re
ursive de�nition
S(0)(x, u) := S(x, u), S(k)(x, u) := S(k−1)

x (x, u)Tfs(x, u), k = 1, 2, . . . (16)We say that, for the solution (x0, u0), the swit
hing fun
tion S is of order p ≥ 0,if the �rst total time derivatives S(k), k = 0, . . . , p − 1, are independent of
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s in nonsmooth optimal 
ontrol 435the 
ontrol u, and further, if S(p) satis�es the following regularity 
ondition(
onstraint quali�
ation)
∂

∂u
S(p)(x0(t), u0(t)) 6= 0, ∀ t ∈ [tj , tj+1], j ∈ Jentry . (17)Order Condition (O) We assume that the swit
hing fun
tion is eitherof order zero, p = 0, or of order one, p = 1, with respe
t to the �xed solution

(x0, u0) of problem (P), i.e.for p = 0 : Su(x0(t), u0(t)) 6= 0,for p = 1 : S = S(x), S
(1)
u (x0(t), u0(t)) 6= 0

(18)may hold along ea
h singular state subar
.Now, we introdu
e the extended Hamiltonian (here also denoted by H)
H(x, u, λ, µ) := Hk(x, u, λ, µ) := λTfk(x, u) + µ S(p)(x, u), (19)where k ∈ {1, 2, s} is 
hosen a

ording to the sign of S in the 
orrespondingsubinterval, and µ denotes a Lagrange multiplier. We set µ := 0 for k = 1, 2.Again, we assume regularity with respe
t to the minimum prin
iple.In the following, we summarize the ne
essary 
onditions for Problem (P).Theorem 2 With the assumptions above the following ne
essary 
onditionshold. There exist an adjoint variable λ : [a, b] → R

n, whi
h is a pie
e-wise C 1�fun
tion, and Lagrange multipliers ν0 ∈ {0, 1}, ν ∈ R
ℓ, κj ∈ R (j ∈

Jreg ∪ Jentry), and a pie
ewise 
ontinuous Lagrange multiplier µ : [a, b] → R ,su
h that (x0, u0) satis�es the 
onditions (t ∈ [a, b])
λ′(t) = −Hx(x0(t), u0(t), λ(t), µ(t)), a.e. (20a)
u0(t) = argmin{H(x0(t), u, λ(t), µ(t)) : u ∈ U}, (20b)
µ(t) S(x0(t), u0(t)) = 0, (20
)
λ(a) = −

∂

∂x0(a)
[νTr(x0(a), x0(b))], (20d)

λ(b) =
∂

∂x0(b)
[ν0 g(x0(b)) + νTr(x0(a), x0(b))], (20e)

λ(t+j ) =

{
λ(t−j ) + κj ∇xS(x0(tj)), for p = 1, j ∈ Jreg ∪ Jentry,

λ(t−j ), for p = 0,
(20f)

H[t+j ] = H[t−j ], j = 1, . . . , q. (20g)Proof. For simpli
ity, we assume that the swit
hing fun
tion S[·] along the op-timal traje
tory has just one singular state subar
 [t1, t2] ⊂ ]a, b[, and that thefollowing swit
hing stru
ture holds
S[t]





< 0, if a ≤ t < t1,
= 0, if t1 ≤ t ≤ t2,
> 0, if t2 < t ≤ b.

(21)



436 H.J. OBERLE, R. ROSENDAHLAgain, we 
ompare the optimal solution (x0, u0) with those admissible solutions
(x, u) of the problem whi
h have the same swit
hing stru
ture. Ea
h 
andidateis asso
iated with its separated parts (τ ∈ [0, 1])

x1(τ) := x(a + τ(t1 − a)), u1(τ) := u(a + τ(t1 − a)),
xs(τ) := x(t1 + τ(t2 − t1)), us(τ) := u(t1 + τ(t2 − t1)),
x2(τ) := x(t2 + τ(b − t2)), u2(τ) := u(t2 + τ(b − t2)).

(22)Now, (x1, xs, x2, t1, t2, u1, us, u2) performs an admissible and (x0
1, x

0
s, x

0
2, t

0
1, t

0
2, u

0
1,

u0
s, u

0
2) an optimal solution of the following auxilliary optimal 
ontrol problem.Problem (P�). Determine a pie
ewise 
ontinuous 
ontrol fun
tion u =

(u1, us, u2) : [0, 1] → R
3m, su
h that the fun
tional

I = g(x2(1)) (23)is minimized, subje
t to the 
onstraints (τ ∈ [0, 1])
x′

1(τ) = (t1 − a) f1(x1(τ), u1(τ)), a.e., (24a)
x′

s(τ) = (t2 − t1) fs(xs(τ), us(τ)), a.e., (24b)
x′

2(τ) = (b − t2) f2(x2(τ), u2(τ)), a.e., (24
)
t′k(τ) = 0, k = 1, 2, (24d)
r(x1(0), x2(1)) = 0 , (24e)
xs(0) − x1(1) = x2(0) − xs(1) = 0, (24f)
S(xs(τ), us(τ)) = 0 , (24g)
u1(τ), us(τ), u2(τ) ∈ U . (24h)Problem (P�) again is a 
lassi
al OCP with a smooth right-hand side. However,it 
ontains, depending on the order p, a (regular) 
ontrol equality 
onstraint, ora pure state equality 
onstraint of �rst order, respe
tively. We 
an apply the
lassi
al ne
essary 
onditions of optimal 
ontrol theory, see Hestenes (1966). Ifthe 
onstraint quali�
ation (18) is satis�ed, there exist a 
ontinuous Lagrangemultiplier µ̃, and 
ontinuously di�erentiable adjoint variables λk, k = 1, s, 2, 3, 4,su
h that with the Hamiltonian

H̃ := (t1 − a) λT1 f1(x1, u1) + (t2 − t1) λTs fs(xs, us)

+ (b − t2) λT2 f2(x2, u2) + µ̃ (t2 − t1) S(p)(xs, us),
(25)and the augmented performan
e index (with κ = 0 for p = 0)

Φ := ν0g(x2(1)) − κS(xs(0), us(0)) + νTr(x1(0), x2(1))
+ νT1 (xs(0) − x1(1)) + νT2 (x2(0) − xs(1)),

(26)



On singular ar
s in nonsmooth optimal 
ontrol 437the following 
onditions hold (τ ∈ [0, 1])
λ′

1 = −H̃x1
= −(t1 − a)

(
λT1 f1

)
x1

, (27a)
λ′

s = −H̃xs
= −(t2 − t1)

[
(λTs fs)xs

+ µ̃(τ)S(p)
xs

(xs, us)
]
, (27b)

λ′

2 = −H̃x2
= −(b − t2) (λT2 f2)x2

, (27
)
λ′

3 = −H̃t1 = −λT1 f1 + λTs fs + µ̃(τ) S(p)(xs, us), (27d)
λ′

4 = −H̃t2 = −λTs fs + λT2 f2 − µ̃(τ) S(p)(xs, us), (27e)
uj(τ) = argmin{λj(τ)Tfj(xj(τ), u) : u ∈ U}, j = 1, 2, (27f)
us(τ) = argmin{λs(τ)Tfs(xs(τ), u) + µ̃(τ) S(p)(xs(τ), u) : u ∈ U}, (27g)
λ1(0) = −Φx1(0) = −(νTr)x1(0), λ1(1) = Φx1(1) = −ν1, (27h)
λs(0) = −Φxs(0) = −ν1 + κ Sxs(0), λs(1) = Φxs(1) = −ν2, (27i)
λ2(0) = −Φx2(0) = −ν2, λ2(1) = Φx2(1) = (ℓ0 g + νTr)x2(1), (27j)
λ3(0) = λ3(1) = λ4(0) = λ4(1) = 0. (27k)Due to the autonomy of the optimal 
ontrol problem, all three parts λT1 f1,

λTs fs, and λT2 f2 of the Hamiltonian are 
onstant. Due to Eq. (24g) we get
S(p)(xs(τ), us(τ)) = 0, τ ∈ [0, 1]. Be
ause of Eqs. (27d), (27e), and (27k), theadjoints λ3 and λ4 vanish and we obtain the global 
ontinuity of the augmentedHamiltonian (19).If one re
ombines the adjoints

λ(t) :=





λ1

( t − a

t1 − a

)
, t ∈ [a, t1[,

λs

( t − t1
t2 − t1

)
, t ∈ [t1, t2],

λ2

( t − t2
b − t2

)
, t ∈ ]t2, b],

(28)and the state and 
ontrol variables a

ordingly, one obtains all the ne
essary
onditions of the theorem.Again, we mention that the results of Theorem 2 
an be easily extendedto nonautonomous nonsmooth OCPs, to problems with free �nal-time, and tooptimal 
ontrol problems with performan
e index of Bolza type, as well.4. A nonsmooth OCP of order zeroThe following example is taken from the well-known book of Clarke (1983).It des
ribes the 
ontrol of an ele
troni
 
ir
uit, whi
h in
ludes a diode anda 
ondenser. The diode is treated as a resistor with two values of resistan
edepending on the dire
tion of the 
urrent.If u := U denotes the initializing voltage (
ontrol), and x := UC denotes thevoltage at the 
ondenser (state), one obtains the following nonsmooth OCP.
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U(t) ~

U
D

(t)

U
C

(t)Figure 1. Ele
tri
 
ir
uit with a diode and a 
apa
itorProblem (D1). Minimize the fun
tional
I(u) =

1

2

∫ 2

0

u(t)2 dt (29)with respe
t to the state equation
x′(t) =

{
α (u − x), if S = x − u ≤ 0,
β (u − x), if S = x − u > 0,

(30)and the boundary 
onditions x(0) = 4, x(2) = 3.In the smooth 
ase, we 
hoose α = β = 2, the (unique) solution easily 
anbe found applying the 
lassi
al optimal 
ontrol theory, see Fig. 2.
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Figure 2. Problem (D1): Smooth 
ase, α = β = 2.For the nonsmooth 
ase, α 6= β, we assume that there is just one point
t1 ∈ ]0, 2[ where the swit
hing fun
tion 
hanges sign. Further, due to theresults for the smooth 
ase, we assume the solution stru
ture
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S[t]

{
> 0, if 0 ≤ t < t1,
< 0, if t1 < t ≤ 2.

(31)A

ording to Theorem 1 we obtain the following ne
essary 
onditions:(i) t ∈ [0, t−1 ] : H = H2 =
1

2
u2 + β λ (u − x),

λ′ = β λ, u = −β λ.(ii) t ∈ [t+1 , 2] : H = H1 =
1

2
u2 + α λ (u − x),

λ′ = α λ, u = −α λ.The 
ontinuity 
ondition (5f) yields
H[t+1 ] −H[t−1 ] = (β − α) λ(t1)

[
α + β

2
λ(t1) + x(t1)

]
= 0.Thus, we obtain the following three-point boundary value problem.

x′ =

{
−β (β λ + x) : t ∈ [0, t−1 ],
−α (α λ + x) : t ∈ [t+1 , 2],

λ′ =

{
β λ : t ∈ [0, t−1 ],
α λ : t ∈ [t+1 , 2],

x(0) = 4, x(2) = 3,
α + β

2
λ(t1) + x(t1) = 0.

(32)
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Figure 3. Problem (D1): Nonsmooth and regular 
ase, α = 4, β = 2.In Fig. 3 the numeri
al solution for the parameters α = 4 and β = 2is shown. The result is obtained via the multiple shooting 
ode BNDSCO,see Oberle, Grimm (1989), and Stoer, Bulirs
h (1996). One observes that the



440 H.J. OBERLE, R. ROSENDAHLpreassumed sign distribution of the swit
hing fun
tion is satis�ed. Further, theoptimal 
ontrol and the optimal swit
hing fun
tion are dis
ontinuous at theswit
hing point.For parameters α < β the solution of the boundary value problem (32)does not satisfy the preassumed sign distribution of the swit
hing fun
tion, seeFig. 4.
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Figure 4. Problem (D1): Nonadmissible solution, α = 2, β = 4.So, for this 
hoi
e of parameters we have to 
onsider the singular 
ase, i.e.the swit
hing fun
tion vanishes along a nontrivial subar
. If we assume thatthere is exa
tly one singular state subar
,
S[t]






> 0, if 0 ≤ t < t1,
= 0, if t1 ≤ t ≤ t2,
< 0, if t2 < t ≤ 2,

(33)we obtain the following ne
essary 
onditions due to Theorem 2.(i) t ∈ [0, t1] : H = H2 =
1

2
u2 + β λ (u − x),

λ′ = β λ, u = −β λ.(ii) t ∈ [t1, t2] : H = Hs =
1

2
u2 + α λ (u − x) + µ (x − u),

λ′ = αλ − µ, u = −α λ + µ = x.(iii) t ∈ [t2, 2] : H = H1 =
1

2
u2 + α λ (u − x),

λ′ = α λ, u = −α λ.The 
ontinuity of the Hamiltonian, say at t1, yields with
H[t−1 ] = H2[t

−

1 ] =
1

2
β2 λ(t1)

2 + β λ(t1) (−β λ(t1) − x(t1))

= −
1

2
β λ(t1) (β λ(t1) + 2 x(t1))

H[t+1 ] = Hs[t
+
1 ] =

1

2
x(t1)

2the interior boundary 
ondition x(t1) + β λ(t1) = 0. The analogous 
onditionholds at the se
ond swit
hing point t2.
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x′ =





−β (β λ + x) : t ∈ [0, t1],
0 : t ∈ [t1, t2],
−α (α λ + x) : t ∈ [t2, 2],

λ′ =






β λ : t ∈ [0, t1],
−x : t ∈ [t1, t2],
α λ : t ∈ [t2, 2],

x(0) = 4, x(2) = 3,
x(t1) + β λ(t1) = 0, x(t2) + α λ(t2) = 0.

(34)
For the parameters α = 2, β = 4 the numeri
al solution is shown in Fig. 5.One observes a singular state subar
 with the swit
hing points t1 =̇ 0.632117,
t2 =̇ 0.882117.
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Figure 5. Problem (D1): Nonsmooth and singular 
ase, α = 2, β = 4.In di�eren
e to the regular 
ase, one observes that for the singular-state subar
the 
ontrol and adjoint variable are 
ontinuous fun
tions. This is a 
onsequen
eof the ne
essary 
onditions when treating linear-quadrati
 OCPs, see Rosendahl(2008).5. A modi�
ation of Clarke's exampleIn the following se
tion we 
onsider an OCP for a modi�ed ele
tri
 
ir
uit, whi
h
ontains a diode, a 
apa
itor and a 
oil.The relations between the initializing voltage U , the 
urrent I, and thevoltages at the ele
tri
 elements are given by
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U(t) ~

U
D

(t)

U
L
(t)

U
C

(t)Figure 6. Ele
tri
 
ir
uit with a diode, a 
apa
itor, and a 
oil
U(t) = UD(t) + UC(t) + UL(t), (35a)
I(t) =

{
UD(t)/R1, if UD ≥ 0,
UD(t)/R2, if UD < 0,

(35b)
I(t) = C U̇C(t), (35
)
İ(t) = UL(t)/L. (35d)By di�erentiation of Kir
hho�'s law (35a) and using the abbreviations u :=

U̇ , x1 := I, x2 := İ , α := R1/L, β := R2/L, and γ := 1/(L C), we obtainthe following OCP.Problem (D2). Minimize the fun
tional
I(u) =

1

2

∫ 2

0

u(t)2 dt (36)with respe
t to the state equation
x′

1(t) = x2, (37a)
x′

2(t) =

{
u − α x2 − γ x1, if S := x1 ≥ 0,
u − β x2 − γ x1, if S := x1 < 0,

(37b)and the boundary 
onditions
x1(0) = 1, x2(0) = −4, x1(2) = x2(2) = 0. (38)One observes that the swit
hing fun
tion of this nonsmooth OCP S := x1 is ofthe order p = 2. For this situation, only the regular 
ase is tra
table with ourtheory above. If we use this regularity assumption (R) and apply Theorem 1 forone swit
hing point, we get the following three-point boundary value problem:
x′

1 = x2, (39a)
x′

2 = u − δ x2 − γ x1, u = −λ2, (39b)
λ′

1 = γ λ2, δ :=

{
α, if t ∈ [0, t1],
β, if t ∈ ]t1, 2],

(39
)
λ′

2 = −λ1 + δ λ2, (39d)
λ1(t

+
1 ) = λ1(t

−

1 ) + (β − α) λ2(t1), λ2(t
+
1 ) = λ2(t

−

1 ), (39e)
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x1(t1) = 0, (39f)
x1(0) = 1, x2(0) = −4, x1(2) = x2(2) = 0. (39g)This boundary value problem 
an be solved numeri
ally. For both 
ases α< βand α>β we obtain admissible solutions, whi
h satisfy the regularity assump-tion.In Fig. 7 the solution of the boundary-value problem (39) for the parameters

α = 2, β = 3 is shown. Fig. 8 gives the solution for α = 3, β = 2.
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444 H.J. OBERLE, R. ROSENDAHL6. The nonsmooth Zermelo's problemIn this se
tion we 
onsider a modi�
ation of the 
lassi
al problem of Zermelo,see Arrow (1949), Zermelo (1930, 1931). In the literature of optimal 
ontrol theproblem is well known as the ship navigation problem. In its original notation,however, the problem is given as follows. One has to determine the heading
ontrol for the horizontal plane �ight of an air
raft within a pres
ribed spa
e-depending horizontal wind �eld su
h that the transfer time from a given initial-to a given endpoint is minimized.In mathemati
al notation the problem 
an be formulated as an optimal
ontrol problem.Problem (Z) Determine the transfer time tf and a pie
ewise 
ontinuous
ontrol fun
tion Θ(t), 0 ≤ t ≤ tf , su
h that
I(Θ, tf) := tf (40)is minimized, subje
t to following state equations and boundary 
onditions:

x′(t) = v0 cos(Θ(t)) + u(x(t), y(t)), (41a)
y′(t) = v0 sin(Θ(t)) + v(x(t), y(t)), (41b)
x(0) = x0, x(tf ) = xf , (41
)
y(0) = y0, y(tf ) = yf . (41d)Here, v0 is the (
onstant) magnitude of the air
raft velo
ity relative to the wind�eld, Θ is the heading angle (
ontrol fun
tion), (u, v) is the velo
ity of the wind�eld relative to the ground. For simpli
ity, we assume that (u, v) depends onlyon the state (x, y), the position of the air
raft.Further modi�
ations of this problem, in
luding, for example, wind �eldswhi
h vary in spa
e and time, or a three-dimensional modelling, are more orless straightforward.6.1. The smooth 
aseFirst, we summarize the ne
essary 
onditions for the smooth 
ase, i.e. the wind�eld may be a smooth fun
tion of (x, y). The Hamiltonian is given by

H = λ1 (v0 cos(Θ) + u) + λ2 (v0 sin(Θ) + v). (42)By the minimum prin
iple we obtain the following optimal 
ontrol law
cos(Θ) = −

λ1√
λ2

1 + λ2
2

, sin(Θ) = −
λ2√

λ2
1 + λ2

2

, (43)and, thus, together with the adjoint equations, we obtain the following two-point boundary value problem with respe
t the independent variable τ ∈ [0, 1]:
x′ = tf (v0 cos(Θ) + u(x, y)), (44a)
y′ = tf (v0 sin(Θ) + v(x, y)), (44b)
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λ′

1 = tf (−λ1 ux(x, y) − λ2 vx(x, y)), (44
)
λ′

2 = tf (−λ1 uy(x, y) − λ2 vy(x, y)), (44d)
t′f = 0, (44e)
x(0) = x0, x(1) = xf , (44f)
y(0) = y0, y(1) = yf , (44g)
H[1] = [−v0

√
λ2

1 + λ2
2 + λ1 u + λ2 v]|τ=1 = −1. (44h)Following Bryson, Ho (1969), we 
hoose the wind �eld (shear wind)

u(x, y) := − vs y, v(x, y) := 0 (45)and the parameters
v0 := 1, vs := 0.8, x0 := 3.66, y0 := −1.86, xf := 0, yf := 1. (46)Fig. 9 shows the optimal �ight path. The air
raft heading is indi
ated at sev-eral points along the path. For the minimal �ight time we obtain tf =̇4.9257352.
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Figure 9. Problem (Z): Minimum time path for a smooth wind �eld; v0 =
1, vs = 0.8.6.2. The nonsmooth 
aseNext, we 
onsider the 
ase of a nonsmooth wind �eld. With this ansatz anatmospheri
 front may be modeled. Again, we simplify the pra
ti
al problemand 
hoose the time-independent front line y = 0. Note, however, that thegeneral theory allows to handle the 
ase of time variant front lines too.We 
hoose the following wind �eld;

u(x, y) :=

{
−vs y, if y ≥ 0,
vs, if y < 0,

v(x, y) := 0, (47)



446 H.J. OBERLE, R. ROSENDAHLi.e., for y < 0, there is a 
onstant head wind, whereas, for y ≥ 0, there is aspa
e-dependent rear wind. The swit
hing fun
tion is given by S(x, y, Θ) := y.Obviously, S is of the order p = 1. If we 
hoose the data and boundary
onditions as before, we may expe
t a regular solution with one swit
hing point
t1, 0 < t1 < tf .For the ne
essary 
onditions we apply Theorem 1. Thus, a solution of thenonsmooth optimal 
ontrol problem must satisfy the same boundary value prob-lem (44) as before, however, augmented by the following jump and swit
hing
onditions

λ1(t
+
1 ) = λ1(t

−

1 ), λ2(t
+
1 ) = λ2(t

−

1 ) + κ1 (48a)
y(t1) = 0, H[t+1 ] = H[t−1 ]. (48b)Note that, 
ompared with the smooth 
ase, the boundary value problem 
ontainstwo additional unknowns, the swit
hing time t1 and the Lagrange multiplier κ1.Both are determined by the swit
hing 
onditions (48b).The numeri
al solution of the resulting multipoint boundary value problemhas been obtained by the multiple shooting 
ode BNDSCO. In Fig. 10a theoptimal �ight path for the nonsmooth wind �eld is shown. The resulting minimal�ight time is tf =̇ 4.9875063.
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Figure 10a. Problem (Z): Minimum time path for the nonsmooth wind �eld(47).In Fig. 10b the optimal state variables (x, y), the adjoint variable λ2 
orre-sponding to the state y, and the optimal 
ontrol fun
tion on the s
aled timeinterval [0, 1] are given. One observes the dis
ontinuity of the 
ontrol and theadjoint variable λ2 at the (nons
aled) swit
hing point t1 =̇ 1.9912720.6.3. The singular 
aseIf one substitutes the rear wind for y ≥ 0 by a time variant head wind, thesolution of this nonsmooth optimal 
ontrol problem may 
ontain a singular-
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Control θ(t)Figure 10b. Problem (Z): Corresponding optimal state, adjoint, and 
ontrolfun
tions.state subar
. We 
hoose the following wind �eld.
u(x, y) :=

{
vs y, if y ≥ 0,
vs, if y < 0,

v(x, y) := 0, (49)The analysis of the singular subar
 a

ording to Theorem 2 yields the extendedHamiltonian
H = λ1 (v0 cos(Θ) + u) + (λ2 + µ) (v0 sin(Θ) + v) (50)and the 
orresponding optimal 
ontrol
cos(Θ) = −

λ1√
λ2

1 + (λ2 + µ)2
, sin(Θ) = −

λ2 + µ√
λ2

1 + (λ2 + µ)2
. (51)The adjoint equations remain un
hanged, see Eqs. (44). On the regular subar
s,we have µ = 0, whereas on the singular subar
s, we have S(x, y) = y = 0, and

S(1)(x, y, Θ) = v0 sin Θ = 0, so that λ2 + µ = 0, sin Θ = 0, and cosΘ = −1.If we 
hoose the data and boundary 
onditions as in (46), we may expe
t asolution with one singular state subar
 [t1, t2]. Due to Theorem 2, a solutionof this nonsmooth optimal 
ontrol problem must satisfy the same boundaryvalue problem (44) as before, however, augmented by the following jump andswit
hing 
onditions
λ1(t

+
j ) = λ1(t

−

j ), j = 1, 2, (52a)
λ2(t

+
1 ) = λ2(t

−

1 ) + κ1, λ2(t
+
2 ) = λ2(t

−

2 ), (52b)
y(t1) = 0, H[t+j ] = H[t−j ], j = 1, 2. (52
)



448 H.J. OBERLE, R. ROSENDAHLAdditional parameters of the boundary value problem are the swit
hing times
t1, t2, and the Lagrange multiplier κ1. They are determined by the swit
hing
onditions (52
).
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Figure 11a. Problem (Z): Minimum time path for the nonsmooth wind �eld(49).In Fig. 11a the optimal �ight path for the nonsmooth wind �eld is shown.The resulting minimal �ight time is tf =̇ 7.3819697. The s
aled optimal state,adjoint and 
ontrol variables are given in Fig. 11b.
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lusionsIn this paper optimal 
ontrol problems with nonsmooth state di�erential equa-tions are 
onsidered. Two solution types are distinguished. In the �rst part ofthe paper regular solutions have been 
onsidered. The regularity is 
hara
ter-ized by the assumption that the swit
hing fun
tion 
hanges sign only at isolatedpoints. In the se
ond part so 
alled singular state subar
s are admitted. Theseare nontrivial subar
s, where the swit
hing fun
tion vanishes identi
ally. Forboth situations ne
essary 
onditions are derived from the 
lassi
al (smooth) op-timal 
ontrol theory. In addition, these ne
essary 
onditions have been appliedto two 
lassi
al nonsmooth OCPs. The �rst one des
ribes the optimal 
ontrolof an ele
tri
 
ir
uit 
ontaining a diode. The se
ond example is the 
lassi
alZermelo's navigation problem with a nonsmooth wind �eld.Referen
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