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Abstract: In this paper we consider general optimal control
problems (OCP) which are characterized by a nonsmooth ordinary
state differential equation. However, we allow only mild types of non-
smoothness. More precisely, we assume that the right-hand side of
the state equation is piecewise smooth and that the switching points,
which separate these pieces, are determined as points, where a state-
and possibly control-dependent (smooth) switching function changes
sign. For this kind of optimal control problems necessary optimality
conditions are developed. Attention is paid to the situation when
the switching function vanishes identically along a nontrivial subarc.
Such subarcs, which we call singular state subarcs, are investigated
with respect to necessary conditions and to junction conditions. In
extension to earlier results of the authors, Oberle and Rosendhal
(2006), in this paper nonsmooth OCPs are considered with respect
to the order of the switching function. Especially, the case of a zero-
order switching function is included and examples of order zero, one
and two are treated.
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1. Introduction

The paper is concerned with general optimal control problems (OCP) which
are characterized by a nonsmooth ordinary state differential equation. More
precisely, we assume that the right-hand side of the state equation is piecewise
smooth and that the switching points, which separate these pieces, are deter-
mined as those points where a state- and possibly control-dependent (smooth)
switching function changes sign. Nonsmooth optimal control problems of this
type rarely have been mentioned in the literature, see for example Baumann
(2002), Chudej (1995), and Moyer (2002). Of course, they are special examples
for the rather general theory of Clarke (1983). Such problems sometimes occur
in applications.
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It should be remarked that a similar type of optimal control problems,
namely multiprocess control problems or multi-stage control problems, have
been treated in the literature, see Clark, Vinter (1989), and Augustin, Maurer
(2000). However, for this kind of optimal control problems the switching times
between different stages are determined in a different way. Either these points
are fixed or they are determined by boundary conditions. In this paper, how-
ever, we are interested in the optimal junction conditions, which are caused by
the use of switching functions.

In a recent paper, Oberle and Rosendahl (2006), the authors have consid-
ered nonsmooth optimal control problems of the above type and have given an
application to economics. However, only switching functions of order one have
been treated and necessary optimality conditions have been derived. Especially
the case of a so-called singular-state subarc has been considered.

In the present paper, we extend these results including the case of an order-
zero switching function and give necessary optimality conditions for regular and
singular OCPs of this type. Further, we consider two classical examples. The
first example describes the optimal control of an electric circuit which includes a
diode and a capacitor. This problem has already been investigated in the book
of Clarke (1983). It is a nonsmooth OCP with a switching function of order zero.
We apply the necessary conditions and present regular and singular solutions
to this problem. By a slight modification we obtain a nonsmooth OCP with an
order-two switching function. For this problem we present regular solutions.

The second example is the classical Zermelo’s navigation problem. Here,
one has to determine optimal control functions for a time-minimal horizontal
plane flight of an aircraft within a prescribed space-depending wind field. If we
assume that the wind field contains certain lines of discontinuities (atmospheric
fronts), we end up with a nonsmooth OCP with a switching function of order
one. We apply the necessary conditions and present numerical solutions as well
for the regular as for the singular case.

The paper is organized as follows: In the first part we consider a general
nonsmooth OCP and derive corresponding necessary conditions in the form of a
multipoint boundary value problem. In section two, we further assume that the
switching function along the solution trajectory changes sign only at isolated
points (regularity assumption). The necessary conditions, we derive, differ for
control dependent switching functions (order zero), on the one hand, and for
switching functions which only depend on the state (positive order), on the other
hand. In section three, in addition, we admit singular state subarcs. Here, the
necessary conditions can be derived only for order zero and order one problems.
In the remaining three sections we investigate the examples, mentioned before.

2. Nonsmooth optimal control problems, regular case

We consider a general OCP with a piecewise defined state differential equation.
The problem has the following form:
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PROBLEM (P) Determine a piecewise continuous control function u: [a, b] —
R™, such that the functional

I'=g(x(b)) (1)

is minimized, subject to the following constraints (state equations, boundary
conditions, and control constraints)

2'(t) = f(z(t),u(t)), t € [a,b] ae., (2a)
r(z(a),z(b)) = 0, (2b)
u(t) e U C R™. (2¢)

The control region U is assumed to be a compact and convex cuboid of the
form U = I1;[wi min, Wi,max). Further, we assume that the right-hand side of the
state equation (2a) is of the special form

fi(z,w), if S(z,u) <0,
flz,u) =1 folx,u), if S(x,u)=0, (3)
folz,u), if S(xz,u) >0,

where the functions S : R” x R™ — R, fi : R" x R™ — R" (k = 1,2,s), and
r:R" x R* — R ¢ €{0,...,2n}, are sufficiently smooth.

S is called the switching function of Problem (P). Note that in many cases
the dynamics f; — the index s stands for singular — along the singular surface
S = 0 will be given either by fs := f1 or by fs = fs.

Our aim is to derive necessary conditions for Problem (P). To this end, let
(2°,u%) denote a solution of the problem with a piecewise continuous optimal
control function u°. Piecewise continuity is understood in the sense that there
exists a finite partition a < ¢; < ... <t, <b such that u° is continuous in each
open subinterval and at a and b as well, and that all one-sided limits uo(tji),
j=1,...,q, exist.

We assume that the problem is regular with respect to the minimum princi-
ple, that is:  For suitable A, z € R™ the Hamiltonians

Hj(z,u,A) = )\Tfj(x,u), i=1,2,s (4)

possess a unique minimum u?— with respect to the control u € U.

Finally, for this section, we assume that the following regularity assumption
holds.

REGULARITY CONDITION (R)  There exists a finite grid a =: tp < {1 <

. < tg < tgy1 = b such that the optimal switching function S[t] :=
S(z%(t),u’(t)) is either positive or negative in each open subinterval Jt;_1,;],
j=1,...,q+ 1.

In the following, we distinguish two cases. On the one hand, if the switching
function is independent of the control u, the switching function along the solu-
tion, S[-]:= S(2°()), is a continuous function, so that ¢; is an isolated root of
S[]. We indicate this case by p > 0.
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On the other hand, if the switching function depends explicitly on the con-
trol, S[]:= S(x(-),u’(-)) may have discontinuities at the ¢;. In this case, we
say that the switching function is of order zero, p = 0.

Now, we can summarize the necessary conditions for the OCP (P). Here, on
each subinterval [t;,t;+1], we denote H(z,u,\) := H,(x,u, ) where j € {1,2}
is chosen according to the sign of .S in the corresponding (open) subinterval. The
following theorem is a generalization of our previous results in the related paper
Oberle and Rosendahl (2006).

THEOREM 1 With the assumptions above the following necessary conditions
hold.  There exist an adjoint variable X\ : [a,b] — R™, which is a piece-
wise C'—function, and Lagrange multipliers vy € {0,1}, v € RY, K € RY, such
that (2°,u°) satisfies (t € [a,b])

N(t) = —Ha(2°(t),u°(t), (1)), a.e., (5a)

u(t) = argmin{H(z"(t),u,\(t)): uwe U}, (5b)

No) = = o (@) )] (50)

A = oo I 9@ 0) + 7). ) (54)
_ A7), ifp=0, j=1....q

AtF) = { NET) + #y VaS(@0(L)), if p >0, (5)

H[tF] = MG, j=1,....q (5f)

Proof. We assume that there is just one point t1 €]a,b[, where the switching
function S[-] changes sign. Moreover, we assume that the following switching
structure holds

< 0, if a<t<ty
St {>0, if 4 <t<b. (6)

We compare the optimal solution (2°,u°) with those admissible solutions (z,u)
of (P) which have the same switching structure. Each candidate of this type
can be associated with its separated parts (r € [0, 1])

21(1) = ala+7(t1 —a)), z2(1) = z(t1+7(b—1t1)), 1)
ui(t) = wula+7(t1 —a)), wr) = ult1+7(b—1t1)).

Now, (z1,Z2,t1,u1,u2) is an admissible and (29, 29,9, 4}, u9) an optimal solu-
tion of the following auxilliary optimal control problem.

ProBLEM (P’) Determine a piecewise continuous control function w =
(u1,u2) : [0,1] — R2™  such that the functional

I = g(z2(1)) (8)
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is minimized, subject to the constraints (7 € [0,1])

i (1) = (t1 —a) filzi(7),ui(7)), a.e., (9a)
2o(1) = (b—t1) falwa(T),ua(7)), a.e., (9b)
t(r) = 0, (9¢)
r(z1(0),z2(1)) = 0, (9d)
x2(0) — z1(1) = 0, (9e)
S(xz1(1)) = 0, onlyif p>0, (91)
ui(7), ua(t) € U CR™. (9g)

Problem (P’) is a classical optimal control problem with a smooth right-
hand side, and (29, 29,9, u{,u9) is a solution of this problem. Therefore, we
can apply the well-known necessary conditions of optimal control theory: There
exist continuous and piecewise continuously differentiable adjoint variables A; :
[0,1] = R™, j =1,2, and Lagrange-multipliers v € {0,1}, v € R, v; € R",
and k € R, such that, with the Hamiltionian

H o= (h—a) A filer,ur) + (b—t1) A] fol@a, ua), (10)
and the augmented performance index

D = vog(xa(1)) + vlr(x1(0), 29(1)) + v (22(0) —21(1)) + & S(21(1)), (11)

(k=0,if p=0) the following conditions hold

A = —7'711 =—(t1 —a) ()\rlffl(xl,ul)) , (12a)
Ny = —Hay = —(b—t1) (A falz2,us)),, (12b)
Ny = —Hi, = =M fi(z1,u) + A3 fa(w2,us), (12c)
k(1) = argrmn{/\k( Vfr(r(r),u): welUl, k=1,2, (12d)
A(0) = =Dy, o) = (UTT‘)II(O) M) =@, 1) = -1 + £Sz(21(1)), (12e)
A2(0) = = v, X(l) =Pu0) =g + V' 1)as), (12f)

()—/\3()— : (12g)

Due to the autonomy of the state equations and due to the regularity as-
sumptions above, both parts A fi and A3 f of the Hamiltonian are constant
n [0,1]. Thus, A3 is a linear function which vanishes due to the boundary
conditions (12g). Together with the relation (12c) one obtains the continuity of
the Hamiltonian (5f).
If one recombines the adjoints

A(t) = . (ftl_—czl)’ Felonl (13)
MZ:Z) t e [t,0],
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one obtains the adjoint equation (5a) from Eqs. (12a-b), the minimum principle
(5b) from Eq. (12d), and the natural boundary conditions and the continuity
and jump conditions (5c-e) from Eqs. (12e-f). m

It should be remarked that the results of Theorem 1 easily can be extended to
nonautonomous OCPs with nonsmooth state equations and to problems with
free final-time ¢;. This holds too, if the performance index contains an additional
integral term, i.e.

ty

I = g(ty,xz(ts)) + Jo(t,z(t), u(t))dt. (14)

a

These extensions can be treated by standard transformation techniques, which
transform the problems into the form of Problem (P). The result is that for the
extended problems one has to redefine the Hamiltonian by

H(t,I,U,)\, VO) = 1 fo(t,.I,U) + /\Tf(t,ft,u). (15)

3. Nonsmooth optimal control problems, singular case

In this section we continue the investigation of the general optimal control prob-
lem (P). However, we drop the regularity condition (R). We assume that a so-
lution (2%, u°) of (P) contains a finite number of nontrivial subarcs, where the
switching function vanishes identically. More precisely:

SINGULARITY CONDITION (S) We assume that there exists a finite grid
a=:ty) <ty <...<tq <tgr1:=>b such that in each open subinterval |t;_i,t;],
j=1,...,q+1, the optimal switching function S[t] = S(2(t),u’(t)) is either
totally positive, totally negative, or vanishes identically. The later subarcs are
called singular state subarcs, see Bell, Jacobson (1975) and Bryson, Ho (1969),
for the analogous situation of singular control subarcs.

Thus, the grid points ¢; are either isolated points, where the switching func-
tion S[-] changes sign, or they are entry or exit points of a singular state subarc.

By Jieg we denote the set of indices of grid points ¢; where the switching
function changes sign, by Jeptry those of the entry points, and by Jeyit those of
the exit points of the singular state subarcs.

We give a more precise definition of the order of a singular state subarc, in
analogy to the order of state variable inequality constraint. To this end, we use
the following recursive definition

SO (2, u) = S(x,u), SP(x,u):=SEV(@,u) fo(z,u), k=1,2,... (16)

We say that, for the solution (2°,u°), the switching function S is of order p > 0,
if the first total time derivatives S®), k = 0,...,p — 1, are independent of
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the control u, and further, if S®) satisfies the following regularity condition
(constraint qualification)

9

ou

ORDER CONDITION (O) We assume that the switching function is either

of order zero, p = 0, or of order one, p = 1, with respect to the fixed solution
(2°,u°) of problem (P), i.e.

for p=0: Su(20(t),u’(t)) # 0,

for p=1: S = 8(z), S"@°1),u’t) # 0

SP (20(t),ul(t)) # 0, VYtetitiv1l, J € Jentry- (17)

(18)

may hold along each singular state subarc.
Now, we introduce the extended Hamiltonian (here also denoted by H)

H(w,u, A 1) o= Hi(,u, A ) = X fr(,u) + p S® (,0), (19)

where k € {1,2,s} is chosen according to the sign of S in the corresponding
subinterval, and p denotes a Lagrange multiplier. We set p := 0 for k£ = 1,2.
Again, we assume regularity with respect to the minimum principle.

In the following, we summarize the necessary conditions for Problem (P).

THEOREM 2 With the assumptions above the following necessary conditions
hold.  There exist an adjoint variable X : [a,b] — R™, which is a piece-
wise C'—function, and Lagrange multipliers vy € {0,1}, v € R’ k; €R (j €
Ireg U Jentry), and a piecewise continuous Lagrange multiplier p : [a,b] — R |
such that (z°,u®) satisfies the conditions (t € [a,b])

N(t) = —Hu(z(t),u’(t), \(t), u(t)), a.e. (20a)
u'(t) = argmin{H (" (), u, \(t), u(t)) : uwe U}, (20b)
p(t) S(xo(t)vuo(t)) = 0, (20c)
Na) = = o @) )] (200)
A = o a0 + v (@), )] (20¢)
B /\(t]_) + K VmS(IEO(tj)), f07' p=1,j¢€ Jreg U Jentryv
At7) = { At;), for p=0, (206)
H[tT] = H[t7], j=1,...,q (20g)

Proof. For simplicity, we assume that the switching function S[-] along the op-
timal trajectory has just one singular state subarc [t1,t2] CJa,b[, and that the
following switching structure holds

< 0, if a<t<t,

S 4 =0, if t<t<t, (21)
>0, if ty<t<b
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Again, we compare the optimal solution (z°,u°) with those admissible solutions

(x,u) of the problem which have the same switching structure. Each candidate
is associated with its separated parts (7 € [0,1])

x1(1) = x(a+7(t1 —a)), ui(t) = wla+7(t1 —a)),
2s(1) = x(ty +7(t2 — 1)), us(1) = u(ty +7(t2 —t1)), (22)
x2(1) = a(ta +7(b—t2)), uz(1) = u(ta +7(b—ta)).

Now, (21, s, T2, t1, t2, U1, Us, uz) performs an admissible and (9, 2%, 29, 9,9, ul,

u?,u9) an optimal solution of the following auxilliary optimal control problem.

ProBLEM (P”). Determine a piecewise continuous control function u =
(u1,us,uz2) : [0,1] — R3™ such that the functional

I = g(x2(1)) (23)

is minimized, subject to the constraints (7 € [0, 1])

(1) = (t1 —a) filzi(7),u1(7)), ae., (24a)
2o (7) = (ta — t1) fs(ws(7),us(7)), a.e., (24b)
2o(1) = (b—ta) fo(za(7),u2(7)), ae., (24c)
t(r) =0, k=1,2, (24d)
r(z1(0), z2(1)) = 0, (24e)
25(0) — 21(1) = 22(0) — 24(1) = 0, (24f)
S(xs(1),us(r)) = 0, (24g)
u(7), us(7), ua(r) € U (24h)

Problem (P”) again is a classical OCP with a smooth right-hand side. However,
it contains, depending on the order p, a (regular) control equality constraint, or
a pure state equality constraint of first order, respectively. We can apply the
classical necessary conditions of optimal control theory, see Hestenes (1966). If
the constraint qualification (18) is satisfied, there exist a continuous Lagrange
multiplier 2, and continuously differentiable adjoint variables Ag, k = 1,s,2, 3,4,
such that with the Hamiltonian

H (tl —CL) )\rlr fl(fplaul) + (t2_t1) /\E fs(I57us) (25)

+ (b= t2) XF fa(wz,uz) + i (t2 — t1) SP (s, us),
and the augmented performance index (with x = 0 for p = 0)

)

® )
0)

+ vir(z1(0), 22(1))

g(x2(1)) = £S(2+(0), us(0)) +
Tg ( IS(l))a

1)
v (4(0) = 21(1)) + v (a2

+ i
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the following conditions hold (7 € [0, 1])

N = T, = —(—a) (LR, . (27a)
N = —Ho, = —(t2 = 1) [\ fo)a, + B(T)SP (25, u5)], (27D)
Ny = —Hay = —(b—t2) (A fo)aa, (27¢)
Ny = —Hy = =M1+ NS + () SV (s, ), (27d)
No = —Hi = =Mfo + M fo = (r) P (s, uy), (27¢)
uj(r) = argmin{/\j(r)Tfj(:Ej(T),u): ueld}, j=1,2, (271)
us(r) = argmin{A(7)" fo(zs(7),u) + F(r) SP(zy(7),u) : uel}, (27g)
M(O0) = =P = —(')e0p M) = Bgy1) = —u, (27h)
As(0) = =D, 0) = —v1+ESe 0, As(1) = @p ) = —va, (271)
A0) = =®,,0 = —1a, A1) = ©py = Log+ v ),  (270)
A3(0) = A3(1) = M(0) = M(1) = 0. (27k)

Due to the autonomy of the optimal control problem, all three parts AT f1,
Al fs, and A3 fo of the Hamiltonian are constant. Due to Eq. (24g) we get
SP)(z4(7),us(7)) = 0, 7 € [0,1]. Because of Eqs. (27d), (27e), and (27k), the
adjoints A3 and A4 vanish and we obtain the global continuity of the augmented
Hamiltonian (19).

If one recombines the adjoints

t—a
Al(ttl_a), t e [a,tl[,
—1
Al = A tz_tll), t € [ti,ta], (28)
t—t
>\2(b—tz), t E]tz,b],

and the state and control variables accordingly, one obtains all the necessary
conditions of the theorem. m

Again, we mention that the results of Theorem 2 can be easily extended
to nonautonomous nonsmooth OCPs, to problems with free final-time, and to
optimal control problems with performance index of Bolza type, as well.

4. A nonsmooth OCP of order zero

The following example is taken from the well-known book of Clarke (1983).
It describes the control of an electronic circuit, which includes a diode and
a condenser. The diode is treated as a resistor with two values of resistance
depending on the direction of the current.

If w := U denotes the initializing voltage (control), and x := Uc denotes the
voltage at the condenser (state), one obtains the following nonsmooth OCP.
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u(t) ~ —
Ue)

Figure 1. Electric circuit with a diode and a capacitor

ProBLEM (D1). Minimize the functional
1 2
2
I(u) = —/ u(t)” dt (29)
2 Jo

with respect to the state equation

, - afu—z), if S=z—-u<0,
?'(t) = {ﬁ(u—m), if S=x2—u >0, (30)
and the boundary conditions z(0) = 4, x(2) = 3.
In the smooth case, we choose o= (3 =2, the (unique) solution easily can

be found applying the classical optimal control theory, see Fig. 2.

4 0
35 -05
s -1
=25 -
<, = 18
15 -2
. -25
059 05 1 15 2 o 05 1 15 2

X(t)-u(t)

S[t] =

0 0.5 1 15 2 0 0.5 1 15 2
t t

Figure 2. Problem (D1): Smooth case, « = 5 = 2.

For the nonsmooth case, « # 3, we assume that there is just one point
t1 €]0,2[ where the switching function changes sign. Further, due to the
results for the smooth case, we assume the solution structure
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> 0, if 0<t<ty,
St {< 0, if t<t<2. (31)
According to Theorem 1 we obtain the following necessary conditions:
1
i) t e [0,t7]: H = Hy = 5u?JrﬁA(u—x),
N =N u=-F\
1
(i) t e [t7,2]: H = H = §u2+o¢/\(u—z),
N =al u=—-al
The continuity condition (5f) yields
_ a+
it - i) = (B-a)Mn) |“EENw) + 2| = 0
Thus, we obtain the following three-point boundary value problem.
L [ BBt ¢ te],
—a(aX+zx) tetf, 2],
/ — ) )
A B {a)\ oo tet], 2], (52)
z(0) = 4, z(2) = 3, Q;B At1) +z(t)) = 0
4 0
3
-0.5
-1
1
% 05 1 15 2 5 0.5 1 15 2
t t
5 3
c4 g 1
EE X
I e
2 =,
1 -2
0

0 0.5 1 15 2 o 0.5 1 15 2
t t

Figure 3. Problem (D1): Nonsmooth and regular case, « =4, § = 2.

In Fig. 3 the numerical solution for the parameters o = 4 and g = 2
is shown. The result is obtained via the multiple shooting code BNDSCO,
see Oberle, Grimm (1989), and Stoer, Bulirsch (1996). One observes that the
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preassumed sign distribution of the switching function is satisfied. Further, the
optimal control and the optimal switching function are discontinuous at the
switching point.

For parameters « < [ the solution of the boundary value problem (32)
does not satisfy the preassumed sign distribution of the switching function, see

Fig. 4.

x(t)-u(t)

St

T
t

Figure 4. Problem (D1): Nonadmissible solution, o = 2, 5 = 4.

So, for this choice of parameters we have to consider the singular case, i.e.
the switching function vanishes along a nontrivial subarc. If we assume that
there is exactly one singular state subarc,

> 0, if 0<t<ty,
St] =0, if t; <t<ty, (33)
< 0, if to <t <2,

we obtain the following necessary conditions due to Theorem 2.

1
(i) t € [0,t1] : H = Hy = 5u? + B (u—2),
N =8N u= -0\
1
(ii) t € [t1,ta] : H = Hs = §u2+a/\(u—:v)+u(x—u),
N=a\ —pu u=—-al+p=u=x
1
(iii)  t € [t2,2]: H = H = §u2+oz/\(u—a:),
N =al u=—-a\
The continuity of the Hamiltonian, say at t;, yields with
_ _ 1
Ml = Haltr] = 502 A0)? + BA(h) (=FA(0) - x(h))
1
= =5 BA) (BA(t) +22(t))
1
HEf] = Holtf] = 5 e(tn)?

the interior boundary condition z(¢1) + 8 A(t1) = 0. The analogous condition
holds at the second switching point to.
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Altogether we obtain the following multipoint boundary value problem.

B(BA+a)  tel0n)
a’ = 0 te [tl,tg],
—a(aX+x) : tEts,?2],
B\ t €[0,t],
N = —x = te [tl,tg], (34)
a t e [tQ, 2],
z(0) = 4, x(2) = 3,
.I'(tl) + [BAt1) = 0, x(tz) + al(ta) = 0.

For the parameters « = 2, # = 4 the numerical solution is shown in Fig. 5.
One observes a singular state subarc with the switching points t; =0.632117,
to = 0.882117.

4 0
35 -05
8 -1
25 =
< < 15
x 2 <
15 -2
1 25
05 -3
0 0.5 1 15 2 0 0.5 1 15 2
t t
6 4
5 3
4 g
= &1
s3 ¥

=)

sl

0 0.5 1 15 2 0 0.5 1 15 2
t t

Figure 5. Problem (D1): Nonsmooth and singular case, o = 2, 5 = 4.

In difference to the regular case, one observes that for the singular-state subarc
the control and adjoint variable are continuous functions. This is a consequence
of the necessary conditions when treating linear-quadratic OCPs, see Rosendahl
(2008).

5. A modification of Clarke’s example

In the following section we consider an OCP for a modified electric circuit, which
contains a diode, a capacitor and a coil.

The relations between the initializing voltage U, the current I, and the
voltages at the electric elements are given by
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u(t) ~ —
U

0

Figure 6. Electric circuit with a diode, a capacitor, and a coil

U(t) = Up(t) + Uc(t) + UL(t),

Up(t)/Ry, if Up >0,
UD(t)/RQ, if Up <0,

I(t) = CUc(t),
I(t) = UL(t)/L.

(35a)
(35h)

(35¢)
(35d)

By differentiation of Kirchhoff’s law (35a) and using the abbreviations u :=
U, ©1:=1, 29:=1, a:=Ry/L, f:= Ry/L, and ~:=1/(LC), we obtain

the following OCP.
PROBLEM (D2). Minimize the functional

with respect to the state equation
Ty (t) = wo,
2(t) = u—are —yxy, if S:=xz1 >0,
2 - u— By —yxy, if S:i=x; <0,

and the boundary conditions
Il(O) = 1, .IQ(O) == —4, I1(2) = I2(2> = 0.

(36)

(37a)

(37h)

(38)

One observes that the switching function of this nonsmooth OCP S := x; is of
the order p = 2. For this situation, only the regular case is tractable with our
theory above. If we use this regularity assumption (R) and apply Theorem 1 for
one switching point, we get the following three-point boundary value problem:

I/l = T2,

Ty = u—0x9 — Y1, U= —Mo,

r_ L «, iftE[O,tl],
A= A 0= { 8, if t €], 2],
/\/2 = =)\ + 0o,

MET) = M) + (B—a)da(tr), X)) = Aa(t]),
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x1(t1)
Il(O) = 1,

0,
X9 (O) = —4,

z1(2)

(39f)
(39g)

This boundary value problem can be solved numerically. For both cases a< (3
and o> 3 we obtain admissible solutions, which satisfy the regularity assump-

tion.

In Fig. 7 the solution of the boundary-value problem (39) for the parameters
a =2, =3 1is shown. Fig. 8 gives the solution for a = 3, § = 2.

1

0.8
0.6
0.4
0.2

o} - -

-0.2

1

0

-1
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0 05 15 2

1
N0

Figure 7. Problem (D2): Nonsmooth

0.5 15 2

1
A0

and regular case, a =2, =3, vy = 1.

1

1

05 15 2

1
N0

Figure 8. Problem (D2): Nonsmooth

15 2

and regular case, « =3, =2, y=1.
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6. The nonsmooth Zermelo’s problem

In this section we consider a modification of the classical problem of Zermelo,
see Arrow (1949), Zermelo (1930, 1931). In the literature of optimal control the
problem is well known as the ship navigation problem. In its original notation,
however, the problem is given as follows. One has to determine the heading
control for the horizontal plane flight of an aircraft within a prescribed space-
depending horizontal wind field such that the transfer time from a given initial-
to a given endpoint is minimized.

In mathematical notation the problem can be formulated as an optimal
control problem.

PROBLEM (Z) Determine the transfer time t; and a piecewise continuous
control function O(t), 0 <t < ¢y, such that

I(©,t) = ty (40)
is minimized, subject to following state equations and boundary conditions:
2’ (t) = vy cos(O(t)) + u(z(t),y(t)), (41a)
y'(t) = vo sin(O(t)) + v(x(t),y(t)), (41b)
z(0) = zo, z(ty) = zy, (41c)
y(0) = yo. ylty) = ys. (41d)

Here, vy is the (constant) magnitude of the aircraft velocity relative to the wind
field, © is the heading angle (control function), (u,v) is the velocity of the wind
field relative to the ground. For simplicity, we assume that (u,v) depends only
on the state (z,y), the position of the aircraft.

Further modifications of this problem, including, for example, wind fields
which vary in space and time, or a three-dimensional modelling, are more or
less straightforward.

6.1. The smooth case

First, we summarize the necessary conditions for the smooth case, i.e. the wind
field may be a smooth function of (z,y). The Hamiltonian is given by

H = )\1 (’UO COS(@) + u) + )\2 (1)0 sin(@) + v). (42)
By the minimum principle we obtain the following optimal control law
A A
cos(@) = — ——— sinO) = — —2 (43)

VAT + A3 NEYERYE
and, thus, together with the adjoint equations, we obtain the following two-
point boundary value problem with respect the independent variable T € [0, 1]:

' =ty (vo cos(©) + u(z,y)), (44a)
y' =ty (vo sin(O©) + v(z,y)), (44b)
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A=ty (A ug(z,y) — A2 va(,y)), (44c)
Ay = tr (= uy(,y) = A vy(z,y)), (44d)
ty =0, (44e)
z(0) = zo, z(1) = wzy, (44f)
y(0) = yo, y(1) = vy, (44g)
H] = [~vo /AT + 23 + Mu + Ao]lrm1 = L (44h)

Following Bryson, Ho (1969), we choose the wind field (shear wind)
we,y) = —vy,  v@y) = 0 (45)
and the parameters
v =1, v,:=08, xzp:=366, yo:=-186, zy:=0, yr:=1 (46)

Fig. 9 shows the optimal flight path. The aircraft heading is indicated at sev-
eral points along the path. For the minimal flight time we obtain ¢;=4.9257352.

()

IITTTTT“LLLii_

L
15 -1 -05 0 05 1 15 05 0 05 1 15

2 25 35 a4 45 5
X x(t)

Figure 9. Problem (Z): Minimum time path for a smooth wind field; vy =
1,vs =0.8.

6.2. The nonsmooth case

Next, we consider the case of a nonsmooth wind field. With this ansatz an
atmospheric front may be modeled. Again, we simplify the practical problem
and choose the time-independent front line y = 0. Note, however, that the
general theory allows to handle the case of time variant front lines too.

We choose the following wind field,;

. —Vs Y, it y>0, .
u(z,y) = { o, it oy<0 v(z,y) = 0, (47)
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i.e., for y < 0, there is a constant head wind, whereas, for y > 0, there is a
space-dependent rear wind. The switching function is given by S(z,y,0) :=y.
Obviously, S is of the order p = 1. If we choose the data and boundary
conditions as before, we may expect a regular solution with one switching point
t1, 0 <ty <ty.

For the necessary conditions we apply Theorem 1. Thus, a solution of the
nonsmooth optimal control problem must satisfy the same boundary value prob-
lem (44) as before, however, augmented by the following jump and switching
conditions

M) = M), Ae(t) = Na(ty) + k1 (48a)
y(t1) = 0, H[t] = H[t7]. (48b)

Note that, compared with the smooth case, the boundary value problem contains
two additional unknowns, the switching time ¢; and the Lagrange multiplier «;.
Both are determined by the switching conditions (48b).

The numerical solution of the resulting multipoint boundary value problem
has been obtained by the multiple shooting code BNDSCO. In Fig. 10a the
optimal flight path for the nonsmooth wind field is shown. The resulting minimal
flight time is t; = 4.9875063.

1 1

1f

05
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>

y()

D —
PU—
_
pa—
-
—
05 —
—_—
—
—_—
—_—
— .

e EEE S
Figure 10a. Problem (Z): Minimum time path for the nonsmooth wind field
(47).

In Fig. 10b the optimal state variables (x,y), the adjoint variable Ay corre-
sponding to the state y, and the optimal control function on the scaled time
interval [0, 1] are given. Omne observes the discontinuity of the control and the
adjoint variable Ao at the (nonscaled) switching point ¢, = 1.9912720.

6.3. The singular case

If one substitutes the rear wind for y > 0 by a time variant head wind, the
solution of this nonsmooth optimal control problem may contain a singular-
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Figure 10b. Problem (Z): Corresponding optimal state, adjoint, and control
functions.

state subarc. We choose the following wind field.

. Vs Y, if y>0, .
wa) = { 00 LU0 ) =0 (49)

The analysis of the singular subarc according to Theorem 2 yields the extended
Hamiltonian

H = M (vocos(®) + u) + (A2 + p) (vosin(©) + v) (50)
and the corresponding optimal control
A1 Ao+ p
VAT + Qe + 1) VAT Q2 + p)?
The adjoint equations remain unchanged, see Egs. (44). On the regular subarcs,
we have p = 0, whereas on the singular subarcs, we have S(z,y) = y = 0, and
SM(x,y,0) =y sin® =0, sothat Ay +pu =0, sin® =0, and cos© = —1.
If we choose the data and boundary conditions as in (46), we may expect a
solution with one singular state subarc [t1,¢2]. Due to Theorem 2, a solution
of this nonsmooth optimal control problem must satisfy the same boundary
value problem (44) as before, however, augmented by the following jump and
switching conditions
M) = M), j=1.2, (52a)
Ma(t) = Xa(t)) + k1, Xa(td) = Aa(ty), (52b)
y(tr) =0, Hlt]] = Hlt;], j=1.2 (52c)

cos(@) = —

sin(@) = — (51)
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Additional parameters of the boundary value problem are the switching times
t1, t2, and the Lagrange multiplier ;. They are determined by the switching
conditions (52c).

(TP rr]

xof -

Figure 11a. Problem (Z): Minimum time path for the nonsmooth wind field
(49).

In Fig. 11a the optimal flight path for the nonsmooth wind field is shown.
The resulting minimal flight time is ¢y =7.3819697. The scaled optimal state,
adjoint and control variables are given in Fig. 11b.
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3

0
25
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0 02 04 06 08 1 0 02 04 06 08 1
Adjoint variable >\2(I) Control 6(t)

Figure 11b. Problem (Z): Corresponding optimal state, adjoint, and control
functions.
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7. Conclusions

In this paper optimal control problems with nonsmooth state differential equa-
tions are considered. Two solution types are distinguished. In the first part of
the paper regular solutions have been considered. The regularity is character-
ized by the assumption that the switching function changes sign only at isolated
points. In the second part so called singular state subarcs are admitted. These
are nontrivial subarcs, where the switching function vanishes identically. For
both situations necessary conditions are derived from the classical (smooth) op-
timal control theory. In addition, these necessary conditions have been applied
to two classical nonsmooth OCPs. The first one describes the optimal control
of an electric circuit containing a diode. The second example is the classical
Zermelo’s navigation problem with a nonsmooth wind field.
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